Stylized Facts

Model 000000000 Estimation 0000000 Quantitative Analysis

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - のへで

Conclusion O

1/40

Consumer Durables and the Distributional Effects of Credit Supply Shocks

Mengli Sha

Pennsylvania State University

October 29, 2020

Stylized Facts

Model 000000000 Estimation 0000000 Quantitative Analysis

Conclusion O

Motivation

The Great Recession featured

- 1. severely worsened liquidity in various financial markets
- 2. a large decline in the expenditure on consumer durable goods

U.S. Auto Sales (Millions of Vehicles)

Stylized Facts

Model

Estimation 0000000 Quantitative Analysis

Conclusion O

Motivation

The Great Recession featured

- 1. severely worsened liquidity in various financial markets
- 2. a large decline in the expenditure on consumer durable goods

U.S. Auto Sales (Millions of Vehicles)

Stylized Facts

Model 000000000 Estimation 0000000 Quantitative Analysis

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion O

This paper

 → Quantifies the contribution of adverse credit supply shocks to the collapse of U.S. auto sales during the Great Recession
 → Studies aggregate and distributional implications on consumer durable expenditures (CD)

Why Cars? Why the Great Recession? Why auto credit?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Why Cars? Why the Great Recession? Why auto credit?

- CD: a large, highly volatile, and procyclical component of GDP: $\downarrow \Delta(CD) = 24\% \downarrow \Delta(rGDP)$ the GR
- auto: biggest, most volatile component of CD
- not the cause of the credit crunch during the GR
- relatively higher frequency of trading
- straightforward to measure quality

Why Cars? Why the Great Recession? Why auto credit?

- Narrowly defined durables consumption ↓ 14.2% 2007Q4 -2009Q2, >> 9.7% average across all US post-war recessions
- sharper decline in the availability of credit compared to other recessions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Why Cars? Why the Great Recession? Why auto credit?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- most auto sales are financed (>50% used, >80% new)
- heterogeneity among auto lenders banks v.s. nonbank financial institutions

Introduction 000000000	Stylized Facts	Model	Estimation 0000000	Quantitative Analysis	Conclusio O
Nonbanks. v.	s. Banks as	a Auto Lende	r		
	Non	banks		Banks	
✗Market Share 200	6 44.3%)		55.7%	
Primary Fund So	urce Asset	Backed Securitie	es (ABS)	Deposits	
Repossession Cos	ts Lower			Higher	
∦ Example	Carma	ах		Wells Fargo	
ℰMedian Fico Scor	re 655 F	air		703 Good	
	e 10%			8.5%	

< □ > < @ > < ≧ > < ≧ > Ξ の Q C 4/40

Introduction 000000000	Stylized Facts	Model 000000000	Estimation 0000000	Quantitative Analysis 00000000	Conclusio O
Nonbanks.	v.s. Banks	as Auto Lende	r		
	No	onbanks		Banks	
ℰMarket Share 2	2006 44.3	3%		55.7%	
Primary Fund	Source Ass	et Backed Securitie	es (ABS)	Deposits	
Repossession C	Costs Low	ver		Higher	
Example	Car	max		Wells Fargo	
∕∂Median Fico S	core 655	Fair		703 Good	
&Median Loan F	Rate 10%	D		8.5%	

collapse of the ABS market \rightarrow dramatic increase in the nonbank fund cost.

Source. JPMorgan Chase for spreads and Bloomberg for issuance.

Suggestive Evidence of Distributional effects

- subprime lending concentrated on nonbanks Delinquency
- more severe shrinkage of credit provided to subprime from nonbanks.

 Introduction
 Stylized Facts
 Model
 Estimation
 Quantitative Analysis
 Co

 0000
 0000
 0000000
 0000000
 0000000
 0000000
 0

What I do in this paper: Facts

1. Empirical: document novel facts So far, in the auto loan market

- subprime lending is concentrated on nonbanks
- nonbank lending to the subprime shrank dramatically v.s. banks

Later:

- lacksim auto purchase behavior: liquidation \uparrow Retention \uparrow Replacement \downarrow
- auto loan market: individual auto loan characteristics by lender type, pre and during GR

<ロト < 母 > < 臣 > < 臣 > 臣 の < 6/40

What I do in this paper: Theory

2. Theoretical develop a dynamic equilibrium model with heterogeneous households and lenders

- Lenders differ in fund costs and repossession/foreclosure costs
- Households face uninsurable income and car quality shocks
 - choice of car qualities
 - saving borrowing decision with the choice of lender new
 - default option \rightarrow endogenous auto loan rate schedules based on individual default risk

Car markets clear

Stylized Facts

Vodel

Estimation 0000000 Quantitative Analysis

Conclusion O

Main Mechanism: Asymmetric Ability to Borrow

When nonbank credit supply shock occurs,

When **bank** credit supply shock occurs, Being a bank borrower means safe \rightarrow little impact on car purchase decision

 Introduction
 Stylized Facts
 Model
 Estimation
 Quantitative Analysis
 Conclusion

 0000000000
 0000
 00000000
 00000000
 00000000
 0

What I do in this paper: Quantitative Analysis

3. Estimation of the structural model by Simulated Method of Moments

4. Counterfactual: quantify the contribution of credit supply shocks by comparing Scenario 1, 2, 3

S1 only income shocks

S2 income shocks + nonbank credit supply shocks

S3 income shocks + bank credit supply shocks

What I do in this paper: Quantitative Analysis

3. Estimation of the structural model by Simulated Method of Moments

4. Counterfactual: quantify the contribution of credit supply shocks by comparing Scenario 1, 2, 3

S1 only income shocks

S2 income shocks + nonbank credit supply shocks

S3 income shocks + bank credit supply shocks

 $S2 - S1 \rightarrow$ contribution of Nonbank credit supply shocks

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What I do in this paper: Quantitative Analysis

- **3. Estimation** of the structural model by Simulated Method of Moments
- **4. Counterfactual**: quantify the contribution of credit supply shocks by comparing Scenario 1, 2, 3
- S1 only income shocks
- S2 income shocks + nonbank credit supply shocks
- S3 income shocks + bank credit supply shocks
- $S3 S1 \rightarrow$ contribution of Bank credit supply shocks

