
Unification versus Separation of Regulatory
Institutions∗

Dana Foarta
Stanford GSB

Takuo Sugaya
Stanford GSB

February 17, 2017

Abstract

Why might a country choose to aggregate regulatory information into a single gov-
ernment agency? And what might reverse this choice? We consider an oversight setting
in which the institutional structure affects access to information. A regulator exerts
effort towards a final outcome, but an oversight authority can intervene, which prevents
the final outcome from being reached. We examine the choice between institutional uni-
fication and separation. Unification affords the oversight authority more information
on the probable outcome. Yet dynamically, institutional separation improves learning
about the quality of regulatory agencies. This leads to switching between unification
and separation in equilibrium.
JEL Classification Codes: P16, D82, H11, G18.

∗Foarta: Stanford Graduate School of Business, 655 Knight Way, Stanford, CA, 94305, tel: (650) 723-4058,
email: ofoarta@stanford.edu. Sugaya: Stanford Graduate School of Business, 655 Knight Way, Stanford, CA,
94305, tel: (650) 724-3739, email: tsugaya@stanford.edu. We thank Steve Callander, Peter Buisseret, Ken
Shotts, Andy Skrzypacz, Victoria Vanasco, as well as seminar partipants at Arizona State, Boston University,
Caltech, LSE, Stanford, University of Arizona, University of Warwick, and Yale for useful comments and
suggestions.

1



1 Introduction

A central question in political economy has been whether to unify government functions

or to separate them into discrete institutions.1 Of the various aspects of institutions that

have come under focus, regulators’ access to information stands out as a key element in

policy debates. Information is the lifeblood of effective regulatory action. Not infrequently

after crises comes the conclusion that information was overly dispersed, not aggregated, and

that the crisis could have easily been avoided if only the offi cials had known. This was the

case after the global financial crisis, and it was also the case after the terrorist attacks of

2001. It stands to reason, therefore, that the solution is to aggregate information into a

single government agency. Indeed, this is exactly the response we witnessed after the great

financial crisis of 2008 and the terrorist attacks of 2001, as well as after many smaller yet

non-trivial regulatory failures.

If this were all that has happened we could conclude that these were episodes of flawed

governments correcting organizational mistakes. Yet, the choice of separated regulatory

structures—where information and authority is dispersed across multiple independent agencies—

is widespread, so much so that it cannot be viewed as a mistake. Consider, for instance,

financial regulation, specifically the functions of bank supervision and the lender of last re-

sort. Bank supervisors monitor risk taking in the banking sector. Their effort in monitoring

is meant to reduce excessive risk-taking by banks, which in turn reduces the probability of

banking crises. The lender of last resort relies on the work of the bank supervisors. If there

are signs of a banking crisis, it can intervene to prevent a crisis from unfolding. Therefore,

these two functions are closely linked by their role in preventing banking crises. Figure 1

illustrates the considerable heterogeneity across countries in the choice of whether to unify

or separate these two functions.2

1See Hayek (1945), Tiebout (1956), Oates (1972), Weingast (1995), Blanchard and Shleifer (2001), Besley
and Coate (2003a), Cai and Treisman (2005), Bardhan and Mookherjee (2006) and the works referenced
within.

2Data from “How countries supervise their banking, insurers and securities markets,”Central Banking
Publications for year 2013 and from Melecky and Podpiera (2013) for years 1999-2010. It covers 98 countries.
The data for years 2011-2012 was not available.
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Figure 1: Percent of countries with institutional unification of bank supervision inside the
central bank

Figure 1 also reveals a second puzzle. The choices of regulatory structure vary over time,

and not in a way that is purely reactive to crises. Indeed, changes go both ways, from a

separated to a unified structure and the other way around. In fact, a single country can

exhibit both types of change. The United Kingdom, for instance, moved from a system with

institutional unification to one with separation in 1997/98. It created the Financial Services

Authority (FSA) as an institution separated from the Bank of England, which retained the

lender-of-last-resort function. Yet, in 2013, the UK switch back again, with the responsibility

for bank supervision transferred back and unified within the Bank of England.

Why might a country choose a separated rather than a unified regulatory structure when

information flows are affected? And what might reverse this choice? In this paper, we

develop a model of regulatory oversight to answer these two questions and to make sense

of these empirical patterns. We take bank regulation as our leading example, although our

model is applicable to any oversight setting in which the flow of information is important.

In our model, a regulatory agency (referred to as ‘the regulator’) exerts costly effort to
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increase the probability of a good outcome. How costly the effort is depends on the regulator’s

private type. After the regulator supplies effort and before the final outcome is revealed, an

overseer—the central bank in our motivating example—can make a costly intervention—it can

intervene as a lender of last resort. This action stops the final outcome from being reached—

everyone observes the intervention, and no one knows what the final outcome would have

been. The cost of the intervention is lower than the cost of the bad outcome, but the good

outcome carries no cost at all. Therefore, an overseer who aims to minimize costs wants to

intervene only if the final outcome is likely to be bad. In a unified institutional structure,

the overseer has access to additional information about the likely outcome: she observes a

noisy signal about the final outcome. In a separated institutional structure, such a signal is

not available. In this environment, we consider the problem of selecting quality regulators

given the problems of moral hazard and adverse selection—the citizens only observe the final

outcome, and based on it they form a belief about the regulator’s quality. We implicitly

assume that the citizens’goal is shared by the government, who conducts the regulatory

reforms in order to achieve this goal. In a dynamic setting, this sequence of actions is

repeated every period, and the government can each time choose to replace the regulator

by overhauling the regulatory agency. Therefore, the regulatory agency has reputational

concerns, as its continuation depends on the beliefs formed about it.

We first identify why, in a static sense, unified oversight may not be optimal. Unification

allows the overseer access to additional information about the final outcome. Yet, the overseer

may use this information to intervene not only when it is necessary, but also when no

intervention is needed. In our motivating example, a lender of last resort may bail out banks,

but it may also bail out the supervisors for their lack of effort in oversight. This potential

for over-intervention reduces the incentive for the regulator to exert effort in the first place.

The opposite happens with institutional separation—the lack of information removes the

possibility of unnecessary interventions and increases the incentive for the regulator to exert

effort.

This result suggests why countries may make different choices but it does not explain
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the variance over time—why, for instance, the UK switched back and forth their regulatory

structure. We expand our static analysis to a fully dynamic model and we show that dynam-

ically, the informational advantage of unification comes at a higher price, because it limits

the government’s ability to learn about regulator quality. Precisely because unification leads

to over-intervention, citizens (and the government) more often do not observe what outcome

would have been reached had there not been an intervention. This worsens the government’s

ability to screen regulators, since they are not able to learn as much about the quality of

the regulator from observing an intervention rather than the final outcome. Less effective

screening leads, in turn, to low quality regulatory agencies being kept unreformed for longer.

Thus, the static informational advantage of unification comes with a dynamic ineffi ciency.

A trade-off emerges between using information to immediately correct potential regulatory

failures—through the overseer’s intervention—and waiting more often until the final outcome

in order to learn about the regulator’s quality.

We fully characterize the best sustainable equilibrium for citizens, and we show that

the interplay between the static and the dynamic trade-offs leads to a changing regulatory

structures in the optimal design of institutions. The dynamic benefit of better screening is

highest when the regulator’s reputation is intermediate—when there is enough uncertainty

about the regulator’s quality. When the regulator’s reputation is very low or very high,

observing the final outcome brings little benefit. In fact, as citizens (and the government)

become convinced that the regulator is of high quality, the benefit of screening vanishes.

This dynamic leads to switches in institutional structure between unification when the reg-

ulator’s reputation is low, separation when the regulator’s reputation is intermediate, and

then unification again when the regulator’s reputation becomes suffi ciently high.

The results of the model suggest that transitions between institutional separation and

unification can be welfare improving in environments in which society must balance incen-

tives for regulatory effort and effective oversight. Our explanation resonates with the data

presented in Figure 1 and with anecdotal accounts of these institutional changes. For ex-

ample, when the UK regulatory agency—the FSA—was separated in 1997/1998, the main
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argument provided for this change was that it would “reduc[e] the risk that the central bank

would be too accommodative in order to help frail intermediaries.”3 Similarly, the 2009 re-

view of the FSA mentioned that, while unification would bring the benefit of “ensuring that

banking liquidity supervision and central bank liquidity operations are closely linked, there

is also a danger that this can reduce supervisory discipline.”4 When the supervisory func-

tions were eventually transferred back to the Bank of England, the main reason cited was

the lack of shared information between FSA and the Bank of England during the financial

crisis.5 Finally, going beyond this particular example, perceptions of high regulator quality

have been shown to be important for market outcomes and for regulatory reform decisions.6

Related Literature. The questions our paper addresses are related to the broader debate

in political economy on whether to unify government functions or to separate them into

discrete institutions. By addressing unification versus separation in the context of regulatory

oversight, we contribute to the literature on optimal institutional structure and the optimal

degree of transparency in public institutions (Aghion and Tirole, 1997; Persson et al., 1997;

Besley and Coate, 2003b; Maskin and Tirole, 2004; Prat, 2005; Alesina and Tabellini, 2007,

among many others). Our paper focuses on a specific type of institutional relationship, that

in which one institution has oversight power over another, and the overseer can take an

action that reduces the informativeness of the observed outcome—after an intervention, no

one knows what the outcome would have been otherwise. The institutional structure affects

the information that the overseer has when making the intervention decision.

3The quote is from the executive summary of Chapter 14 of “Money, Banking, and Financial Markets”
by Stephen G. Cecchetti and Kermit L. Schoenholtz, available at
http://www.mhhe.com/economics/cecchetti/Cecchetti2_Ch14_RegDivofLabor.pdf

4FSA (2009), “The Turner Review,”pp 92, http://www.fsa.gov.uk/pubs/other/turner_review.pdf , ac-
cessed December 5, 2016.

5For example, see “Responsibility without information: the Bank of England as Lender of Last Resort”
in Financial Times, available at
http://blogs.ft.com/maverecon/2007/09/responsibility-html/#axzz4M3r4Tqv9, accessed December 5, 2016.

6Restoring market confidence in regulators is often quoted as the reason for regulatory overhauls (see for
example the above quoted Turner Review or the HM Treasury 2011 report, “A new approach to financial
regulation”). More broadly, the importance of public perceptions and reputation has been shown to matter
across regulatory areas (see for example Carpenter 2001, 2010).
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Our paper is also related to the literature on the effi ciency of oversight (De Mesquita

and Stephenson, 2007; Fox and Van Weelden, 2010; Buisseret, 2016). While much of this

literature has focused on static trade-offs in richer static models, we consider the dynamics

of the regulatory structure. Our static model is simplified in order to focus on the dynamic

effects of institutional choice—only the regulator has reputational concerns and the regulator

works on only one task. We also focus on a different static trade-off than previous works

in this literature—regulatory effort is discouraged when the overseer has access to informa-

tion. The only other work we are aware of which examines this particular type of oversight

relationship is Levitt and Snyder (1997). They address this tension in a static model with

moral hazard. We consider the dynamic problem, with moral hazard and adverse selection,

both of which are essential for our result of switches between unification and separation in

the optimal institutional design.

Our paper also contributes to the literature on dynamic retention of public offi cials.

Our model is related to Banks and Sundaram (1993, 1998) in that it incorporates both

adverse selection and moral hazard in a dynamic setting with the possibility of removal of

agents at the end of each period; however, we focus on the case in which both the regulator

and the citizens are long-lived agents and in which the action of the overseer can reduce

public information, which changes the dynamics of the problem. The result of switching

between institutional unification and separation also relates this work to the literature on

policy cycles (Ales et al., 2014; Dovis et al., 2016). As in this literature, we focus on the

best sustainable equilibrium for the citizens. Our result of a changing institutional structure

relies nevertheless on a distinct mechanism, coming from the interaction between the public’s

ability to learn about the agent’s type and the agent’s incentives to supply effort.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3

presents static trade-off generated by the model in a one-period game. Section 4 presents

the full dynamic model. Section 5 concludes, and the Appendix contains the proofs and

extensions.
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2 Environment

We begin by describing an environment that captures the main forces of the model. There

are three players: a regulator (R),7 an overseer (O), and a unitary public (P ).

The Regulator. The regulator R has a type θ ∈ {L,H}, which is private information.

The type θ takes value H with commonly known probability µ. The regulator can exert

unobservable effort e ∈ [0, 1] to influence the probability distribution of a final outcome

y ∈ Y = {B,G}. The probability of outcome y = G, denoted q (e) , is an increasing function

of the effort e. The function q (e) is twice continuously differentiable and concave:

q′ (e) ≥ 0, q′′ (e) ≤ 0.

We also assume q′ (0) > 0 since otherwise q′ (e) ≥ 0 and q′′ (e) ≤ 0 would imply q (e) is

constant.

Exerting effort is costly, and the cost of implementing e for R of type θ is given by

cθ (e) . The marginal cost of providing effort e is higher for type L than for type H. We

assume that the functions cH (e) and cL (e) are twice continuously differentiable, c′θ (0) = 0,

lime→1 c
′
θ (e) =∞ ∀θ, and

c′θ (e) > 0, c′′θ (e) > 0, c′H (e) < c′L (e) ∀e > 0. (1)

The regulator receives a payoff that depends on his cost of effort cθ (e) and on the expec-

tation formed by the public about his type:

uθ = uR (b)− cθ (e) , (2)

where b ≡ (E [Pr(θ = H|public outcome)]), such that uR(b) is a function of the expectation

formed by the public about R’s type θ.8

7We consider a unitary regulatory agency, to which we refer to as ‘the regulator’.
8The regulator’s utility could also be modified to directly depend on the the public outcome, without
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The utility function captures the benefit to the regulator from having a good reputation,

as a bad reputation can translate into the regulatory agency being restructured in costly

ways for the regulator.

The Overseer. After R exerts effort e, and before the final outcome y is revealed, the

overseer O decides whether to intervene, ι ∈ {0, 1}, where ι = 1 corresponds to an inter-

vention and ι = 0 corresponds to no intervention. Before the intervention decision is made,

the institutional structure determines how much information the overseer has access to. In

the separated institutional structure, the overseer has access to no information; in the uni-

fied institutional structure, the overseer receives a noisy signal s ∈ S = {B,G} about the

outcome y. For each effort e, the error in the signal is:

Pr (s = B|y = G, e) = Pr (s = G|y = B, e) = ε > 0.9 (3)

We assume the following costs associated with the intervention decision ι and final out-

come y:

C =


C1 if ι = 1,

0 if ι = 0 and y = G,

C2 if ι = 0 and y = B,

(4)

where C1, C2 ∈ R, 0 < C1 < C2. This specification captures the many situations in which

early, preventive intervention is less costly than letting the situation worsen to a crisis;

however, the actual cost savings happen only if the situation were to indeed worsen without

intervention, otherwise costs would be saved by not performing an intervention. In our

example of bank regulation, C1 denotes the cost of an intervention to prevent a banking

crisis when there are signs of a potential crisis, while C2 > C1 denotes the cost to society

when a crisis is unfolding.

We make the following assumption about the costs C1 and C2:

changing the results of the model.
9All the results go through if the probability of error depends on y: Pr (s = B|y = G, e) = εG and

Pr (s = G|y = B, e) = εB .
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Assumption 1 The values C1 and C2 satisfy

1 +
q (1)

1− q (1)

ε

1− ε <
C2

C1

< 1 +
q (0)

1− q (0)

1− ε
ε

(5)

and
1

1− q (0)
>
C2

C1

. (6)

Expression (5) implies that it is less costly to choose ι = 1 after a signal s = B, regardless

of R’s effort. In addition, the expected cost of choosing ι = 0 is lower than the cost of ι = 1

whenever the signal is s = G, regardless of R’s effort. Expression (6) implies that, if O does

not obtain any information prior to her decision, then the expected cost of not intervening

is lower than the cost of intervention.

Finally, O’s objective is to minimize costs:

uO = −C. (7)

The Public. The public (P ) is a unitary agent. It does not observe signal s. It only

observes the cost paid by O according to (7). It can therefore infer the realization of y if

ι = 0, but can only infer that ι = 1 if the cost is C1. Based on these observations, the public

updates its beliefs about R’s type, following Bayes’ rule whenever possible. In order to

isolate the agency problem stemming from the regulator’s reputational concern, we consider

the case in which the public’s utility is identical to that of the overseer:

uP = −C. (8)

In the interpretation of R and O as institutions in charge of banking stability, the public

only observes a banking crisis—the bad outcome—if the lender of last resort did not intervene

to prevent it. If the lender of last resort intervened, then the public does not know what

would have happened without intervention—just isolated bank failures (s = B but y = G) or

a banking crisis (y = B).
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We implicitly assume that the public’s objective and information are shared by the gov-

ernment, so that the government is acting according to the public’s preferences. The public’s

beliefs about the regulator then matter for the regulator because the government can impose

costs on the regulatory agency though overhauls.

Timing. The model unfolds as follows:

1. Nature decides R’s privately observed type θ ∈ {L,H}, where Pr(θ = H) = µ.

2. R supplies effort e ∈ [0, 1] by paying cost cθ (e). The effort e is R’s private information.

3. Given e, the final outcome y ∈ {G,B} and signal s ∈ {G,B} are drawn from Pr (y, s|e).

4. In the unified institutional structure, O observes s. In the separated institutional

structure, s is not produced; O does not observe y.

5. O decides ι ∈ {0, 1}.

6. Cost C is observed by P, beliefs are updated, and payoffs are realized.

3 The Static Trade-off

We begin by analyzing the static trade-off induced by the institutional structure, and then

present the model in a dynamic setting. Consider the following payoff function uR (b) :

uR (b) =

 1 if Pr(θ = H|C) ≥ µ,

0 if Pr(θ = H|C) < µ.
(9)

The payoff function uR (b) reflects the case in which R is removed whenever his reputation

decreases—whenever the public’s belief that R is a type H is lower than its prior. As it will be

shown in the results of the next section, this payoff function comes out of optimal strategy

for the public in the dynamic game.
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We first analyze the static problem in each of the two institutional setups, separated and

unified. Afterwards, we compare these two setups in terms of the effort provision and the

expected costs to the public.

3.1 Separate Institutions

With separate institutions, no additional information becomes available for O before the

intervention decision.

Definition 1 An equilibrium with separate institutions is a set of effort levels eθ and inter-

vention policies ι such that (i) O chooses ι to maximize (7), (ii) eθ maximizes (2), and (iii)

Pr(θ = H|C) is derived by P following Bayes’rule whenever possible.

In the case with separate institutions, two equilibria exist: an uninteresting equilibrium

in which eH = eL = 0,10 and a more interesting equilibrium in which type H takes positive

effort, and eH > eL ≥ 0. In what follows, we analyze the latter equilibrium.

Proposition 1 There exist a unique equilibrium with positive effort and separate institu-

tions. The equilibrium has the following properties:

• (Effort Strategy) The equilibrium effort choices satisfy eH > eL ≥ 0.

• (Intervention Strategy) O implements ι = 0.

• (Beliefs) The equilibrium beliefs satisfy:

Pr(θ = H|C = 0) > µ > Pr(θ = H|C = C2).11

Proof. In Appendix A.1.1.
10In the equilibrium with eH = eL = 0, the public belief is constant for each C. Hence, it is in turn

optimal for the regulator to choose zero effort.
11We omit Pr(θ = H|C = C1) since C = C1 never happens on the equilibrium path given the intervention

strategy.
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Intuitively, since typeH can always pretend to be the type L with a lower cost, the former

should obtain the higher value in equilibrium. If type H chose lower effort and enjoyed a

higher expected reputation, then type L would deviate to type H’s effort level in order to

save on the effort cost.

Given (6), we conclude that O never intervenes since O does not obtain any additional

information before intervention. In our motivating example, the central bank does not want

to intervene, i.e., choose ι = 1, unless it receives bad news, so the default policy is no

intervention, ι = 0.

Formally, regulatory effort eθ is chosen by R in order to maximize his expected utility:

q (eθ)u
R (b|C = 0) + (1− q (eθ))u

R (b|C = C2)− cθ (eθ) .
12

It follows then that reputation increases after a good final outcome, and it decreases after

a bad final outcome. Given (9) and the first-order condition for effort, any positive effort

choice satisfies:

q′ (eθ) = c′θ (eθ) . (10)

3.2 One Unified Institution

We now consider the unified institutional structure. In this setting, the overseer O receives

signal s about the final outcome before making the intervention decision.

Definition 2 An equilibrium with a unified institutional structure is a set of effort levels eθ

and intervention policies ι(s) such that (i) O chooses ι (s) to maximize (7) conditional on

each realization of s, (ii) eθ maximizes (2), and (iii) Pr(θ = H|C) is derived by P following

Bayes’rule whenever possible.

As in the case of separated institutions, there is always an equilibrium with no effort.

For the rest of the discussion, we focus on the more interesting equilibrium in which at least

type H exerts positive effort.
12Where b|C means the public belief about θ given C.
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Proposition 2 There exits a unique equilibrium with positive effort and a unified institution.

The equilibrium satisfies the following properties:

• (Effort Strategy) The equilibrium effort choices satisfy eH > eL ≥ 0.

• (Intervention Strategy) O implements ι = 1 after s = B and ι = 0 after s = G.

• (Beliefs) The equilibrium beliefs satisfy:

Pr(θ = H|C = 0) > µ > Pr(θ = H|C = C1) ≥ Pr(θ = H|C = C2).

Proof. In Appendix A.1.2.

Proposition 2 shows that, in the equilibrium with eH > 0, type H chooses strictly higher

effort than type L. The intuition is the same as in the case with separated institutions:

type H faces a lower marginal cost of effort, so he faces a higher relative gain from effort.

The overseer O now observes the signal directly, and she uses that information to choose the

cost-minimizing policy ι.

Compared to the case of separated institutions, the availability of information to O leads

to a distortion to R’s effort choice:

Corollary 1 (Effort withholding) With institutional unification, R’s effort choice is lower

than in the case with institutional separation.

ConsiderR’s problem in the unified institutional structure. Given the public’s equilibrium

beliefs, the regulator’s objective becomes

max
eθ

q (eθ) (1− ε)− cθ (eθ) .

The first-order condition for positive effort is then

(1− ε) q′ (eθ) = c′θ (eθ) . (11)
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Notice that the effort corresponding to the separated institutional structure can be ob-

tained in (11) if ε = 0. Let eθ be the solution to (11). Applying the implicit function theorem

to the first-order condition, we obtain

deθ
dε

= − q′ (eθ)

c′′θ (eθ)− (1− ε) q′′ (eθ)
< 0, (12)

which implies that eθ decreases in the unified case compared to the separated case. The uni-

fied institutional structure reduces the ex-ante incentive to supply effort. Since O intervenes

after s = B, this decreases the probability that the good outcome will be reached, reducing

the expected reputational payoff to R from supplying effort.

3.3 Discussion of the Static Trade-off

Corollary 1 illustrates the main trade-off embedded in the choice of institutional structure:

with institutional separation, R has the ex-ante incentive to put in more effort, but O’s in-

tervention decision is made without the benefit of additional information about the outcome;

in the unified structure, the intervention decision is made with additional information, but

the regulatory effort is reduced.

Let esθ denote R’s effort choice with separated institutions, and let e
ε
θ denote R’s effort

choice in the unified institution. The expected increase in costs when moving from the

separated structure to the unified structure is given by

∆W (ε, C2, C1) ≡ −
∑
θ

Pr(θ) (1− q (esθ))C2

+
∑
θ

{Pr(θ) ((1− ε) (1− q (eεθ)) + εq (eεθ))C1

+ Pr(θ)ε (1− q (eεθ))C2} . (13)

The first term of the expression subtracts the expected cost under institutional separation.

The second term adds the expected cost under institutional unification when the signal is

s = B. Finally, the third term adds the expected cost under institutional unification when
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the signal is s = G and the outcome is y = B.

The analysis of ∆W allows us to derive two key comparative statics. First, consider an

increase in the relative cost C1/C2. That is, an intervention is less effective at reducing costs

relative to the cost of a crisis. Then, the benefit of additional information brought about by

unification becomes smaller. Second, consider an increase in the signal noise ε. This rends

the signal less accurate, so the unified institution generates cost C1 more often when the

outcome would have been good. This type of unnecessary intervention diminishes the return

to effort, because the regulator’s reputation is hurt by intervention, as seen in (11). This in

turn reduces R’s effort provision.

Proposition 3 The expected cost of the intervention policy ι is larger with institutional

unification compared to institutional separation if ε and C1
C2
are suffi ciently high.

Proof. In Appendix A.1.3.

The above result highlights the fundamental reason why unification does not always

dominate separation: the inability of O to commit not to choose ι = 1 after s = B. With

commitment, unification would always achieve an outcome at least as good as separation.

In Appendix A.2, we present two extensions of the static model. First, we show that

the same trade-off emerges under a more general form of the regulator’s utility function.

Second, we show that the trade-off still exists even if in the unified institution the regulator

also places some positive weight on the overseer’s utility.