<ロト < @ ト < 臣 > < 臣 > 臣 の へ つ 9/40

 Introduction
 Stylized Facts
 Model
 Estimation
 Quantitative Ana

 000000000
 0000
 00000000
 00000000
 00000000
 00000000

Preview of Findings

- \clubsuit the estimated model generates $\mathbf{21}\%$ decline in auto sales
 - very close to 22 % actual decline documented in Johnson et al. (2014).
- contribution of nonbank shock: 37%
 - ▶ close to 33% in Benmelech et al. (2017)
 - Policy: Term Asset-backed securities Loan Facility (TALF)
- contribution of bank shock: merely 0.28%
- bank v.s. nonbank shocks: different distributional implications

Relation to the Literature

- Dynamics of Durable Expenditures
 e.g. Mankiw (1982) Bernanke (1985) Eberly (1994) Leahy and Zeira (2005) Berger and Vavra(2015) Guerrieri and Lorenzoni (2017)
- Role of Secondary Markets of Durable Goods e.g. Chen et al (2013), Gavazza et al (2014), Oh (2019)
- Aggregate Dynamics of Automobile Sales
 e.g. Attanasio (2000), Adda and Cooper (2006), Dupor et al. (2018)

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q · 11/40

Despite the richness of auto financing, not enough attention paid to

Consumer credit and Auto Purchase

Relation to the Literature

- Dynamics of Durable Expenditures
 e.g. Mankiw (1982) Bernanke (1985) Eberly (1994) Leahy and Zeira (2005) Berger and Vavra(2015) Guerrieri and Lorenzoni (2017)
- Role of Secondary Markets of Durable Goods e.g. Chen et al (2013), Gavazza et al (2014), Oh (2019)
- Aggregate Dynamics of Automobile Sales
 e.g. Attanasio (2000), Adda and Cooper (2006), Dupor et al. (2018)

Despite the richness of auto financing, not enough attention paid to

- Consumer credit and Auto Purchase
 - Benmelech et al. (2017) :the illiquidity of nonbank lenders contributed to ¹/₃ of the decline in auto sales: no structual model, missing distributional implications
 - Gavazza and Lanteri (2020) provide a model to study how consumers respond to credit tightening shocks: the distinction between banks and nonbanks is missing

Stylized Facts

Vlodel 000000000 Estimation 0000000 Quantitative Analysis

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Conclusion 0

12/40

Facts

Stylized Facts 0000

Quantitative Analysis

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

12/40

Facts

auto purchasing auto loan

Stylized Facts 0000

Auto Purchasing and the Loan Market during GR

- $\xrightarrow{\text{new car sales}} 32\% \xrightarrow{\downarrow 25\%} 24\%$
- less replacement with new cars
 - ▶ % hh replacing used car with new $7\% \xrightarrow{\downarrow 43\%} 4\%$
- more liquidation and retention
 - % hh liquidation $7\% \xrightarrow{\uparrow 21\%} 8.5\%$
 - ▶ % hh retention 4-15 yrs old car $40\% \xrightarrow{\uparrow 6pp} 46\%$

Calculated from CEX

- nonbank market share declined during GR
- э. nonbank loans to the subprime group dropped dramtically during the Great Recession: shift to safer borrowers

Calculated from Equifax Data Table

Introd	luction
0000	000000

Stylized Facts 0000

Quantitative Analysis

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stylized Facts in the Auto Loan Market

	November 2000									
	Nonbank							Bank		
Rating	w	R%	FICO	У	b	w	R%	FICO	У	b
Exceptional	8%	6.0	813	55	19.6	12%	6.9	813	54	17.5
Very Good	15%	6.1	771	57	23.9	24%	7.1	771	55	20.1
Good	21%	7.6	702	46	26.1	31%	7.9	704	45	19.8
Fair	34%	11.2	626	37	26.6	25%	10.1	633	36	18.4
Poor	22%	14.2	526	30	22.8	7%	12.9	537	31	16.0
Average		10.0	656	41.6	24.6		8.5	703	45.1	19.0

Name 1 -----

y:annual income, b:loan amount in 10k dollars, R:loan rate, w:fraction of each group within bank/nonbank borrower

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusion
000000000	0000	00000000	0000000	0000000	0

0000

Stylized Facts in the Auto Loan Market

November 2006										
	Nonbank							Bank		
Rating	w	R%	FICO	У	b	w	R%	FICO	У	b
Exceptional	8%	6.0	813	55	19.6	12%	6.9	813	54	17.5
Very Good	15%	6.1	771	57	23.9	24%	7.1	771	55	20.1
Good	21%	7.6	702	46	26.1	31%	7.9	704	45	19.8
Fair	34%	11.2	626	37	26.6	25%	10.1	633	36	18.4
Poor	22%	14.2	526	30	22.8	7%	12.9	537	31	16.0
Average		10.0	656	41.6	24.6		8.5	703	45.1	19.0

y:annual income, b:loan amount in 10k dollars, R:loan rate, w:fraction of each group within bank/nonbank borrower

1. Nonbank borrowers riskier than banks: average nonbank loan rate > bank loan rate

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusion
000000000	0000	00000000	0000000	0000000	0

Stylized Facts in the Auto Loan Market

November 2006										
	Nonbank					Bank				
Rating	w	R%	FICO	у	b	w	R%	FICO	У	b
Exceptional	8%	6.0	813	55	19.6	12%	6.9	813	54	17.5
Very Good	15%	6.1	771	57	23.9	24%	7.1	771	55	20.1
Good	21%	7.6	702	46	26.1	31%	7.9	704	45	19.8
Fair	34%	11.2	626	37	26.6	25%	10.1	633	36	18.4
Poor	22%	14.2	526	30	22.8	7%	12.9	537	31	16.0
Average		10.0	656	41.6	24.6		8.5	703	45.1	19.0

y:annual income, b:loan amount in 10k dollars, R:loan rate, w:fraction of each group within bank/nonbank borrower

2. within group, nonbank and bank borrowers similar income level 3. corr(y, FICO) = 0.4712

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclus
000000000	0000	00000000	0000000	0000000	0