4 Dynamic Institutional Choice

We now turn to our institutional design problem, a process that is inherently dynamic—it

depends on how the public forms its opinion about the regulator and on how this opinion

evolves over time. We therefore build a fully dynamic model of institutional choice. We show

that the static trade-off is present in the dynamic framework, but reputational dynamics add

a novel element to the institutional choice problem: the unified institution uses the signal
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information effi ciently for intervention decisions, but this slows down learning about the

regulator’s type. This dynamic trade-off can generate switches in institutional structure

between unification and separation on the equilibrium path.

We present the result by focusing on the best relational contract for the public, i.e.

the best sustainable equilibrium as introduced in Chari and Kehoe (1990). We argue this

equilibrium concept captures the key dynamic interactions that motivate our model.

4.1 Dynamic Setup

In each period t, the incumbent regulator is endowed with the prior belief µt—the conditional

probability that he is type H—given the public history. At the beginning of each period, the

public P (acting through the government, which has the same objectives and information

as the public) decides whether to continue with or to overhaul the regulatory agency. In

case of an overhaul, a new regulator is selected from the pool of possible regulators, and

the belief about R’s type reverts to the initial prior given the distribution of types in the

pool—the prior µH that the regulator is type H. The regulator’s payoff each period is given

by uR − cθ (e), where

uR =

 1 if R is kept

0 if R is replaced through overhaul
.

Once a replacement happens, the removed regulator’s continuation payoff is 0. The per-

period payoff for O and P is equal to uO = uP = −C. The discount factor is common and

equal to δ ∈ [0, 1).

The public then decides the institutional structure, ψ ∈ {0, 1}, where ψ = 0 denotes a

separated structure and ψ = 1 a unified one. For simplicity, we assume that there is no

switching cost to changing the institutional structure.13 After the institutional structure is

chosen, the intra-period play is the same as described in Section 2.

13If there were such a cost, then the institutional change would happen only if the benefit from the change
were suffi ciently large.

17



In order to focus on the trade-off between different institutional structures, we assume

that (i) in the unified institution, the overseer O intervenes (ι = 1) if and only if the signal

is bad (st = B); and (ii) in the separated institution, the overseer does not intervene (ι = 0).

The interpretation is that the overseer has the statutory obligation to intervene if and only

if the signal is bad. This obligation can be enforced, for example, through ex-post audits,

which reveal the information available to the overseer at the time of the decision. Under this

assumption, the overseer’s action is automatic given ψ and s, so we can omit her from the

strategic players.14

Throughout this section, we make the following additional assumption about the type L

regulator:

Assumption 2 The regulator of type L exerts only the minimal effort: eL = 0.

We make this assumption in order to focus on the optimal incentive structure for the

regulator of type H. If the type L regulator were to exert additional effort, then the only

difference would be the need to keep track of L’s incentives. This analysis is relegated to

Appendix A.3.

4.2 The Best Sustainable Equilibrium

We focus on the best sustainable equilibrium, which gives the best relational contract that

the public can offer the regulator. To construct an equilibrium in this class, we consider a

public randomization device for P, using the technique also employed in Ales et al. (2014).

This randomization device is used to determine the replacement decision at the beginning of

each period and the subsequent decisions within the period. At the beginning of each period

t, the public draws a random variable zt ∼ Uniform [0, 1], which is observed to everyone.

Given zt, the public decides whether or not to overhaul the regulatory agency. Let pt = 1

denote replacing the current R through an overhaul, and pt = 0 denote continuing with R.

14The analysis of the game would lead to the same equilibrium outcome if we assumed that O takes actions
strategically to maximize her utility. More details are available upon request.
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The public then decides the institutional structure ψt ∈ {0, 1}. Afterwards, the regulator

chooses effort et, and the overseer observes st if ψ = 1. The overseer intervenes (ι = 1) and

pays Ct = C1 if and only if she observes st = B. Finally, if no intervention has happened,

the overseer pays the final cost Ct = C2 if the final outcome is bad (y = B). Otherwise,

Ct = 0.

Since the public can only observe zt, pt, ψt, and Ct, the public outcome at the beginning

of t is ht = (zj, pj, ψj, Cj)
t−1
j=1. The public’s strategy, σP , is a mapping from (ht, zt) to (pt, ψt);

the regulator’s strategy, σR, is a mapping from (ht, zt, pt, ψt, θt) to et, where θt is the private

type of the regulator in period t. With the public randomization device, since the public

and the regulator take actions sequentially and all the public actions are observable to the

regulator, it is without loss of generality to focus on the pure strategy by the public. With a

continuous action space et ∈ [0, 1] and a strictly convex cost function cH (et), the regulator

always chooses the pure strategy. Given the pure strategy, we can assume without loss of

generality that the strategy et does not depend on the past effort (ej)
t−1
j=1.

Definition 3 Given the history ht of public outcomes up to period t, a sustainable equilib-

rium consists of continuation strategies {pt (ht, zt) , ψt(ht, zt)}
∞
t for the public, {et(ht, zt, pt, ψt)}

∞
t

for the regulator,15 such that each player maximizes their respective expected continuation

utility.

As in Chari and Kehoe (1990), the on-path behavior of the best sustainable equilibrium

for the public P can be characterized by the recursive method, subject to the constraint

that there exists a punishment equilibrium which makes deviations unprofitable. We pro-

ceed to analyze the problem recursively, focusing on the best sustainable equilibrium for P .

Afterwards, we show that there exists a punishment equilibrium that sustains this on-path

behavior.

In particular, we study the problem of maximizing P’s welfare given a promised payoff V

to the type H regulator.16 Given our motivation, this structure resembles a feasible reward

15Since type L exerts zero effort, we omit θt = H from the regulator’s strategy.
16Since type L does not work, we do not keep track of his utility.
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structure for the regulator. It allows P to write a sustainable contract for R that promises

a certain level of total benefits to R. We will verify that the public has the incentive to

fulfill this promise given the threat of punishment. In addition, given the public history ht,

the regulator’s strategy σR, and the fact that the probability of a regulator of type H is µH

upon the initial appointment, the public can calculate the conditional probability that the

current regulator is type H, denoted as the belief µ.

Let J (µ, V ) be P’s welfare given these two state variables, the belief µ and the promised

utility V . Upon an overhaul, a replacement occurs and the belief goes back to µH , but P

can choose the promised utility to the new regulator to maximize its welfare. Hence, P’s

utility after replacing R, denoted by J̄ , should satisfy

J̄ = max
V

J (µH , V ) .

The problem for P is to select a vector αz = (pz, ψz, ez, V
′
z ) for each possible realization

of z, where pz ∈ {0, 1} is the index for the replacement, with pt = 1 denoting replacement,

ψz is the institutional structure of that period, ez is the proposed effort for the type H

regulator,17 and V ′z (oz) is the promised continuation value for the regulator of type H given

the public outcome oz in the current period. Here, the public outcome given z, denoted by

oz, consists of ψz, ιz, and C. Since the on-path outcome has full support, the public always

believes that the recommended effort ez is taken. Hence the next period’s belief µ′ (µ, ez, oz)

is determined by Bayes’rule, which depends on the prior µ, the recommended effort ez, and

the public outcome oz.

The public P chooses αz to solve the following dynamic program. For each µ ∈ [0, 1] and

V ∈ [0, 1],

J (µ, V ) = max
α

∫
z

[
pzJ̄ + (1− pz)

{
(1− δ)uP (µ, ψz, ez)

+ δ
∑
oz

Pr (oz|µ, ψz, ez) J (µ′ (µ, ez, oz) , V
′
z (oz))

}]
dz, (14)

17The L-type always chooses eL = 0.
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where

uP (µ, ψz, ez) = −µE [C|ψz, ez]− (1− µ)E [C|ψz, eL = 0]

is the public’s instantaneous utility. With probability µ, the regulator is type H and chooses

ez and with the remaining probability, he is type L and takes e = 0.

The public is subject to the following constraints:

V =

∫
z

(1− pz)
{

(1− δ) [1− cH (ez)] + δ
∑
oz

Pr (oz|ψz, ez)V ′z (oz)

}
dz; (15)

ez ∈ arg max

{
(1− δ) [1− cH (ez)] + δ

∑
oz

Pr (oz|ψz, ez)V ′z (oz)

}
; (16)

V ′z (oz) ∈ [0, 1] for each oz. (17)

Constraint (15) is the promise keeping that P is bound to in equilibrium, and (16) is the

incentive compatibility constraint for R.18 Constraint (17) places the upper and lower bounds

on the future promised value since (i) 0 is the minimum payoff that the regulator receives;

and (ii) 1 is the highest feasible utility for the regulator, which is implemented by keeping

the regulator and allowing him put in effort e = 0 forever.19

The next lemma shows that the above maximization problem characterizes the best

sustainable equilibrium for P .

Lemma 1 The best sustainable equilibrium for P is characterized by the mapping from

(µ, V ) ∈ [0, 1] × [0, 1] to a vector (pz, ψz, ez, ιz, V
′
z )z∈[0,1] which maximizes (14) subject to

(15), (16), and (17).

Proof. In Appendix A.1.4.

By definition, objective (14) gives the highest welfare for P given the promise keeping and

incentive compatibility constraints. Hence, we are left to construct a punishment equilibrium
18Notice that, from P’s view point, the distribution of the outcome Pr (oz|µ, ez) depends on µ, while for

the promise keeping and incentive compatibility, we have Pr (o|ez) since R knows his own type.
19This is also why we define the dynamic program only for V ∈ [0, 1].
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to sustain this outcome on the equilibrium path. Note that there is always an equilibrium

in which R exerts no effort, expecting replacement every period; given this, P picks the

unified institution and replaces the regulator every period. In the sustainable equilibrium,

the lowest value P could obtain would be J (µ, 1) , since the promised value 1 allows R to

stay without putting in effort. This value corresponds to the “no effort equilibrium.”Then,

switching to this worst equilibrium after any deviation from policy αz, we can sustain the

solution for (14) on the equilibrium path.

4.3 Equilibrium Properties

We first show that P’s value function J (µ, V ) is concave in V , convex and increasing in µ:

Lemma 2 J (µ, V ) is concave is V , convex in µ, and increasing in µ (strictly increasing if

V ∈ (0, 1)).

Proof. In Appendix A.1.5.

Since we allow the public randomization, the concavity of J (µ, V ) with respect to V

follows from the standard arguments. The convexity of J (µ, V ) with respect to µ follows

from the following exercise. Assume that P receives additional information to update its

belief about R’s type. The belief is martingale, so the updated belief is a mean-preserving

spread of the original belief µ. Since P can always ignore this new information, this mean-

preserving spread is always (at least weakly) welfare-improving. Finally, J (µ, V ) is increasing

in µ since P can always choose the same continuation strategy when the belief is µ′ > µ as

it does when the belief is µ. Since type L chooses eL = 0, this allows P to obtain at least

weakly higher welfare with µ′ compared to µ.

We can then derive the following implications about the shape of J (µ, V ) .

Lemma 3 The value function J (µ, V ) has the following properties:

1. J (µ, 0) = J̄ ∀µ;
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2. For each µ, there exists V (µ) ∈ R such that J (µ, V ) is linear for V ∈ [0, V (µ)], where

V (µ) ≥ 1 − δ, with strict inequality for µ ≥ µH . Moreover, the slope for the linear

part, d
dV
J (µ, V )

∣∣
V ∈[0,V (µ)]

, is negative for µ < µH ; zero for µ = µH ; and positive for

µ > µH .

3. There exists V ∗ (µ) ∈ arg maxV J (µ, V ). For each µ, at V = V ∗ (µ), the following

properties hold:

(a) V ′z (oz) ≤ arg maxV J (µ′ (µ, ez, oz) , V ) for each event oz with negative belief update

µ′ (µ, ez, oz) ≤ µ;

(b) V ′z (oz) ≥ arg maxV J (µ′ (µ, ez, oz) , V ) for each event oz with positive belief update

µ′ (µ, ez, oz) ≥ µ.

Proof. In Appendix A.1.6.

The above properties have the following intuition. First, if the value promised to R is

0, only immediate replacement can fulfill this promise. Hence, it must be the case that

J (µ, 0) = J̄ for each µ. Second, for a suffi ciently small promised value V , replacement must

happen with positive probability—otherwise R would obtain a higher payoff than promised.

This positive probability is generated by randomizing between keeping and replacing R. We

can show that it is optimal for P to promise the same utility V (µ) if R is kept. Then, any

V ∈ [0, V (µ)] can be generated by varying the probability of keeping versus replacing R.