Stylized Facts in the Auto Loan Market

November 2006										
	Nonbank					Bank				
Rating	w	R%	FICO	У	b	w	R%	FICO	У	b
Exceptional	8%	6.0	813	55	19.6	12%	6.9	813	54	17.5
Very Good	15%	6.1	771	57	23.9	24%	7.1	771	55	20.1
Good	21%	7.6	702	46	26.1	31%	7.9	704	45	19.8
Fair	34%	11.2	626	37	26.6	25%	10.1	633	36	18.4
Poor	22%	14.2	526	30	22.8	7%	12.9	537	31	16.0
Average		10.0	656	41.6	24.6		8.5	703	45.1	19.0

y:annual income, b:loan amount in 10k dollars, R:loan rate, w:fraction of each group within bank/nonbank borrower

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

4. Nonbank borrowers: higher loan amount (higher $\frac{b}{y}$)

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusion
000000000	0000	00000000	0000000	0000000	0

How do Loan Rates Depend on Ind. Characteristics

$$R^B = x\beta^B + u^B \tag{1}$$

$$R^N = x\beta^N + u^N \tag{2}$$

$$y_1 = \mathbb{I}(R^B < R^N) \tag{3}$$

Table 1: the Poor: Selected Results

	(1)	(2)	(3)
	Probit	Bank	Nonbank
у	0.009***	-0.515^{*}	-0.195^{***}
	(0.002)	(0.216)	(0.017)
b	-0.009^{***}	0.375	-0.009
	(0.001)	(0.229)	(0.006)
FICO	0.004^{***}	-0.228^{*}	-0.074^{***}
	(0.000)	(0.099)	(0.007)
Ν	6810	1874	4756

Standard errors in parentheses (p < .10), **(p < .05), ***(p < .01)

 $\begin{array}{c} \mbox{In addition to } y,b \mbox{ and FICO, } X \mbox{ includes: length of loan contract, bank pct (county), } \\ \mbox{cash pct (county), constant} & \mbox{ contract, bank pct (county), } \\ \mbox{ c$

Stylized Facts

Model • 00000000 Estimation 0000000 Quantitative Analysis

Conclusion O

Model

Stylized Facts

Model 00000000 Estimation 0000000 Quantitative Analysis

Conclusion O

Environment

Time is discrete and infinite. Agents in the model:

- 1. Households
- 2. Auto lender: banks and nonbanks
- 3. New car producer

Clearing markets:

- 1. auto loan market: perfect competition
- 2. car market:

Car Age	Quality	Supply	Demand
$\leq 4~{ m yrs}~{ m old}$	high(H)	hh + producer	hh
$4-14 \ \mathrm{yrs} \ \mathrm{old}$	middle(M)	hh	hh
$>15~{ m yrs}~{ m old}$	low(L)	hh	hh

Stylized Facts

Model 00000000 Estimation 0000000 Quantitative Analysis

Conclusion O

Environment: Households

1. Observe state s_t , h_t and ϵ_t

$$\begin{split} s_t &\equiv (e_t, d_t, l_t) \\ e_t \text{ idio. earning shock,} \\ d_t &\in \{0, H, M, L\} \text{ car ownership ,} \\ l_t \text{ level of net wealth} \\ h_t &\in \{0, 1\} \text{ default record} \\ \epsilon_t \text{ EV1 shock} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Stylized Facts

Model 00000000 Estimation 0000000 Quantitative Analysis

Conclusion O

Environment: Households

- 1. Observe state s_t , h_t and ϵ_t
- 2. For each car choice \hat{d}

 \rightarrow If can borrow ($h_t = 0$, no default record): Default or Repay

- default: current debt clears, car taken away, default record h_{t+1} = 1
- **Repay**: choose l_{t+1} and financial institution

- $s_t \equiv (e_t, d_t, l_t)$
- e_t idio. earning shock,
- $d_t \in \{0,H,M,L\}$ car ownership ,

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 18/40

- l_t level of net wealth
- $h_t \in \{0,1\}$ default record
- $\epsilon_t \ {\rm EV1}$ shock

Stylized Facts

Model 00000000 Estimation 0000000 Quantitative Analysis

Conclusion

Environment: Households

- 1. Observe state s_t , h_t and ϵ_t
- 2. For each car choice \hat{d}

 \rightarrow If can borrow ($h_t = 0$, no default record): Default or Repay

- default: current debt clears, car taken away, default record h_{t+1} = 1
- Repay: choose l_{t+1} and financial institution

 \rightarrow If cannot borrow ($h_t = 1$, with default record): choose saving amount $l_{t+1} > 0$

 $s_t \equiv (e_t, d_t, l_t)$

- e_t idio. earning shock,
- $d_t \in \{0, H, M, L\}$ car ownership ,
- $l_{\it t}$ level of net wealth
- $h_t \in \{0,1\}$ default record
- $\epsilon_t \ {\rm EV1}$ shock

Stylized Facts

Model 000000000 Estimation 0000000 Quantitative Analysis

Conclusion O

Environment: Households

- 1. Observe state s_t , h_t and ϵ_t
- 2. For each car choice \hat{d}
- \rightarrow If can borrow ($h_t = 0$, no default record): Default or Repay
 - default: current debt clears, car taken away, default record $h_{t+1} = 1$
 - Repay: choose l_{t+1} and financial institution
- \rightarrow If cannot borrow ($h_t = 1$, with default record): choose saving amount $l_{t+1} > 0$
- 3. car choice prob formed
- 4. (flag goes away next period w.p. λ for h=1)

- $s_t \equiv (e_t, d_t, l_t)$
- e_t idio. earning shock,
- $d_t \in \{0, H, M, L\}$ car ownership ,
- $l_{t}\ \mathrm{level}\ \mathrm{of}\ \mathrm{net}\ \mathrm{wealth}$
- $h_t \in \{0,1\}$ default record
- $\epsilon_t \ {\rm EV1}$ shock

Environment: Financing Choices

Borrowing

Competitive Financial market: bank (B), nonbank (NB)

Date t, Lend $q^{I}(l',s)l', I \in \{B,NB\}$ at cost r^{I} $r^{B} < r^{NB}$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 19/40

Date t+1, receive l' if repay, $\theta^I P_{d'}$ if default $\theta^B < \theta^{NB}$

Saving

through a safe bond at risk free r_f .