The third property follows from concavity: the function J (µ, V ) has a maximum, de-

noted V ∗ (µ). Consider the case in which at V = V ∗ (µ) the outcome oz is such that the

belief is updated negatively, µ′ < µ. The negative belief update implies that oz is the out-

come which happens less often with higher effort. Hence, reducing V ′z (oz) incentivizes R

to supply more effort. This increased effort has two benefits: the instantaneous welfare

uP is improved; and, since higher effort makes type H more distinguishable from type L,

the belief update is larger. As long as V ′z (oz) > arg maxV J (µ′ (µ, ez, oz) , V ) , reducing

V ′z (oz) directly improves P’s continuation welfare as well; however, the opposite happens if

V ′z (oz) < arg maxV J (µ′ (µ, ez, oz) , V ). Intuitively, promising too little continuation payoff
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to R forces P to replace R even if P believes that the regulator is type H. The analysis

when outcome oz leads to a positive belief update is analogous.

Finally, the second property also implies that arg maxV J (µ′, V ) = 0 if the updated belief

µ′ becomes less than the prior in the pool, µH , right after a new regulator is selected. This

is consistent with the utility specification (9) we assumed in the static model.

4.4 The Optimal Dynamic Policy

We now solve for the optimal dynamic policy. For the following set of results in the analysis,

we make a simplifying assumption regarding the error in the signal s.

Assumption 3 Pr (s = B|y = G, e) = ε > 0 and Pr (s = G|y = B, e) = 0.

Under this assumption, we consider the case in which the error happens in the signal only

when the final outcome is good. This makes the unified institution even better compared

to the case in which there is also error after the bad outcome. Hence, the benefit of the

separated institution becomes even stronger without this assumption.

Given this simplification of the signal error, the outcome oz = C2 never happens when

ψz = 1, since there is no error associated with s = B, and the overseer responds to this signal

by intervening. Using these simplified public outcomes, we can pin down the continuation

utility for R after each event.

Lemma 4 The continuation utility for R is higher after outcome oz = 0 than after outcome

oz ∈ {C1, C2}. Moreover, the difference between R’s expected continuation payoff after oz = 0

and the continuation payoff after oz ∈ {C1, C2} increases as a function of effort ez.

Proof. In Appendix A.1.7.

The intuition for this result is that R is rewarded with a higher promised payoff after

the outcomes that indicate higher effort. Conversely, R is punished with lower promised

payoff after the outcome that indicates low effort. The difference between the reward and

the punishment must be larger when P implements higher effort.
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Comparing the difference between the reward and punishment offered to R under each

institutional structure, we obtain the following result.

Lemma 5 Fixing any targeted effort level ez, the continuation utility for R satisfies

V ′z (0|ψ = 1)− V ′z (C1|ψ = 1) > V ′z (0|ψ = 0)− V ′z (C2|ψ = 0) .

Proof. In Appendix A.1.7.

To implement any effort ez, the public must incentivize R with a higher relative reward

under the unified institution compared to the separated institutional structure. The intuition

for this result is the following. Under the unified institution, the observed outcome is less

informative about R’s effort, because the intervention happens after s = B even if y = G.

Effort is then less conducive to higher continuation payoff, so R is less willing to exert high

effort unless he is promised a higher reward.

The results so far show how the static trade-off translates to the dynamic framework. For

any effort level e, P’s instantaneous utility is higher in the unified institutional structure,

since O’s use of the signal information lowers the expected cost; however, in order to attain

the same level of effort in the unified institution as in the separated structure, P has to

promise a higher reward to R after the good outcome. This in turn reduces P’s future

payoff, since P essentially accepts less effort in the future. Formally, part 3 of Lemma

3 shows that, if we start from the optimal promised value given the current belief, then

increasing the continuation payoff for R after the good outcome reduces the continuation

utility for P . This corresponds to the static trade-off of ex-ante high-powered incentives

versus ex-post effi cient use of the information.

The following result highlights the new trade-off that emerges when dynamics are con-

sidered.

Proposition 4 Fixing any targeted effort level ez, the following dynamic trade-off emerges:

under institutional separation (ψ = 0) learning about R’s type happens at a faster pace—the

update in beliefs each period is larger.
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Proof. In Appendix A.1.8.

Consider the update in beliefs after the worst outcome in each institutional structure in

equilibrium, i.e., oz = C1 in the unified institution and oz = C2 in the separated institution.

It then follows from Bayes’rule that∣∣∣∣µ− µ [1− (1− ε) q (ez)]

1− (1− ε) [µq (ez) + (1− µ) q (0)]

∣∣∣∣︸ ︷︷ ︸
µ′(C1|ψ = 1) : belief update

with the unified institution

<

∣∣∣∣µ− µ [1− q (ez)]

1− [µq (ez) + (1− µ) q (0)]

∣∣∣∣︸ ︷︷ ︸
µ′(C2|ψ = 0) : belief update

with separate institutions

, (18)

so the beliefs are updated more strongly under the separated institutional structure. The

reason is that the final bad outcome y = B is more informative of R’s effort than the signal

s = B. The same calculation shows that the belief update is the same between ψ = 1 and

ψ = 0 after y = G. Since P’s belief is a martingale, this means that the updated belief

distribution when ψ = 0 is a mean-preserving spread of the distribution when ψ = 1. This

difference in the speed of learning translates into P’s utility. By Lemma 2, since V (µ, V ) is

convex in µ, faster learning increases P’s utility. Therefore, faster learning under separated

institutions increases the benefit to P .

We can show that the dynamic advantage brought about by institutional separation is

highest for intermediate values of the belief µ.

Corollary 2 Fixing any targeted effort level ez, the difference in learning pace between sep-

aration and unification is largest when beliefs about R being type H are intermediate and

smallest when beliefs are either 0 or 1.

Proof. In Appendix A.1.8.

The result follows from examining the dependence of the updated belief µ′ on the prior

µ. The intuition is that the advantage of learning fast is largest when there is enough

uncertainty about R’s type.

Finally, the interplay of the static and the dynamic trade-offs described above opens up

the possibility of switches between institutional unification and separation.
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Proposition 5 Switches in institutional structure, from unification to separation and from

separation to unification, can emerge on the equilibrium path.

This conclusion follows because the advantage of institutional separation is highest when

the dynamic trade-off is strongest in favor fast learning—when the beliefs about R are inter-

mediate. When P believes that R is type L with higher probability, the gains from learning

are low. As more good outcomes are observed, P increases its belief that the regulator is

type H, and the gains from learning increase. Finally, with enough good outcomes, P be-

comes almost certain that R is type H and new observations bring a low contribution to

learning. This dynamic leads to a choice of institutional unification when R’s reputation is

low, the switch to separation when R’s reputation is intermediate, and then a switch back

to unification again when R’s reputation is suffi ciently high.

This dynamic can explain the fluctuations we see in the data presented in Figure 1

between unification and separation, as well as the different institutional choices made by

countries during the same time period.

4.5 Numerical Illustration

To illustrate how the change in institutional structure crucially depends on the dynamics of

learning, we provide the following numerical example. Consider the case with δ/(1 − δ) =

0.89, C2/C1 = 1.56, ε = 0.2 and

q(e) = 0.2 + 0.7e; cH(e) =
e2

10(1− e) ,

As assumed above, eL = 0.

We begin by computing the social welfare in the static game described in Section 3.20

Figure 2 graphs the social welfare against the prior µH ∈ [0, 1] for the two institutional

20Here, to make the static and dynamic models comparable, we assume Pr (s = B|y = G) = ε and
Pr (s = G|y = B) = 0 in the static model as well. All the qualitative results still hold without this as-
sumption.
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Figure 2: Public’s welfare in the static game

setups. In the numerical example we chose, the public’s welfare in the static game is higher

under institutional unification for all possible priors µH .

Next, we compute the solution to the dynamic game taking µH = 0.4, the prior that

the regulator is of type H in the initial distribution. We consider the case in which the

good outcome is realized for 20 consecutive periods. The upper panels of Figure 3 show

the evolution of the promised value V to the regulator and the equilibrium regulatory effort

provided by type H. In response to each observation of a good outcome, the public optimally

increases the value promised to the regulator. Since this implies a lower probability of removal

in the future periods, the regulator optimally reduces effort.

The lower left-hand side panel of Figure 3 shows the evolution of the regulator’s repu-

tation. After observing each good outcome, the public positively updates their belief about

the regulator’s type, until it becomes certain that he is type H.

Finally, the lower right-hand side panel of Figure 3 displays the equilibrium institutional

choice in the best sustainable equilibrium. The equilibrium institutional structure at µ = µH

is unification. Since µH < 0.5, as good outcomes accumulate, the public’s belief about the

regulator increases towards 0.5. Then, the dynamic benefit of faster learning becomes more
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Figure 3: Outcomes in the dynamic game when the good outcome is realized for 20 periods

important, which leads to separation being optimal. As more good outcomes arrive, the

belief about the regulator becomes suffi ciently high, so the value of learning decreases. This

decreases the benefit of separation. Also, as the regulator is promised a higher value, the

effort provision decreases. In the limit, this leads to the static trade-off vanishing, since

effort becomes minimal. Therefore, the public optimally changes the institutional structure

to unification, to take advantage of the availability of information to the overseer.

5 Conclusion

This paper considered a key question in the design of regulatory institutions: how to opti-

mally structure regulatory institutions between which there exists an oversight relationship,

when information flows are important. We examined the choice between institutional unifi-

cation and separation, where unification affords the overseer greater access to information.
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This creates a static trade-off between effort provision by the regulator and access to in-

formation by the overseer. Dynamically, another force emerges: when the overseer has less

access to information, the government is better able to learn about the regulator’s quality.

The interaction of these forces can generate switches between unification and separation on

the equilibrium path.

The present model provides a framework for exploring the links between regulatory struc-

ture, public perception of institutional quality, and economic outcomes. The dynamics of

the model imply a link between public perceptions of institutional quality and the timing

of structural regulatory reforms. This link can be studied both within countries and across

countries, given the wide variation in government responses to similar crises. For the case of

financial regulation, the static trade-off between effort and information implies that separa-

tion of bank supervision from the lender of last resort should provide incentives for higher

supervisory effort. This effort should translate into fewer crisis episodes. Some suggestive

evidence to this end is provided in Eichengreen and Dincer (2011), who look at bank per-

formance and supervisory structure in 140 countries from 1998 to 2010. They find that

countries with separated institutions have fewer nonperforming loans as a share of GDP.

Our model suggests that these results should extend to banking crisis episodes, not only

nonperforming loans. Further empirical examination of the model’s predictions can shed

light on the magnitude of these forces and their effect on regulatory outcomes.
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A Appendix

A.1 Proofs

A.1.1 Proof of Proposition 1

Part 1. Effort strategies

It is suffi cient to show that eθ is weakly increasing in θ, since if eH = eL, then b|C = µ

for each outcome C, and each regulator puts in zero effort.

Let v (θ) be the equilibrium payoff of R with type θ ∈ {H,L}. We compare types H

and L. When R with type H chooses the same effort eL as type L, he induces the same

distribution over reputation as L. For such a deviation not to be profitable, we have

v (H) ≥ v (L) + cL (eL)− cH (eL) .

Note that − (cH (eL)− cL (eL)) = cL (eL)− cH (eL) is the reduction in the cost that type H

has to pay to exert effort eL compared to type L. Similarly, the condition for R with L to

not want to pretend to be type H, we have

v (L) ≥ v (H) + cH (eH)− cL (eH) .

In total, we have

cL (eH)− cH (eH) ≥ v (H)− v (L) ≥ cL (eL)− cH (eL) .

Rearranging these inequalities yields

cL (eH)− cL (eL) ≥ cH (eH)− cH (eL) .

Since we assumed that the marginal cost of e is decreasing in L, we have eH ≥ eL, as desired.

Part 2. Intervention strategy
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By Assumption 1, for any effort level of the regulator, without additional information, it

is optimal not to intervene.

Part 3. Beliefs

We focus on the equilibrium with eH > eL. By Bayes’rule, we have

b|0 =
µq (eH)

µq (eH) + (1− µ) q (eL)
> µ

and

b|C2 =
µ (1− q (eH))

µ (1− q (eH)) + (1− µ) (1− q (eL))
< µ

since q′ (eH) > 0 (otherwise eH > 0 is not optimal given cH (e) > 0 for each e > 0).

A.1.2 Proof of Proposition 2

Part 1. Effort strategies

The proof that eH ≥ eL, with strict inequality if eH > 0, is the same as the one in the

proof of Proposition 1, Part 1.

Part 2. Intervention strategy

By Assumption 1, for any effort level of the regulator, it is optimal to intervene if and

only if s = B.