Flag 1 households: with default record

$$V_1(e, l, d, \epsilon) = \max_{\hat{d} \in \{0, H, M, L\}} \{ v_1(e, l, d, \hat{d}) + \sigma_{\epsilon} \epsilon(\hat{d}) \}$$
(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへで
Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusion
000000000	0000	00000000	0000000	0000000	0

Flag 1 households: with default record

$$V_1(e, l, d, \epsilon) = \max_{\hat{d} \in \{0, H, M, L\}} \{ v_1(e, l, d, \hat{d}) + \sigma_{\epsilon} \epsilon(\hat{d}) \}$$
(4)

where

$$v_{1}(e, l, d, \hat{d}) = \max_{\substack{l' \ge 0}} u(c^{1}, \hat{d} + \xi) + \beta \mathbb{E}_{e', d' \mid e, \hat{d}} \{ \lambda \underbrace{EV^{1}(e', l', d')}_{Value \ if \ flag \ remains} + (1 - \lambda) \underbrace{EV^{0}(e', l', d')}_{Value \ if \ flag \ remains} \}$$
(5)

value if flag disappears

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusion
000000000	0000	00000000	000000	0000000	0

Flag 1 households: with default record

$$V_1(e,l,d,\epsilon) = \max_{\hat{d} \in \{0,H,M,L\}} \{ v_1(e,l,d,\hat{d}) + \sigma_\epsilon \epsilon(\hat{d}) \}$$
(4)

where

$$v_1(e,l,d,\hat{d}) = \max_{l' \ge 0} u(c^1, \hat{d} + \xi) + \beta \mathbb{E}_{e',d'|e,\hat{d}} \{ \lambda \underbrace{EV^1(e', l', d')}_{Value \text{ if flag remains}} \}$$

$$+ (1 - \lambda) \underbrace{EV^0(e', l', d')}_{I = 1} \}$$

(5)

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ♪ ○ ○ 20/40

value if flag disappears

$$c^{1} = l + (1 - \Gamma)e - \frac{1}{\underset{\text{saving}}{r_{f}}} l' + P_{d} - P_{\hat{d}} - \underbrace{\kappa(d, \hat{d})}_{\text{trans. cost}}$$
(6)

$$\begin{split} & \Gamma: \text{loss of income due to credit flag} \\ & EV^i(e',l',d') \equiv E_{\epsilon'}V_i(e',l',d',\epsilon') \\ & \kappa(d,\hat{d}) = \begin{cases} \lambda_1 P_d + \lambda_0, \text{ if } d \neq 0 \text{ and } \hat{d} \neq d \\ 0, \textit{Otherwise} \end{cases} \end{split}$$

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusion
000000000	0000	000000000	0000000	0000000	0

$$V_0(e,l,d,\epsilon) = \max_{\hat{d} \in \{0,H,M,L\}} \{ v_0(e,l,d,\hat{d}) + \sigma_\epsilon \epsilon(\hat{d}) \}$$
(7)

<□ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (~ 21/40)

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusion
000000000	0000	000000000	000000	0000000	0

$$V_0(e,l,d,\epsilon) = \max_{\hat{d} \in \{0,H,M,L\}} \{ v_0(e,l,d,\hat{d}) + \sigma_\epsilon \epsilon(\hat{d}) \}$$
(7)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$v_0(e,l,d,\hat{d}) = \max\{ v_0^B(e,l,d,\hat{d}) , v_0^{NB}(e,l,d,\hat{d}) , v_0^S(e,l,d,\hat{d}) , v_0^{def}(e,l,d,\hat{d}) \}$$

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusion
000000000	0000	000000000	0000000	0000000	0

$$V_0(e,l,d,\epsilon) = \max_{\hat{d} \in \{0,H,M,L\}} \{ v_0(e,l,d,\hat{d}) + \sigma_\epsilon \epsilon(\hat{d}) \}$$
(7)

$$v_{0}(e, l, d, \hat{d}) = \max\{ v_{0}^{B}(e, l, d, \hat{d}), v_{0}^{NB}(e, l, d, \hat{d}), v_{0}^{S}(e, l, d, \hat{d}), v_{0}^{def}(e, l, d, \hat{d}) \}$$

$$\forall I \in \{B, NB\}$$

$$v_{0}^{I}(e,l,d,\hat{d}) = \max_{\substack{l' < 0}} u(c^{I},\hat{d}+\xi) + \beta \mathbb{E}_{e',d'|e,\hat{d}} EV^{0}(e',l',d')$$

$$c^{I} = l + e - \frac{q^{I}(l',s)}{p} l' + P_{d} - P_{\hat{d}} - \underbrace{\kappa(d,\hat{d})}_{trans. \ cost}$$
(8)

<□ → < □ → < Ξ → < Ξ → Ξ · ⑦ Q ⁽²) 21/40

 $EV^{i}(e',l',d') \equiv E_{\epsilon'}V_{i}(e',l',d',\epsilon')$

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusion
000000000	0000	000000000	0000000	0000000	0

$$V_0(e,l,d,\epsilon) = \max_{\hat{d} \in \{0,H,M,L\}} \{ v_0(e,l,d,\hat{d}) + \sigma_{\epsilon}\epsilon(\hat{d}) \}$$
(7)

 $v_0(e,l,d,\hat{d}) = \max\{ v_0^B(e,l,d,\hat{d}) , v_0^{NB}(e,l,d,\hat{d}) , v_0^S(e,l,d,\hat{d}) , v_0^{def}(e,l,d,\hat{d}) \}$

$$v_{0}^{S}(e,l,d,\hat{d}) = \max_{l' \ge 0} u(c^{S},\hat{d}+\xi) + \beta \mathbb{E}_{e',d'|e,\hat{d}} EV^{0}(e',l',d')$$

$$c^{S} = l + e - \frac{1}{r_{f}}l' + P_{d} - P_{\hat{d}} - \underbrace{\kappa(d,\hat{d})}_{trans. \ cost}$$
(8)

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (* 21/40)

 $EV^i(e',l',d') \equiv E_{\epsilon'}V_i(e',l',d',\epsilon')$

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusion
000000000	0000	00000000	000000	0000000	0

$$V_0(e, l, d, \epsilon) = \max_{\hat{d} \in \{0, H, M, L\}} \{ v_0(e, l, d, \hat{d}) + \sigma_\epsilon \epsilon(\hat{d}) \}$$
(7)

$$v_0(e,l,d,\hat{d}) = \max\{ v_0^B(e,l,d,\hat{d}) , v_0^{NB}(e,l,d,\hat{d}) , v_0^S(e,l,d,\hat{d}) , v_0^{def}(e,l,d,\hat{d}) \}$$

$$v_{0}^{def}(e, l, d, \hat{d}) = u(c^{def}, 0 + \xi) + \beta \mathbb{E}_{e', d'|e, 0} \frac{EV^{1}(e', 0, d')}{EV^{1}(e', 0, d')}$$

$$c^{def} = (1 - \Gamma)e - P_{\hat{d}}$$
(8)

<□ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (~ 21/40)

 $\Gamma: {\rm loss \ of \ income \ due \ to \ default} \quad EV^i(e',l',d') \equiv E_{\epsilon'}V_i(e',l',d',\epsilon')$

Financial Institutions

Competitive Financial market: $I \in \{ \text{ bank (B), nonbank (NB)} \}$

Date t, Lend $q^{I}(l',s)l'$ at cost r^{I} $r^{B} < r^{NB}$

Pote t+1, receive l' if repay, $\theta^I P_{d'}$ if default $\theta^B < \theta^{NB}$

Loan Contract, for l' < 0,

$$\underbrace{q^{I}(l',s)l'r^{I}}_{\text{total fund cost}} = \underbrace{\mathbb{E}_{s'|s}(1-\mathbb{D}(s'))l'}_{\text{repay}} + \underbrace{\mathbb{E}_{s'|s}\{\mathbb{D}(s')\theta^{I}P_{d'}\}}_{\text{value covered from repossessed car}}, \quad (9)$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (22/40

 $\mathbb{D}(s')\equiv\mathbb{E}_{\epsilon}\mathbb{I}(s'\in\Psi),$ Ψ the default set

Auto Market Clearing

New Car Producers: perfect competition, linear technology, $P_H=mc. \text{ New production } x$ $\forall \tilde{d} \in \{H,M,L\},$

$$\underbrace{\int \mathbb{I}(g_d(s) = \tilde{d}, d \neq \tilde{d})\mu(s)ds}_{\text{demand of } \tilde{d} \text{ cars}} = \underbrace{\int \mathbb{I}(g_d(s) \neq \tilde{d}, d = \tilde{d})\mu(s)ds}_{\text{supply of } \tilde{d} \text{ cars}} + \frac{x_{\hat{d}}}{x_{\hat{d}}}$$

$$x_{\hat{d}} = \begin{cases} x, \text{ if } \hat{d} = H\\ 0, \text{ Otherwise} \end{cases}$$
(10)

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 23/40

 $g_d(s)$ policy function of car choice for s household $\mu(s)$ measure of s households

A Recursive Stationary Competitive Equilibrium

is (i) a value function $V(\mathbf{s}, h) \equiv EV_h(\mathbf{s})$ and associated policy functions $\hat{d} = g_d(\mathbf{s}, \epsilon), \ l' = g_l(\mathbf{s}, \epsilon), \ I_{def} = g_{def}(\mathbf{s}, \epsilon), \ I_{fi} = g_{fi}(\mathbf{s}, \epsilon)$ (ii) a stationary distribution $\mu^*(e, l, d, h)$, (iii) a vector of prices $\mathbf{P}^* \equiv (P_M^*, P_L^*)$, and (iv) loan rate schedules $q^I(l', \mathbf{s}), I \in \{N, NB\}$ such that

- 1. Individual Optimization: $V(\mathbf{s}, h)$ satisfies (7) and (4) with policy functions $\hat{d} = g_d(\mathbf{s}, \epsilon)$, $l' = g_l(\mathbf{s}, \epsilon)$, $I_{def} = g_{def}(\mathbf{s}, \epsilon)$, $I_{fi} = g_{fi}(\mathbf{s}, \epsilon)$
- 2. Consistency of Loan Rates: the loan rate schedules $q^{I}(l', \mathbf{s})$ satisfy (9), where the lenders' perceived default set is consistent with households policy function: $\tilde{g}_{def}(s, \epsilon) = g_{def}(s, \epsilon)$
- 3. Stationarity and Consistency of Beliefs $\mu^*(e, l, d, h)$ is consistent with exogeneous processes and policy functions $l' = g_l(s, \epsilon)$, $I_{def} = g_{def}(s, \epsilon)$, $I_{fi} = g_{fi}(s, \epsilon)$: $\mu^*(e, l, d, h) = H(\mu^*(e, l, d, h))$
- 4. Car markets clear: (10) determines the flow x of production of new cars and holds for $\hat{d} \in \{M, L\}$.

Stylized Facts

Model 000000000 Estimation •000000 Quantitative Analysis

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Conclusion O

25/40

Estimation

Taking the Model to the Data

- Income Processes: high v.s. low education groups estimated from PSID a la Guvenen (2007) detail
- parameters calibrated outside of the model detail
- parameters estimated in the structural model

Utility Function:

$$u(c,d) = \begin{cases} log(c^{\alpha}d^{1-\alpha}) & \text{if } \gamma = 1\\ \frac{\{c^{\alpha}d^{1-\alpha}\}^{1-\gamma} - 1}{1-\gamma} & \text{if } \gamma \ge 0, \gamma \ne 1 \end{cases}$$
(11)

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 26/40

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusi
000000000	0000	00000000	000000	0000000	0

Calibrated Parameters

σ_ϵ	0.0500	scale of taste shock ϵ	literature
λ	0.9000	Prob. default record re-	Chp 7
		maining	
p_H	$\frac{1}{3}$	prob. $H \to M$	Gavazza and Lanteri (2020)
p_M	0.1000	prob. $M \to L$	Gavazza and Lanteri (2020)
p_L	0.5000	prob. $L \rightarrow 0$	Gavazza and Lanteri (2020)
δ	0.0300	prob. car loss	CEX
P_H	\$21675	price of H car	VA regist. record
r^B	1.0600	bank, fund cost	equifax data
r^{NB}	1.0624	nonbank, fund cost	equifax data
r_{f}	1.0200	risk free rate	literature
$\bar{\theta}$	0.98	nonbank recovery	repo cost \$200
	$\Pi_{i,j}$	$g = \begin{pmatrix} 1 - p_H - \delta & p_H \\ 0 & 1 - p_M - \delta \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$ \begin{array}{ccc} 0 & \delta \\ -\delta & p_M & \delta \\ 1 - p_L & p_L \\ 0 & 1 \end{array} \right) $

back

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Cond
0000000000	0000	000000000	0000000	0000000	0