Part 3. Beliefs

By Bayes’rule,

b|0 =
µq (eH) (1− ε)

µq (eH) (1− ε) + (1− µ) q (eL) (1− ε) =
µq (eH)

µq (eH) + (1− µ) q (eL)
,

b|C1 =
µ [q (eH) ε+ (1− q (eH)) (1− ε)]

µ [q (eH) ε+ (1− q (eH)) (1− ε)] + (1− µ) [q (eL) ε+ (1− q (eL)) (1− ε)] ,

b|C2 =
µ (1− q (eH)) ε

µ (1− q (eH)) ε+ (1− µ) (1− q (eL)) ε
=

µ (1− q (eH))

µ (1− q (eH)) + (1− µ) (1− q (eL))
.

Since we focus on the case with eH > eL and q (e) is increasing, we have

b|0 > µ > b|C1 > b|C2.
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A.1.3 Proof of Proposition 3

Dividing (13) by C1, the unified institution is more costly if and only if

V (ε, c) ≡ −
∑
θ

Pr(θ) (1− q (esθ)) c

+
∑
θ

{Pr(θ) ((1− ε) (1− q (eεθ)) + εq (eεθ))

+ Pr(θ)ε (1− q (eεθ)) c} > 0,

where c = C2
C1
. Here, esθ = e0

θ, since (10) and (11) imply that the effort level under separated

institutions corresponds to that under the unified institution when ε = 0.

Taking the total derivative, we obtain

∑
θ

Pr(θ)

 q (eεθ) + (1− q (eεθ)) (c− 1)

− (1− 2ε) q′ (eεθ)
deεθ
dε
− εq′ (eεθ)

deεθ
dε
c

 dε
+
∑
θ

Pr(θ)
[
ε (1− q (eεθ))−

(
1− q

(
e0
θ

))]
dc.

By (12), we obtain deεθ
dε
< 0. Since c > 1 and ε < 1

2
, the coeffi cient of dε is positive. Moreover,

as long as V (ε, c) ≤ 0, we have

ε (1− q (eεθ))−
(
1− q

(
e0
θ

))
< 0.

Hence V (ε, c) is increasing in ε and decreasing in c, as desired.

Finally, to show that we can have V (ε, c) > 0 while satisfying Assumption 1, we create

the following example:

q(e) = 0.4 + 0.3e,

cθ(e) = e3/2 [mθ(1− e)]−1 ,

with mH = 10,mL = 0.8. Also, µH = 0.97.
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Figure 4: Optimal institutional structure in the numerical example

Notice that these functional forms imply that a regulator will choose an effort level at

most emax, which is a solution for

q′ (e) = c′H (e) ,

since the most high-powered incentive is provided when the regulator receives the utility of

0 if and only if the final bad outcome is reached. Taking this into account, we can modify

Assumption 1 to

1 +
q (emax)

1− q (emax)

ε

1− ε <
C2

C1

< 1 +
q (0)

1− q (0)

1− ε
ε

(19)

and
1

1− q (0)
>
C2

C1

. (20)

We consider ε ∈ [0, 0.25] and C2/C1 ∈ [1, 2].
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Figure 4 shows the optimal choice of institutional structure for (ε, C2/C1) in [0, 0.25] ×

[1, 2]. The grey area marks the values (ε, C2/C1) at which conditions (19) or (20) are not

satisfied. The pink area denotes the region in which unification is optimal, and the yellow

area denotes the region in which separation is optimal. Figure 4 illustrates a case in which

(i) there exist parameter values that satisfy (19) and (20); and (ii) separation is optimal for

suffi ciently high ε and suffi ciently low C2/C1.

A.1.4 Proof of Lemma 1

Let SW be P’s utility under the no effort equilibrium. In this equilibrium, after each public

history, P replaces R with probability one, and R exerts zero effort. This is a sequential

equilibrium since (i) it is optimal for P to replace the regulator given that the future regulator

supplies zero effort and (ii) it is optimal for the regulator to supply zero effort since he is

replaced for sure.

By feasibility, V ∈ [0, 1] since 1 is the maximum average payoff that the public can deliver

by letting pz = ez = 0 for each z. If V = 1, since R does not work and is kept forever, so

we have J (µ, 1) = SW for each µ. On the other hand, if V = 0, then P replaces R right

away, and so J (µ, 0) = J̄ ≥ SW for each µ. Since J (µ, V ) is concave in V by Lemma 2,21

for each µ and V ∈ [0, 1], we have J (µ, V ) ≥ SW .

Consider the following strategy: On the equilibrium path, the public history ht decides

µ and V . Given z, as long as the public chooses pz and ψz corresponding to the solution

to the dynamic program, the regulator supplies ez. The regulator’s deviation is ignored. If

P deviates from this equilibrium path, then P chooses pz = 1 and ψz = 1 forever, and R

chooses ez = 0 forever (switching to the no effort equilibrium). Incentive compatibility (16)

ensures the regulator’s incentive, and J (µ, V ) ≥ SW ensures the public’s incentive.

It is useful to verify that the welfare at the arrival of a new regulator is higher than this

no effort equilibrium:

J̄ > SW. (21)

21Note that proof of Lemma 2 does not depend on Lemma 1.
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To see why, the public can improve upon SW as follows: The public always takes ψz = 1

as in the no effort equilibrium. If oz = C2, then P keeps the regulator forever. Otherwise, P

replaces the regulator (and goes back to the no effort equilibrium). That is, P rewards the

regulator after a good outcome in the first period, which incentivizes the regulator to supply

positive effort. Hence, the public can obtain a payoff greater than SW in the first period,

and then go back to the no effort equilibrium. In total, P obtains a payoff higher than SW .

A.1.5 Proof of Lemma 2

Part 1. Concavity with respect to V .

We show that J (µ, V ) is concave in V, for a fixed µ. Suppose V = βV1 + (1− β)V2

for V1, V2, β ∈ [0, 1]; and let α [V1] and α [V2] be the optimal policies for (µ, V1) and (µ, V2),

respectively.

Suppose P chooses α [V1] with probability β and α [V2] with probability 1− β, according

to the realization of the public randomization device. We need to check that (i) P’s choice

satisfies the promise keeping and incentive compatibility constraints; and P’s value is at least

βJ (µ, V1) + (1− β) J (µ, V2).

1. Since both α [V1] and α [V2] satisfy promise keeping

V1 =

∫
z1

[(1− pz1 [V1]) {(1− δ) [1− cH (ez1 [V1])]

+δ
∑
oz

Pr
(
oz|ψz1 [V1] , ez1 [V1]

)
V ′z [V1] (oz)}]dz1

and

V2 =

∫
z2

[(1− pz2 [V2]) {(1− δ) [1− cH (ez2 [V2])]

+δ
∑
oz

Pr
(
oz|ψz2 [V2] , ez2 [V2]

)
V ′z [V2] (oz)}]dz2,
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we have

V = βV1 + (1− β)V2

= β

∫
z1

(1− pz1 [V1]) {(1− δ) [1− cH (ez1 [V1])]

+δ
∑
oz

Pr
(
oz|ψz1 [V1] , ez1 [V1]

)
V ′z [V1] (oz)}dz1

+ (1− β)

∫
z2

(1− pz2 [V2]) {(1− δ) [1− cH (ez2 [V2])]

+δ
∑
oz

Pr
(
oz|ψz2 [V2] , ez2 [V2]

)
V ′z [V2] (oz)}dz2.

Hence, promise keeping is satisfied.

2. Conditional on the realization of the public randomization device, since both α [V1] and

α [V2] are incentive compatible, R with type H will choose e [V1] and e [V2] according

to the realization of the public randomization device. Hence, incentive compatibility

is satisfied.

Therefore, we are left to verify that this policy gives P at least the value βJ (µ, V1) +

(1− β) J (µ, V2). With probability β, we achieve J (µ, V1) and with probability 1 − β, we

achieve J (µ, V2) since we fix µ. Hence we achieve βJ (µ, V1) + (1− β) J (µ, V2), as desired.

Part 2. Convexity with respect to µ.

Let J (µ, V, θ) be the social welfare when the public follows the optimal strategy given

(µ, V ), and the current type is θ ∈ {H,L}. We have

J (µ, V ) = µJ (µ, V,H) + (1− µ) J (µ, V, L)

= J (µ, V, L) + µ [J (µ, V,H)− J (µ, V, L)] .

Take µ, µ1, µ2 and β ∈ [0, 1] such that µ = βµ1 +(1− β)µ2. By taking the strategy given
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(µ, V ) when the belief is µ1, P obtains

µ1J (µ, V,H) + (1− µ1) J (µ, V, L)

= J (µ, V, L) + µ1 [J (µ, V,H)− J (µ, V, L)]

≤ J (µ1, V ) .

Similarly,

J (µ, V, L) + µ2 [J (µ, V,H)− J (µ, V, L)] ≤ J (µ2, V ) .

Hence,

βJ (µ1, V ) + (1− β) J (µ2, V )

≥ βJ (µ, V, L) + βµ1 [J (µ, V,H)− J (µ, V, L)]

+ (1− β) J (µ, V, L) + (1− β)µ2 [J (µ, V,H)− J (µ, V, L)]

= J (µ, V, L) + µ [J (µ, V,H)− J (µ, V, L)] = J (µ, V ) ,

and J (µ, V ) is convex.

Part 3. Monotonicity with respect to µ.

Suppose that J (µ, V ) = J for some µ and V . Then, for a higher value µ′ > µ and the

same promised utility V , we have J (µ′, V ) ≥ J . To see why, if (pz, ψz, ez, V
′
z )z satisfies the

promise keeping and incentive compatibility for µ, then it satisfies them for µ′ as well since

none of these constraints depends on µ.

Recall that the instantaneous utility for P given ψz and ez is

uP (µ, ψz, ez) = −µE [C|ψz, ez]− (1− µ)E [C|ψz, eL = 0] .

Since the expected cost satisfies E [C|ψz, ez] ≤ E [C|ψz, eL = 0], the instantaneous utility is

(weakly) increasing in µ. Hence, by the standard arguments —see Stokey (1989)—J (µ, V ) is

(weakly) increasing in µ.
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To show it is strictly increasing for V ∈ (0, 1), it suffi ces to show that ez > 0 for some z

if V ∈ (0, 1). The following claim is suffi cient: Given the public history ht, there exists zt

such that the regulator exerts positive effort unless the regulator is replaced at the beginning

of period t after each zt (this corresponds to V = 0) or the regulator is kept forever (this

corresponds to V = 1).

First, note that there must exist t̃ ≥ t and zt̃ such that h
t̃ happens with a positive

probability, the same regulator stays until period t̃ given ht̃, and ezt̃ > 0. Otherwise, the

social welfare would be SW ; however, since V ∈ (0, 1), providing a small reward in terms

of continuation payoff after a good outcome is feasible. Since c′H (0) = 0, a small reward

is enough to implement a positive effort and obtain welfare higher than SW , which is a

contradiction.

Second, if t̃ > t, then from period t on, rather than playing σP |ht and σR|ht (the equi-

librium strategy given history ht), suppose P and R play σP |ht̃ and σR|ht̃, as if the current

period were period t̃ and the history were ht̃. If σP |ht and σR|ht is a sequential equilib-

rium, then so is σP |ht̃ and σR|ht̃. By discounting, front-loading the effort improves P’s

welfare. In the sustainable equilibrium (best sequential equilibrium for the public), this is

a contradiction. Therefore, t̃ = t, and there exists zt such that R exerts positive effort, as

desired.

A.1.6 Proof of Lemma 3

We have J (µ, 0) = J̄ for each µ since the public has to replace R right away. Hence we are

left to prove the other two properties:

Part 1. There exists V (µ) such that J (µ, V ) is linear for V ∈ [0, V (µ)].

Suppose such V (µ) does not exist. By Lemma 2, this means that J (µ, V ) is strictly

concave near V = 0.

Take V ∈ (0, 1− δ). This means that the public needs to stochastically replace R, since

otherwise R receives 1− δ by not working. Let β be the probability of a replacement. The
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promise keeping condition implies

β × 0 + (1− β)× V̂ = V, (22)

where V̂ ≥ 1− δ is the promised utility conditional on R not being replaced.

P maximizes

max
β,V̂

βJ (µ, 0) + (1− β) J
(
µ, V̂

)
subject to

β × 0 + (1− β)× V̂ = V and V̂ ≥ 1− δ.

Substituting the constraint, P’s welfare is

J (µ, 0) +
V

V̂

[
J
(
µ, V̂

)
− J (µ, 0)

]
. (23)

Taking the derivative with respect to V̂ (the differentiability of J
(
µ, V̂

)
follows from the

Envelope Theorem), we obtain

V
JV̂

(
µ, V̂

)
V̂ −

[
J
(
µ, V̂

)
− J (µ, 0)

]
(
V̂
)2

= V
J (µ, 0) +

[
JV̂

(
µ, V̂

)
V̂ − J

(
µ, V̂

)]
(
V̂
)2 .