Calibrated Parameters

β_h	0.9450	discount factor, hi edu	Gavazza and Lanteri (2020)
γ	1	risk aversion	literature
d_H	1	util from H car	normalization

moments less responsive to these parms compared to estimated ones

<<p>
4 ロト 4 日 ト 4 目 ト 4 目 ト 目 の 9 9 28/40

- later robustness check (table)
- back

Introduction 0000000000	Stylized Facts	Model 000000000	Estimation	Quantitative Analysis	Conclusion O

Estimation

 $\Theta \equiv (\beta_l, \alpha, \Gamma, d_M, d_L, \xi, \underline{\theta}, P_H, P_L)$ solves:

$$\Upsilon = \min_{\Theta} (M^s(\Theta) - M^d)' W(M^s(\Theta) - M^d)$$
(12)

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ Q ○ 29/40

Moments (match pre-crisis):

- Financial: wealth-to-income, debt-to-income Ratio
- P Car stock: fraction of $ilde{d}$ car owners, car ownership rates
- Ioan rate: dependence of Ioan rate on y by lender type
- delinquency: fraction of loans flowing into delinquency
- honbank market share

Full Table of Moments

Stylized Facts

Model 000000000 Estimation

Quantitative Analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへで

Conclusion O

	Data	Model
nonbank share	0.4433	0.4206
Med wi ratio	0.0045	0
% hh indebt	0.3479	0.3740
% default	0.0196	0.0221
Med b/y ratio, all	0.2870	0.2894
Med b/y ratio, B	0.2053	0.1549
Med b/y ratio, N	0.2517	0.5061
B, coef y	-0.7366	-0.1202
N, coef y	-0.0941	-0.0369

Stylized Facts

Model 000000000 Estimation

Quantitative Analysis

Conclusion O

	Data	Model
nonbank share	0.4433	0.4206
Med wi ratio	0.0045	0
% hh indebt	0.3479	0.3740
% default	0.0196	0.0221
Med b/y ratio, all	0.2870	0.2894
Med b/y ratio, B	0.2053	0.1549
Med b/y ratio, N	0.2517	0.5061
B, coef y	-0.7366	-0.1202
N, coef y	-0.0941	-0.0369

Stylized Facts

Model 000000000 Estimation

Quantitative Analysis

Conclusion O

	Data	Model
nonbank share	0.4433	0.4206
Med wi ratio	0.0045	0
% hh indebt	0.3479	0.3740
% default	0.0196	0.0221
Med b/y ratio, all	0.2870	0.2894
Med b/y ratio, B	0.2053	0.1549
Med b/y ratio, N	0.2517	0.5061
B, coef y	-0.7366	-0.1202
N, coef y	-0.0941	-0.0369

Stylized Facts

Model 000000000 Estimation

Quantitative Analysis

Conclusion O

Selected Moments

	Data	Model
nonbank share	0.4433	0.4206
Med wi ratio	0.0045	0
% default	0.0196	0.0221
% hh indebt	0.3479	0.3740
Med b/y ratio, all	0.2870	0.2894
Med b/y ratio, B	0.2053	0.1549
Med b/y ratio, N	0.2517	0.5061
B, coef y	-0.7366	-0.1202
N, coef y	-0.0941	-0.0369

<ロト < 課 ト < 注 ト < 注 ト 注 の < で 30/40

Stylized Facts

Model 000000000 Estimation

Quantitative Analysis

Conclusion O

	Data	Model
nonbank share	0.4433	0.4206
Med wi ratio	0.0045	0
% default	0.0196	0.0221
% hh indebt	0.3479	0.3740
Med b/y ratio, all	0.2870	0.2894
Med b/y ratio, B	0.2053	0.1549
Med b/y ratio, N	0.2517	0.5061
B, coef y	-0.7366	-0.1202
N, coef y	-0.0941	-0.0369

Stylized Facts

Model 000000000 Estimation

Quantitative Analysis

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Conclusion O

31/40

Estimation Results

Table 2: Estimated Parameters

	Estimated Parameters				
β_l	0.8965	discount factor, low education group			
α	0.9520	weight of non-durable consumption in the utility function			
Г	0.0007	fraction of income loss due to default or default record			
d_M	0.6869	utility flow from middle quality car			
d_L	0.3060	utility flow from low quality car			
ξ	0.0139	utility flow from alternative ways of transportation			
P_M	0.2652	the price of a middle quality car			
P_L	0.0976	the price a of low quality car			
$\underline{\theta}$	0.5387	bank fraction of recovery from foreclosure			

Identification

Stylized Facts

Vlodel 000000000 Estimation 0000000 Quantitative Analysis

Conclusion O

Model Implications

Stylized Facts

Model 000000000 Estimation

Quantitative Analysis

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Conclusion O

Model Implications

- Loanrate Schedules
- Lender Choices
- Evaluation of credit supply shocks

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis	Conclusion
000000000	0000	00000000	0000000	0000000	0

Endogenous Loan Rates

both B and NB lower loan rate for higher income today

bank needs more compensation for risk

Int	rod	uction	
00	00	000000	

Model 000000000 Estimation 0000000 Quantitative Analysis

Conclusion O

Choice of Lenders

HH with same d, $\hat{d} = M$ in ss. eqm:

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 34/40

Quantitative Analysis 0000000

Choice of Lenders

HH with same d, $\hat{d} = M$ in ss. eqm:

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 34/40

Introduction
0000000000

Model 000000000 Estimation 0000000 Quantitative Analysis

Conclusion O

Choice of Lenders

HH with same d, $\hat{d}=M$ in ss. eqm:

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q (~ 34/40)

Introduction
0000000000

Model 000000000 Estimation 0000000 Quantitative Analysis

Conclusion O

Choice of Lenders

HH with same d, $\hat{d} = M$ in ss. eqm:

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 34/40

Estimati 00000 Quantitative Analysis

Choice of Lenders

<ロト < 部 > < 注 > < 注 > 2 の () 34/40

luction Stylized Facts Model

odel 00000000 Estimation 0000000 Quantitative Analysis

Conclusion O

Choice of Lenders

・ロト・日本・モー・モー・ モー シック・

Introduction 0000000000	Stylized Facts	Model 000000000	Estimation 0000000	Quantitative Analysis	Concl O
Currentite Course					

C 11.	<u> </u>	
rodit	Supply	1 Shocks
CIEUIL	JUDDIN	JUUCKS

Table 3:	Timeline,	Shocks	and	μ
----------	-----------	--------	-----	-------

t	0	1	2	3	
shocks	no	yes	no	no	
hh exp. P'	P^*	P^*	P^*	P^*	
actual P	$P(\mu^*)$	$P(\mu_1)$	$P(\mu_2)$	$P(\mu_3)$	

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ∽ Q (~ 35/40

S1 income shocks

- S2 income shocks + nonbank credit supply shocks
- S3 income shocks + bank credit supply shocks

Introduction 0000000000	Stylized Facts	Model 000000000	Estimation 0000000	Quantitative Analysis	Conclusi 0

Credit Supply Shocks

Table 3: Timeline, Shocks and μ

t	0	1	2	3	
shocks	no	yes	no	no	
hh exp. P'	P^*	P^*	P^*	P^*	
actual P	$P(\mu^*)$	$P(\mu_1)$	$P(\mu_2)$	$P(\mu_3)$	

S1 income shocks

S2 income shocks + nonbank credit supply shocks

S3 income shocks + bank credit supply shocks

 $S2-S1 \rightarrow$ contribution of Nonbank credit supply shocks

Introduction	Stylized Facts	Model	Estimation	Quantitative Analysis
0000000000	0000	000000000	0000000	0000000

Credit Supply Shocks

Table 3: Timeline, Shocks and μ

t	0	1	2	3	
shocks	no	yes	no	no	
hh exp. P'	P^*	P^*	P^*	P^*	
actual P	$P(\mu^*)$	$P(\mu_1)$	$P(\mu_2)$	$P(\mu_3)$	

S1 income shocks

S2 income shocks + nonbank credit supply shocks

- S3 income shocks + bank credit supply shocks
- $S3-S1 \rightarrow$ contribution of Bank credit supply shocks

Stylized Fact

Model

Estimation 0000000 Quantitative Analysis

Conclusion O

Contribution of Credit Supply Shocks

Table 4: Percentage Changes in Auto Sales and Prices

	S1	S2	S3
	income only	income $\&$ nonbank	income $\&$ bank
Sales (H)	-13.21%	- 20.88 %	-13.25%
	(0.336%)	(0.297%)	(0.353%)
Price M	-1.10 %	-2.97%	-1.08 %
	(0.085%)	(0.084%)	(0.085%)
Price L	-3.25 %	-4.08%	-3.24 %
	(0.254%)	(0.262%)	(0.249%)
		nonbank	bank
Contribution		36.74 %	0.28 %

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 36/40

IntroductionStylized FactsModelEstimationQuantitative AnalysisConclusion000

Contribution of Credit Supply Shocks

Table 4: Percentage Changes in Auto Sales and Prices

	S1	S2	S3
	income only	income $\&$ nonbank	income $\&$ bank
Sales (H)	-13.21%	- 20.88 %	-13.25%
Price M	(0.336%) -1.10 %	(0.297%) -2.97%	(0.353%) -1.08 %
Price L	(0.085%) -3.25 %	(0.084%) -4.08%	(0.085%) -3.24 %
	(0.254%)	(0.262%)	(0.249%)
Contribution		nonbank 36.74 %	bank <mark>0.28</mark> %

- inaction \uparrow : 69.2% s.s. \rightarrow 73.5% S2
- substitution \downarrow : replacement with new purchase 8.3% s.s. \rightarrow 6.9% S2
- Iiqudation↑: 15.4% more hh disposed M cars
 ווקעdation↑: 15.4% more hh disposed M cars

Stylized Facts

Aodel

Estimation 0000000 Quantitative Analysis

Conclusion 0

Distributional Effects: bank v.s. nonbank shock only

low income hh with no car today

<ロト < 部ト < 目ト < 目ト 目 のへで 37/40
Introduction

Stylized Facts

Aodel

Estimation 0000000 Quantitative Analysis

Conclusion 0

Distributional Effects: bank v.s. nonbank shock only

low income hh with no car today

<ロト 4 課 ト 4 注 ト 4 注 ト 注 の 9 (* 37/40

Introduction

Stylized Facts

Aodel

Estimation 0000000 Quantitative Analysis

Conclusion 0

Distributional Effects: bank v.s. nonbank shock only

low income hh with no car today

<ロト 4 課 ト 4 注 ト 4 注 ト 注 の 9 (37/40

Introduction

Stylized Facts

Vlodel DOOOOOOOO Estimation 0000000 Quantitative Analysis

Conclusion 0

Distributional Effects: bank v.s. nonbank shock only

low income hh with no car today

<ロト < 部ト < 目ト < 目ト 目 のへで 37/40

 Introduction
 Stylized Facts
 Model
 Estimation
 Quantitative Analysis
 Conclusion

 0000000000
 0000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 0000000

Distributional Effects: bigger real effects with nonbank shock

low income hh with no car

 Introduction
 Stylized Facts
 Model
 Estimation
 Quantitative Analysis
 Conclusion

 000000000
 0000
 0000000
 0000000
 0000000
 0000000
 0

Distributional Effects: trivial real effects with **bank** shock

low income hh with no car

oduction	Stylize
00000000	0000

tylized Facts 000

Model 000000000 Estimation 0000000 Quantitative Analysis

Conclusion

Conclusions

Facts: rich heterogeneity between bank v.s. nonbank borrowers

Quantitative Analysis

Conclusions

Facts: rich heterogeneity between bank v.s. nonbank borrowers Equilibrium model with hetero. hh and lenders

asymmetric ability to borrow

Facts: rich heterogeneity between bank v.s. nonbank borrowers **Equilibrium model** with hetero. hh and lenders

- asymmetric ability to borrow
- $\ref{eq:stimated}$ the estimated model generates 21% decline in auto sales
 - very close to 22 % actual decline documented in Johnson et al. (2014).