At V̂ = 0, this expression is zero. Taking the derivative of the numerator, we obtain

d

dV̂

{
J (µ, 0) +

[
JV̂

(
µ, V̂

)
V̂ − J

(
µ, V̂

)]}
= JV̂ V̂

(
µ, V̂

)
V̂ .

Since we assumed J (µ, ·) is strictly concave, this is negative near V̂ = 0; and since J (µ, ·)

is concave, this is always non-positive. Hence, the smallest V̂ = 1 − δ is optimal. Given
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V̂ = 1− δ, by (23), we have

J (µ, V ) = J (µ, 0) +
V

1− δ [J (µ, 1− δ)− J (µ, 0)] ,

for V ∈ [0, 1− δ], which is linear in V .

Part 2. For µ ≥ µH, we have V (µ) > 1− δ.

Suppose µ ≥ µH . For the sake of contradiction, assume that V ≤ 1 − δ for each V ∈

arg maxV J (µ, V ). Then, in the above problem, V̂ = 1 − δ is the unique optimum. Recall

that β is defined as the probability of a replacement in (22). Hence P cannot replace R

in the current period after P picks V̂ with probability 1 − β. If P promised a positive

continuation payoff from the next period, then R could obtain a payoff greater than 1 − δ

without working at all. We therefore have to make sure that V ′[V̂ ] (oz) = 0 for each z and oz,

and so ez = 0. Therefore, the effort has to be equal to 0. Then, the public’s instantaneous

welfare is (1− δ)SW . Moreover, since V ′[V̂ ] (o) = 0 for each o, R will be replaced in the

next period with probability one. Hence, the continuation social welfare is δJ̄ . In total,

J (µ, 1− δ) = (1− δ)SW + δJ̄. (24)

For µ = µH , (24) together with (21) implies that J (µ, 0) = J̄ and J (µ, V ) is linear and

less than J̄ for each V ∈ (0, 1 − δ]. By concavity, this means that J (µ, V ) < J̄ for each

V > 0. Thus, arg maxV J (µ, V ) = 0. This means that J̄ is uniquely obtained by always

replacing R; however, this implies that R exerts no effort, which is a contradiction. Hence,

V (µH) > 1− δ. Moreover, since J̄ = maxV J (µH , V ), it follows that

J (µH , V ) = J̄ for V ∈ [0, V (µH)] . (25)

For µ > µH , by Lemma 2, we have J (µ, 1− δ) > J (µH , 1− δ) ≥ J̄ , which contradicts

(24). Hence, V (µ) > 1− δ as well.

Part 3. The Slope of the Linear Part.
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Since J (µ, V ) is strictly increasing in µ ∈ (0, 1) , and J (µ, 0) = J̄ for each µ, (25) implies

the slope of the linear part is negative for µ < µH and positive for µ > µH .

Part 4. Property of V ∈ arg maxV̂ J
(
µ, V̂

)
Without loss of generality, we can take V ∈ arg maxV̂ J

(
µ, V̂

)
such that V is the extreme

point of the graph
{
V̂ , J

(
µ, V̂

)}
V̂
. This means that no mixture can implement V . Hence,

the social welfare J (µ, V ) at V ∈ arg maxV̂ J
(
µ, V̂

)
, denoted by J (µ), is determined by

the dynamic program without mixture:

J (µ) = max
(ψ,e,V ′)

{(1− δ)uP (µ, ψ, e)

+δ
∑
o

Pr (o|µ, ψ, e) J (µ′ (µ, ψ, e, o) , V ′ (o))},

subject to incentive compatibility constraint:

e ∈ arg max

{
(1− δ) [1− cH (e)] + δ

∑
o

Pr (o|ψ, e)V ′ (o)
}
.

Note that we do not impose the promise keeping constraint since we are free to choose V̂

to maximize J
(
µ, V̂

)
. Moreover, since the first-order condition for e is always necessary

and suffi cient by the assumption of the cost function c, we can see the above dynamic

programming as deciding (V ′ (o))o, and then e is determined by the first-order condition.

In this problem, we first show that V ′ (o) ≤ arg maxV̂ J
(
µ′ (µ, ψ, e, o) , V̂

)
after µ′ (µ, ψ, e, o) ≤

µ. Suppose otherwise: There exists ō such that V ′ (ō) > arg maxV̂ J
(
µ′ (µ, ψ, e, ō) , V̂

)
after

µ′ (µ, ψ, e, ō) ≤ µ.

Since

µ′ (µ, ψ, e, ō) =
µPr (ō|ψ, e)

µPr (ō|ψ, e) + (1− µ) Pr (ō|ψ, e = 0)

=
µ

µ+ (1− µ) Pr(ō|ψ,e=0)
Pr(ō|ψ,e)

≤ µ, (26)

we have Pr (ō|ψ, 0) ≥ Pr (ō|ψ, e). Pr (o|ψ, e) is monotone in e for each o and ψ, so the
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probability Pr (ō|ψ, e) is decreasing in e.

Then, the first-order condition for the optimality of V ′ (ō) is

0 =
d

dV ′ (ō)
{(1− δ)uP (µ, ψ, e)

+δ
∑
o

Pr (o|µ, ψ, e) J (µ′ (µ, ψ, e, o) , V ′ (o))}

= {(1− δ)uPe (µ, ψ, e)

+δ
∑
o

[
d

de
Pr (o|µ, ψ, e)]J (µ′ (µ, ψ, e, o) , V ′ (o))

+δ
∑
o

Pr (o|µ, ψ, e) J1 (µ′ (µ, ψ, e, o) , V ′ (o)) [
d

de
µ′ (µ, ψ, e, o)]} de

dV ′ (ō)

+δ Pr (ō|µ, ψ, e) J2 (µ′ (µ, ψ, e, ō) , V ′ (ō)) ,

where Jn is the derivative of J with respect to its nth argument; and uPe ≥ 0 is the derivative

of uP with respect to e. Since Pr (ō|ψ, e) is decreasing in e, it follows that de
dV ′(ō) < 0.

Moreover, J2 (µ′ (µ, ψ, e, ō) , V ′ (ō)) < 0, since V ′ (ō) > arg maxV̂ J
(
µ′ (µ, ψ, e, ō) , V̂

)
and J

is concave. Hence, we have

{(1− δ)uPe (µ, ψ, e) + δ
∑
o

[
d

de
Pr (o|µ, ψ, e)]J (µ′ (µ, ψ, e, o) , V ′ (o)) (27)

+δ
∑
o

Pr (o|µ, ψ, e) J1 (µ′ (µ, ψ, e, o) , V ′ (o)) [
d

de
µ′ (µ, ψ, e, o)]} < 0.

Similarly, if there exists ô such that Pr (ô|ψ, e) is decreasing in e but

V ′ (ô) ≤ arg max
V̂

J
(
µ′ (µ, ψ, e, ô) , V̂

)
,

then the symmetric argument implies that

{(1− δ)uPe (µ, ψ, e) + δ
∑
o

[
d

de
Pr (o|µ, ψ, e)

]
J (µ′ (µ, ψ, e, o) , V ′ (o))

+δ
∑
o

Pr (o|µ, ψ, e) J1 (µ′ (µ, ψ, e, o) , V ′ (o)) [
d

de
µ′ (µ, ψ, e, o)]} ≥ 0,
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which is a contradiction.

Therefore, letting O− be the set of outcomes o such that Pr (o|ψ, e) is decreasing in e,

for each o ∈ O−, we have V ′ (o) > arg maxV̂ J
(
µ′ (µ, ψ, e, o) , V̂

)
. Symmetrically, letting O+

be the set of o such that Pr (o|ψ, e) is increasing in e, for each o ∈ O+, we have V ′ (o) <

arg maxV̂ J
(
µ′ (µ, ψ, e, o) , V̂

)
.

Now we set V ∗ (o) = arg maxV̂ J
(
µ′ (µ, ψ, e, o) , V̂

)
for each o, and let e∗ be the new

optimal effort (fixing ψ throughout). Since V ∗ (o) < V ′ (o) for o ∈ O− and V ∗ (o) > V ′ (o)

for o ∈ O+, we have e∗ > e (here, e is the original effort). Hence, we have

(1− δ)uP (µ, ψ, e∗) > (1− δ)uP (µ, ψ, e) . (28)

In addition, we adjust V ∗ (o) so that the continuation welfare increases with fixed e:

∑
o

Pr (o|µ, ψ, e) J (µ′ (µ, ψ, e, o) , V ′ (o))

<
∑
o

Pr (o|µ, ψ, e) J (µ′ (µ, ψ, e, o) , V ∗ (o)) . (29)

Moreover, since maxV̂ J
(
µ′, V̂

)
is increasing in µ′, we have

J (µ′ (µ, ψ, e, o) , V ∗ (o)) < J (µ′ (µ, ψ, e, ô) , V ∗ (ô))

for each o ∈ O− and ô ∈ O+. Since e∗ increases the probability of event o if and only if

o ∈ O+, we have

∑
o

Pr (o|µ, ψ, e) J (µ′ (µ, ψ, e, o) , V ∗ (o))

<
∑
o

Pr (o|µ, ψ, e∗) J (µ′ (µ, ψ, e, o) , V ∗ (o)) . (30)

Finally, learning (the difference between µ′ (µ, ψ, e, o) and µ′ (µ, ψ, e∗, o)) further increases

the continuation payoff. To show this, we first make the following claim:
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Claim 1 For µ1 < µ2, V
∗ (µ1) ∈ arg maxV̂ J

(
µ1, V̂

)
and V ∗ (µ2) ∈ arg maxV̂ J

(
µ2, V̂

)
,

the following holds:

J1 (µ1, V
∗ (µ1)) ≤ J1 (µ2, V

∗ (µ2)) .

Proof. We have

J (µ1, V
∗ (µ1)) + J1 (µ1, V

∗ (µ1)) [µ2 − µ1]

≤ J (µ2, V
∗ (µ1)) since J is convex in µ

≤ J (µ2, V
∗ (µ2)) since V ∗ (µ2) is arg max for µ2.

At the same time,

J (µ1, V
∗ (µ1)) ≥ J (µ2, V

∗ (µ2))− J1 (µ2, V
∗ (µ2)) [µ2 − µ1] since J is convex in µ

≥ J (µ1, V
∗ (µ1)) + J1 (µ1, V

∗ (µ1)) [µ2 − µ1]

−J1 (µ2, V
∗ (µ2)) [µ2 − µ1] from the previous inequality.

Hence,

0 ≥ [J1 (µ1, V
∗ (µ1))− J1 (µ2, V

∗ (µ2))] (µ2 − µ1) .

Given this claim, since J1 (µ′ (µ, ψ, e, o) , V ∗ (o)) is larger for o with µ′ (µ, ψ, e, o) > µ

than for o with µ′ (µ, ψ, e, o) < µ, increasing (decreasing) µ′ (µ, ψ, e∗, o) > µ′ (µ, ψ, e, o) for

o with µ′ (µ, ψ, e, o) > µ (for o with µ′ (µ, ψ, e, o) < µ) increases the continuation payoff

since the distribution of {µ′ (µ, ψ, e∗, o)}o given e∗ is the mean-preserving spread of that of

{µ′ (µ, ψ, e, o)}o given e. Together with (29) and (30), this leads to

∑
o

Pr (o|µ, ψ, e) J (µ′ (µ, ψ, e, o) , V ′ (o))

<
∑
o

Pr (o|µ, ψ, e∗) J (µ′ (µ, ψ, e∗, o) , V ∗ (o)) .

47



Together with (28), we have proven that the social welfare increases.

The proof for V ′ (o) ≥ arg maxV̂ J
(
µ′ (µ, ψ, e, o) , V̂

)
after µ′ (µ, ψ, e, o) ≥ µ is completely

symmetric, and so it is omitted.

A.1.7 Proof of Lemmas 4 and 5

Part 1. With separated institutions:

From (16), R’s choice of effort satisfies

(1− δ) c′H (ez) = δq′ (ez) [V ′z (0|ψ = 0)− V ′z (C2|ψ = 0)] .

It then follows that

V ′z (0|ψ = 0)− V ′z (C2|ψ = 0) =
1− δ
δ

c′H (ez)

q′ (ez)
> 0. (31)

Given O’s strategy,(15) becomes:

Vz = (1− δ) [u− c (ez)] + δq (ez) [V ′z (0|ψ = 0)− V ′z (C2|ψ = 0)] + δV ′z (C2|ψ = 0) .

Then, given (31), V ′z (C2|ψ = 0) is a function of both ez and Vz:

δV ′z (C2|ψ = 0) = Vz − (1− δ)
[
u− c (ez) + q (ez)

c′H (ez)

q′ (ez)

]
,

and so
∂V ′z (C2|ψ = 0)

∂ez
< 0. (32)

Since (31) implies
∂ [V ′z (0|ψ = 0)− V ′z (C2|ψ = 0)]

∂ez
> 0,

we have
∂V ′z (0|ψ = 0)

∂ez
> 0. (33)
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Part 2. With the unified institution:

From (16),

(1− δ) c′H (ez) = δ (1− ε) q′ (ez) [V ′z (0)− V ′z (C1)] ,

so

V ′z (0|ψ = 1)− V ′z (C1|ψ = 1) =
1− δ
δ

c′H (ez)

(1− ε) q′ (ez)
. (34)

Since O intervenes if and only if s = B, the promise keeping (15) becomes

Vz = (1− δ) [u− c (ez)] + δ (1− ε) q (ez) [V ′z (0)− V ′z (C1)] + δV ′z (C1) ,

so

δV ′z (C1|ψ = 1) = Vz − (1− δ)
[
u− c (ez) + q (ez)

c′H (ez)

q′ (ez)

]
.

As in the case with separated institutions, we have

∂V ′z (C1|ψ = 1)

∂ez
< 0 and

∂V ′z (0|ψ = 1)

∂ez
> 0. (35)

Then, (32), (33), and (35) establish Lemma 4, and (31) and (34) establish Lemma 5.

A.1.8 Proof of Proposition 4 and Corollary 2

Consider the difference in belief updates after the worst outcome for each institution:

∆(µ) =
µ [1− q (e)]

1− [µq (e) + (1− µ) q (0)]
− µ [1− (1− ε) q (e)]

1− (1− ε) [µq (e) + (1− µ) q (0)]
.

The similar calculation shows that the belief updates after the good outcome C = 0 is the

same regardless of the institution structure.

Since ∆ (µ) ≥ 0 for each µ, Proposition 4 holds. Taking the second derivative with

respect to µ:
∂2∆(µ)

∂µ2
< 0,
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showing that ∆ is a concave function of µ. At µ = 0, we have ∆ = 0; and at µ = 1, we have

∆ = 0. Hence, we have ∆ > 0 ∀µ ∈ (0, 1). This also implies that ∃µ∗ ∈ (0, 1) such that

µ∗ = arg max ∆(µ).
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A.2 Additional Results

A.2.1 Generalization of the Regulator’s Utility

One may wonder whether the static trade-off obtained in Section 3 is due to the form of the

regulator’s utility function, which limits the benefits of reputation to only one outcome. In

this section, we show that the model is in fact robust to more general utility forms, in which

R’s reputation changes continuously as a function of the possible outcomes.

Consider the general form forR’s utility, uR (b|C), where uR (·) ≥ 0 is a concave increasing

function of b|C ≡ Pr(θ = H|C). We still have an equilibrium in which the regulator of each

type exerts zero effort. Again, we focus on the equilibrium in which type H exerts positive

effort.

Separated Institutional Structure The general form of uR(·) does not significantly alter

the properties of the equilibrium.

Proposition 6 There exists an equilibrium with positive effort and separate institutions.

The equilibrium satisfies the following properties:

• (Effort strategy) The equilibrium effort choices satisfies eH > eL ≥ 0.

• (Intervention Strategy) O implements ι = 0.

• (Beliefs) The equilibrium beliefs satisfy:

Pr(θ = H|C = 0) > µ > Pr(θ = H|C = C2).

Proof. The same as Proposition 1 (note that the proof in Section A.1.1 does not depend on

the form of the utility function).

As before, type H exerts higher effort in equilibrium. Given Assumption 1, O does not

intervene without additional information. Finally, as before, the public’s beliefs about R’s

type are highest after a good outcome (C = 0) and lowest after a crisis (C = C2). The only
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difference from Proposition 1 is that the equilibrium with positive effort is no longer unique.

Since the return on effort now continuously depends on reputation and reputation in turn

depends on the (rational) expectation of the equilibrium effort, the structure of the game is

one of a “coordination-game,”which may give rise to multiple equilibria.

With the general form of the utility function, the first-order condition (10) becomes

q′ (eθ)
(
uR (b|C = 0)− uR (b|C = 1)

)
= c′θ (eθ) . (36)

In turn, b|C depends on the equilibrium effort {eθ}θ. For each eH , let eL (eH) be the low

type’s effort such that
q′ (eH)

q′ (eL)
=
c′H (eH)

c′L (eL)
. (37)

Since q is concave and cθ is convex, there is a unique solution. Intuitively, if eH is the

equilibrium effort of type H, then (36) holds for both types if and only if type L’s effort is

eL (eH). Given eH and eL (eH), let bC (eH) be the belief:

b0 (eH) =
µq (eH)

µq (eH) + (1− µ) q (eL (eH))
;

bC2 (eH) =
µ [1− q (eH)]

µ [1− q (eH)] + (1− µ) [1− q (eL (eH))]
.

Then, the equilibrium condition boils down to

q′ (eH)
(
uR (b0 (eH))− uR (bC2 (eH))

)
= c′H (eH) . (38)

Unified Institutional Structure In the unified institution, again, the equilibrium prop-

erties described in Proposition 2 are maintained.

Proposition 7 There exists an equilibrium with positive effort and one unified institution.

The equilibrium satisfies the following properties:

• (Effort strategy) The equilibrium effort choices satisfied eH > eL ≥ 0.
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• (Intervention Strategy) O intervenes after s = B and does not intervene after

s = G.

• (Beliefs) The equilibrium beliefs satisfy:

Pr(θ = H|C = 0) > µ > Pr(θ = H|C = C1) ≥ Pr(θ = H|C = C2).

Proof. The same as Proposition 2.

As before, R’s effort is strictly higher for type H whenever positive effort is undertaken.

With the general form of the utility function, the first-order condition (11) becomes

q′ (eεθ) {(1− ε) (u(bε|0)− u (bε|C2)) + ε (u (bε|C1)− u(bε|C2))} = c′θ (eεθ) .

Superscript ε denotes the probability of error. As above, if eεH is the equilibrium effort of

type H, then type L’s effort must be eL (eεH). Given eH and eL (eH), let bεC (eH) be the belief:

bε0 (eH) =
µq (eH)

µq (eH) + (1− µ) q (eL (eH))
; (39)

bεC1 (eH) =
εµq (eH) + (1− ε)µ [1− q (eH)] εµq (eH) + (1− ε)µ [1− q (eH)]

+ε (1− µ) q (eL (eH)) + (1− ε) (1− µ) [1− q (eL (eH))]


;

bεC2 (eH) =
µ [1− q (eH)]

µ [1− q (eH)] + (1− µ) [1− q (eL (eH))]
.

The equilibrium condition is

q′ (eεH)

 (1− ε)
(
u(bε0 (eεH))− u

(
bεC2 (eεH)

))
+ε
(
u
(
bεC1 (eεH)

)
− u

(
bεC2 (eεH)

))
 = c′H (eεH) . (40)

Ex-ante and Ex-post Trade-offs. Since (36) in the separated institutional structure

corresponds to (40) with ε = 0, condition (40) can be used to derive the following comparative

static of effort with respect to ε. Suppose ε > 0 and consider an equilibrium satisfying
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(40). Suppose we increase ε (moving away from the separated institution). Since bε0 (eεH) >

bεC1 (eεH) > bεC2 (eεH) by Lemma 7, keeping the public’s belief fixed, the increase in ε reduces

the reward for regulatory effort,

(1− ε)
(
u(bε0 (eεH))− u

(
bεC2 (eεH)

))
+ ε

(
u
(
bεC1 (eεH)

)
− u

(
bεC2 (eεH)

))
. (41)

This decreases both types’effort provision. Let ēεθ be the new effort, fixing the public’s belief.

As a result, the belief bεC (eεH) now changes. If this change in the belief decreases the

reward (41), then this further decreases the incentive to exert effort, and we can conclude,

by the monotone comparative statics, that the equilibrium effort is lower with larger ε. On

the other hand, if (41) increases, then it may increase the incentive to exert effort. If this

effect is suffi ciently strong to overturn the initial decrease in effort, then effort may increase.

To ensure that effort decreases for sure, a suffi cient condition is that the public’s beliefs

does not change drastically as a result of the effort changing to ēεθ (and so the subsequent

effect does not overturn the initial decrease in effort): compared to the original belief, with

ēεθ, the public does not put much higher probability on R being type L if the outcome C = 0

is not observed. If this were not the case, the reputational gains from more effort—or the

reputational losses from an intervention or a bad outcome—would lead R to want to put in

ever more effort to avoid the risk of his reputation decreasing.

Mathematically, it is suffi cient to assume that c′H (eH) is convex and

MRε (eH) ≡ q′ (eH)

 (1− ε)
(
uR(bε0 (eH))− uR

(
bεC1 (eH)

))
−ε
(
uR(bεC2 (eH))− uR

(
bεC1 (eH)

))
 (42)

is concave in eH .

Given the convexity of c′H (eH) and concavity of MRε (eH), we can now show that the

same trade-offs highlighted in the simple model from Section 3 exist in the model with the

general payoff from reputation:

Proposition 8 Suppose that c′H (eH) is convex and MRε (eH) is concave in eH . Then the
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following properties hold:

1. In both institutional structures, there exists a unique equilibrium with a positive effort

by type H.

2. Effort eH is higher with separate institutions.

3. The expected cost is lower under separate institutions if ε and C1
C2
are suffi ciently high.

Moreover, there exist q (e) and {cθ (e)}θ such that c′H (eH) is convex and MRε (eH) is

concave in eH .

Proof. In Section A.3.1.

A.2.2 Integrated Objectives

So far, we have examined the case in which the objective of R and that of O do not change

with the institutional structure. One may argue that institutional unification should bring

about a change in the objective of R or O. In what follows, we study this case.

We consider the same setup as in Section 3, with the change that now the utility of R in

the unified institution is given by:

uuniθ = α
[
uR(Pr(θ = H|C))− cθ (e)

]
+ (1− α) (−C) ,

where α ∈ (0, 1). That is, in the unified institution, R also cares about O. On the other

hand, in the separate institution, R’s utility is as before:

usepθ = uR(Pr(θ = H|C))− cθ (e) .

The objective of O remains that of minimizing the expected cost:

u = −C.
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Again, given Assumption 1, O intervenes after s = B and does not intervene after s = G

in the unified institution; and O does not intervene in the separated institution. Here, we

keep O’s objective unchanged. A similar analysis can show the robustness of our result to

the case in which O cares about R.

The problem and the equilibrium characterization does not change in the case of separated

institutions. In the case of institutional unification, R maximizes his objective

max
e
α [Pr(y = G, s = G|e)− cθ (e)] +

(1− α) (−Pr(s = B|e)C1 − Pr(s = G, y = B|e)C2) ,

which leads to the first-order condition

q′(e)

[
(1− ε) +

1− α
α

(εC2 − εC1 + (1− ε)C1)

]
= c′θ (e) .

Analyzing this condition, it follows that R’s effort choice is higher whenever he places some

positive weight on O’s objective. Intuitively, the higher effort always benefits O by reducing

the probability of bad outcomes (either C1 or C2). The trade-offs described in Section 3

persist, however, in the model with integrated regulatory objective, as long as R continues

to place suffi cient weight on reputation.

Result 1 In the unified institution, regulatory effort decreases in α. Moreover, there exists

α∗ ∈ (0, 1) such that, for each α > α∗,

1. R’s effort is higher in the separated institution.

2. The expected cost is larger with the unified institution than with separate institutions

if ε and C1
C2
are suffi ciently high.

Proof. In Section A.3.2.
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A.3 Dynamic analysis when type L also works

Lemma 1 is readily extended to the case in which type L works. Hence, we are left to

characterize the on-path strategy by dynamic programming.

Once P decides the replacement probability after each event, it determines the best

response of type L. In particular, once P decides the target effort for type H, eHz , and the

continuation promised utility for type H, V ′ (oz), type L maximizes his own payoff:

VL (µ, V ) = max
{ez}z

∫
z

(1− pz) {(1− δ) (1− cL (ez))

+δ
∑
oz

Pr (oz|ψz, ez)VL
(
µ′
(
µ, ψz, e

L
z , e

H
z , oz

)
, V ′ (oz)

)
}dz.

Here, VL (µ, V ) is the value function of the regulator with type L when the belief is µ and

the promised utility for type H is V . Now the updated belief µ′ depends not only on H’s

equilibrium effort eHz but L’s, e
L
z . In the maximization problem,

{
eLz , e

H
z

}
z
is the equilibrium

effort for the two types. Since the public believes that the regulator follows the equilibrium

effort when calculating the belief update, effort eLz is not controlled by the type L regulator.

The public’s problem is to maximize

J (µ, V ) = max
(pz ,ψz ,e

H
z ,e

L
z ,V

′
z )z

∫
z

[pzJ̄ + (1− pz) {(1− δ)uP
(
µ, ψz, e

H
z , e

L
z

)
+δ
∑
oz

Pr (oz|µ, ψz, ez) J
(
µ′
(
µ, ψz, e

H
z , e

L
z , oz

)
, V ′z (oz)

)
}]dz,

where

uP
(
µ, ψz, e

H
z , e

L
z

)
= µE

[
−C|ψz, eHz

]
+ (1− µ)E

[
−C|ψz, eLz

]
is P’s instantaneous utility. At the same time, we keep track of type L’s value function:

VL (µ, V ) =

∫
z

(1− pz) {(1− δ)
(
1− cL

(
eLz
))

+δ
∑
oz

Pr
(
oz|ψz, eLz

)
VL
(
µ′
(
µ, ψz, e

L
z , e

H
z , oz

)
, V ′ (oz)

)
}dz.
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The public is subject to the following constraints:

1. Promise keeping constraint:

V =

∫
z

(1− pz)
{

(1− δ)
[
1− cH

(
eHz
)]

+ δ
∑
oz

Pr
(
oz|ψz, eHz

)
V ′z (oz)

}
dz; (43)

2. Incentive compatibility constraint for the high type: For each z with pz > 0,

eHz ∈ arg max
e

{
(1− δ) [1− cH (e)] + δ

∑
oz

Pr (oz|ψz, e)V ′z (oz)

}
; (44)

3. Incentive compatibility constraint for the low type: For each z with pz > 0,

eLz ∈ arg max
e

 (1− δ) (1− cL (e))

+δ
∑

oz
Pr (oz|ψz, e)VL

(
µ′
(
µ, ψz, e

L
z , e

H
z , oz

)
, V ′ (oz)

)
 . (45)

Hence, now the problem is recursive on the public’s welfare function J (µ, V ) and type

L’s value function VL (µ, V ). The rest of the analysis is accordingly generalized.

A.3.1 Proof of Proposition 8

For notational convenience, we define

û (x) = u

(
1

1 + x

)
,

and

b̂ε0 (eH) =
µq (eH)

(1− µ) q (eL (eH))
;

b̂ε0 (eH) =
εµq (eH) + (1− ε)µ [1− q (eH)]

ε (1− µ) q (eL (eH)) + (1− ε) (1− µ) [1− q (eL (eH))]
; (46)

b̂εC2 (eH) =
µ [1− q (eH)]

(1− µ) [1− q (eL (eH))]
.
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Then, we have û
(
b̂εC (eH)

)
= u (bεC (eH)) for each eH and C. We will work with û

(
b̂εC (eH)

)
instead of u (bεC (eH)).

Part 1. Uniqueness

The equilibrium condition (40) isMRε (eH) = c′H (eH). If c′H (eH) is convex andMRε (eH)

is concave, since c′H (0) = 0, there are only two solutions: eH = 0 and eH > 0.

Part 2. eH is decreasing in ε

From the equilibrium condition MRε (eH) = c′H (eH), since we assume c′H (eH) is convex

and MRε (eH) is concave, it is suffi cient to show that d
dε
MRε (eH) ≤ 0. We have

d

dε
MRε (eH) = −q′ (eH)

{
û
(
b̂ε0 (eH)

)
− û

(
b̂εC1 (eH)

)
+ û

(
b̂εC1 (eH)

)
− û

(
b̂εC2 (eH)

)}
−q′ (eH) (1− 2ε) û′

(
b̂εC1 (eH)

) d

dε
b̂εC1 (eH)

since b̂ε0 (eH) and b̂εC2 (eH) do not depend on ε. The first line of the above expression is

negative, so we are left to show that d
dε
b̂εC1 (eH) ≥ 0.

Since22

d

dε

µ (q (eH) ε+ (1− q (eH)) (1− ε))
(1− µ) (q (eL) ε+ (1− q (eL)) (1− ε))

=
µ

1− µ

 [q (eH)− (1− q (eH))] [q (eL) ε+ (1− q (eL)) (1− ε)]

− [q (eH) ε+ (1− q (eH)) (1− ε)] [q (eL)− (1− q (eL))]


[q (eL) ε+ (1− q (eL)) (1− ε)]2

=
q (eH)− (1− q (eH))

q (eL) ε+ (1− q (eL)) (1− ε)
µ

1− µ −
q (eL)− (1− q (eL))

q (eL) ε+ (1− q (eL)) (1− ε) b̂
ε
C1

and
q (eL)− (1− q (eL))

q (eL) ε+ (1− q (eL)) (1− ε) ≤
q (eH)− (1− q (eH))

q (eL) ε+ (1− q (eL)) (1− ε) ,

22In the algebra below, we simply write eL instead of eL (eH).
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we have

d

dε

µ (q (eH) ε+ (1− q (eH)) (1− ε))
(q (eL) ε+ (1− q (eL)) (1− ε))

≥ q (eH)− (1− q (eH))

q (eL) ε+ (1− q (eL)) (1− ε)

(
µ

1− µ − b̂
ε
C1

)
.

Since q (eH) ≥ q (eL) and ε ≤ 1
2
, we have

µ

1− µ − b̂
ε
C1

=
µ

1− µ

(
1− q (eH) ε+ (1− q (eH)) (1− ε)

q (eL) ε+ (1− q (eL)) (1− ε)

)
=

µ

1− µ
(q (eH)− q (eL)) (1− 2ε)

q (eL) ε+ (1− q (eL)) (1− ε) ≥ 0.

In total, we have
d

dε

µ (q (eH) ε+ (1− q (eH)) (1− ε))
(1− µ) (q (eL) ε+ (1− q (eL)) (1− ε)) ≥ 0,

as desired.

Part 3. Institutional separation is cost-saving if C2/C1 is suffi ciently small and

ε is suffi ciently large

Define c = C2/C1. Let V (ε, c) be the welfare with institutional separation minus that

with institutional unification, divided by C1:

V (ε, c) = −
∑
θ

µθ (1− q (esepθ )) c

+
∑
θ

µθ((1− ε) (1− q (eεθ)) + εq (eεθ))︸ ︷︷ ︸
Pr(s=B|e)

+
∑
θ

µθε (1− q (eεθ)) c.

Given c, let ε (c) be the value of ε at which V (ε (c) , c) = 0. By the Implicit Function
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Theorem,

−
∑
θ

µθ (1− q (esepθ )) +
∑
θ

µθ

 −q′ (eε(c)θ

)
(1− 2ε (c))

deεθ
dε
ε′ (c)

+q
(
e
ε(c)
θ

)
2ε′ (c)− ε′ (c)


+
∑
θ

µθ

(
ε′ (c)

(
1− q

(
e
ε(c)
θ

))
− ε (c) q′

(
e
ε(c)
θ

) deεθ
dε
ε′ (c)

)
c

+
∑
θ

µθε (c)
(

1− q
(
e
ε(c)
θ

))
= 0.

⇔

∑
θ

µθ

(
ε (c)

(
1− q

(
e
ε(c)
θ

))
− (1− q (esepθ ))

)

=
∑
θ

µθ

 (1− 2ε (c) + ε (c) c) q′
(
e
ε(c)
θ

)
deεθ
dε

+
(

1− 2q
(
e
ε(c)
θ

))
−
(

1− q
(
e
ε(c)
θ

))
c

 ε′ (c) .

Since V (ε (c) , c) = 0,

∑
θ

µθε (c)
(

1− q
(
e
ε(c)
θ

))
−
∑
θ

µθ (1− q (esepθ ))

= −1

c

∑
θ

µθ

(
(1− ε (c))

(
1− q

(
e
ε(c)
θ

))
+ ε (c) q

(
e
ε(c)
θ

))
,

and so ∑
θ

µθ

(
ε (c)

(
1− q

(
e
ε(c)
θ

))
− (1− q (esepθ ))

)
< 0.

Moreover,

(1− 2ε (c) + ε (c) c) q′
(
e
ε(c)
θ

) deεθ
dε
≤ 0

from Part 2, and

(
1− 2q

(
e
ε(c)
θ

))
−
(

1− q
(
e
ε(c)
θ

))
c ≤

(
1− 2q

(
e
ε(c)
θ

))
−
(

1− q
(
e
ε(c)
θ

))
≤ 0.
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Therefore,

ε′ (c) ≥ 0,

as desired.

Part 4. When is MRε (eH) Concave?

A direct calculation gives us

MR′′ε (eH) = q′′′ (eH)
{

(1− ε)
[
û
(
b̂ε0 (eH)

)
− û

(
b̂εC1 (eH)

)]
+ ε

[
û
(
b̂εC1 (eH)

)
− û

(
b̂εC2 (eH)

)]}
+2q′′ (eH)

 (1− ε)
[
û′
(
b̂ε0 (eH)

)
b̂ε′0 (eH)− û′

(
b̂εC1 (eH)

)
b̂ε′C1 (eH)

]
+ε
[
û′
(
b̂εC1 (eH)

)
b̂ε′C1 (eH)− û′

(
b̂εC2 (eH)

)
b̂ε′C2 (eH)

]


+q′ (eH)



(1− ε)

 û′′
(
b̂ε0 (eH)

) [
b̂ε′0 (eH)

]2

+ û′
(
b̂ε0 (eH)

)
b̂ε′′0 (eH)

−û′′
(
b̂εC1 (eH)

) [
b̂ε′C1 (eH)

]2

− û′
(
b̂εC1 (eH)

)
b̂ε′′C1 (eH)


+ε

 û′′
(
b̂εC1 (eH)

) [
b̂ε′C1 (eH)

]2

+ û′
(
b̂εC1 (eH)

)
b̂ε′′C1 (eH)

−û′′
(
b̂εC2 (eH)

) [
b̂ε′C2 (eH)

]2

− û′
(
b̂εC2 (eH)

)
b̂ε′′C2 (eH)




.

Note that the coeffi cient of q′′′ (eH) is positive. Moreover, the coeffi cient of q′′ (eH) is also

positive if b̂ε′0 (eH) ≥ 0 (with higher equilibrium effort, the good outcome is better news),

b̂ε′C1 (eH) ≤ 0 (with higher equilibrium effort, the intervention is worse news), b̂ε′C1 (eH) ≤ 0

(with higher equilibrium effort, the bad outcome is worse news), b̂ε′C2 (eH) ≤ b̂ε′C1 (eH) (the

belief after the bad outcome reacts more), û is concave.

If these conditions are satisfied and q′′′ (eH) ≤ 0, then it suffi ces to have the coeffi cient

of q′ (eH) negative. To focus on this issue, let us consider the linear q: q (e) = q0 + q1e (this

means that q′′ (e) = q′′′ (e) = 0, and so if and only if the coeffi cient of q′ (eH) is negative,

then MRε (eH) is concave). Moreover, for simplicity, assume û is linear (note that, if û is

linear, then u (b) = −1
b
, which is concave and increasing as desired) and there exists c (e)

with cθ (e) = 1
θ
c (e) for each θ. The latter implies eL (eH) = (L/H)eH , by (37). Then the

coeffi cient of q′ (eH) is

(1− ε)
(
b̂ε′′0 (eH)− b̂ε′′C1 (eH)

)
+ ε

(
b̂ε′′C1 (eH)− b̂ε′′C2 (eH)

)
. (47)
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A direct calculation shows that b̂εC (eH) is concave for each C, and the maximum of (47) is

attained with eH = 1. Moreover, the maximum is decreasing in H/L, and for a suffi ciently

large H/L, (47) becomes negative, as desired.

Intuitively, with a large H/L, if ε goes up and the reward for regulatory effort declines,

then type H reacts to the change more than type L. Therefore, the effort supplied by type

H gets closer to that supplied by type L. Then, the public does not update its belief much

after each event, which further reduces the reward for high effort. Hence, we can conclude

that the effort is smaller with institutional unification.

A.3.2 Proof of Result 1

Note that the equilibrium effort level with institutional unification is determined by

q′(e)

[
(1− ε) +

1− α
α

(εC2 − εC1 + (1− ε)C1)

]
= c′θ (e) .

On the other hand, the effort level with institutional separation is given by

q′(e) = c′θ (e) .

Since q is concave and cθ is convex, effort is higher with institutional unification if and

only if

(1− ε) +
1− α
α

(εC2 − εC1 + (1− ε)C1) > 1, (48)

that is, if

α > α∗ ≡ C1 − ε (2C1 + C2)

1 + C2 − C1

.

Since α ↓ 0 violates (48) and α = 1 satisfies (48), there exists α∗ ∈ (0, 1), as desired.

The rest of the proof is the same as Part 3 of Proposition 8.
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