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 40/40

ntroduction

Stylized Facts

M<mark>odel</mark> 000000000 Estimation 0000000 Quantitative Analysis

Conclusion

Conclusions

Facts: rich heterogeneity between bank v.s. nonbank borrowers **Equilibrium model** with hetero. hh and lenders

- asymmetric ability to borrow
- - very close to 22 % actual decline documented in Johnson et al. (2014).
- contribution of nonbank shock: 37%
 - close to 33% in Benmelech et al. (2017)
 - Policy: Term Asset-backed securities Loan Facility (TALF)
- contribution of **bank** shock: merely 0.28%
- bank v.s. nonbank shocks: different distributional implications

Appendix

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Auto Finance Co. v.s. Banks

Figure 3: Flow into 90+ delin

Costs Bank v.s. Nonbank

Figure 4: Auto ABS spreads; Bank Prime Loan Rates and Federal Funds Rates

Not just a Demand Side Story

Despite the relatively stable demand for auto loans:

- Survey of Consumer Finance 07-09 panel
- "What type of credit did you apply for?"
- 2007: all 19.67% vehicle loan 4.36% (in the past 5 years)
- 2009: all 14.73% vehicle loan 3.48% (in the past 2 years)

Nonbank auto loan originated to the subprime drop dramatically

Table 5: % Change in Total Amount of Loan Originated

	Nonbank	Bank
Exceptional	35%	8%
Very Good	7%	-1%
Good	-28%	-11%
Fair	-47%	-15%
Poor	-45%	-15%

Nonbank Credit Shrinkage to the Subprime

Figure 5: Compostion of Borrower by Lender and Time

Poor, 300-579 Fair, 580-669 Good, 670-739 Very Good, 740-799 Exceptional, 800-850

- 1. Cross Sectional: more Fair and Poor in Nonbanks
- 2. Over Time: obvious shift from riskier to safer for Nonbank
- 3. Market Share of Nonbank :
 - # consumers: $44.3\% \rightarrow 41\%$;
 - $\$ loan origination: $51\% \rightarrow 45\%$

Source: Equifax Archive. Back

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

- * ロ > * 個 > * 注 > * 注 > - 注 - のへで

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Data Description

- 2 periods from Equifax Archive: 2006 November and 2008 November
- Each period, 50k individuals are randomly drawn from records if she opened an auto loan within 30 Days
- City, State, Zip code, Lender industry code, Loan amount, Loan terms, Loan rate, Income and Fico

Back

Income Process

$$\begin{split} y^i_t &= \bar{y}^i_t + \tilde{y}^i_t \\ \bar{y}^i_t &= \gamma_0 + \gamma_{11} a^i_t + \gamma_{12} a^{i,2}_t + \gamma_2 t + \gamma_3 X_i \end{split}$$

$$\begin{split} \tilde{y}_t^i &= z_t^i + \eta_t^i \tag{13} \\ z_t^i &= \rho_z z_{t-1}^i + \epsilon_{z,t}^i \tag{14} \end{split}$$

δ_{eu}	0.1453	probability of being separated from current job
δ_{ue}	0.9683	probability of finding a job computed
ρ_z^h	0.8865	persistence parameter of the permanent shock, high education group
ρ_z^l	0.8681	persistence parameter of the permanent shock, low education group
$\sigma^{h}_{\epsilon_{z}}$	0.1784	std parameter of the innovation to the permanent shock, high education group
$\sigma_{\epsilon_{\gamma}}^{l}$	0.1662	std parameter of the innovation to the permanent shock, low education group
$\sigma_{\eta}^{h^{\sim}}$	0.0615	std parameter of the transitory shock, high education group
σ_{η}^{l}	0.0590	std parameter of the transitory shock, low education group

Model Fit

Table 6: Moments: Model v.s. Data

	All data model		High Edu		Low Edu	
			data model		data	model
wi	0.0045	0	0.0650	0.1475	0	0
f_H	0.3201	0.1704	0.3964	0.2739	0.2849	0.1211
f_M	0.6069	0.6916	0.5641	0.6058	0.6267	0.7325
f_L	0.0730	0.1380	0.0395	0.1203	0.0884	0.1464
f_0	0.1091	0.1714	0.0649	0.1097	0.0649	0.1982
wi_{p10}	-0.6569	-0.4884	-0.6784	-0.2197	-0.6424	-0.5420
wi_{p25}	-0.1777	-0.1557	-0.1894	-0.0447	-0.1727	-0.2487
wi_{p75}	0.1812	0.3334	0.5593	0.5109	0.0685	0.2271
$f_{l<0}$	0.3479	0.3740	0.3501	0.2907	0.3465	0.4097
$ar{di}^m$	0.2870	0.2894	0.2570	0.2074	0.3326	0.3338

Model Fit: 2

Table 7: Moments: Model v.s. Data 2

		data			model	
\bar{R}_B		1.0853			1.0721	
\bar{R}^m_B		1.0777			1.0656	
\bar{R}_{NB}		1.1000			1.1304	
\bar{R}^m_{NB}		1.0906			1.1222	
$\bar{d}i_B^{m^2}$		0.2053			0.1549	
$\bar{d}i^m_{NB}$		0.2517			0.5061	
r_{def}		0.0196			0.0221	
Nonbank Share		0.4433			0.4206	
	$\hat{ ho}_0$	$\hat{ ho}_y$	$\hat{ ho}_b$	$\hat{ ho}_0$	$\hat{ ho}_y$	$\hat{ ho}_b$
Probit Equation	-0.7052	0.7044	-0.6314	0.3514	2.0079	-8.7463
Heckit Bank	2.9221	-0.7366	0.6073	1.1338	-0.1202	0.4098
Heckit Nonbank	1.0996	-0.0941	0.0128	1.2576	-0.0369	-0.2581

Back

Percentage Changes in Auto Sales and Contribution of Nonbank Shocks

	S2 % H Sales	Contribution		
	Benchmark	-20.88 %	36.74%	
		Calibrated	Parameters	
$\beta_h = 0.898$	0.945	-22.51%	32.67%	
$\gamma = 1.500$	1	-19.24%	37.37%	
$d_{H} = 0.900$	1	-22.13%	31.49%	
$\bar{\theta} = 0.882$	0.98	-20.86%	21.97%	
		Estimated Parameters		
$\underline{\theta} = 0.5925$	0.5383	-21.54%	33.19%	
$\beta_l = 0.9427$	0.8965	-17.22%	26.18%	
$\alpha=0.9055$	0.9520	-10.96%	30.40%	
$d_M = 0.6176$	0.6869	-21.63%	32.90%	
$d_L = 0.2742$	0.3060	-21.39%	33.33%	
$\xi = 0.0151$	0.0139	-21.73%	32.90%	
$\Gamma = 7.4e(-3)$	6.73e(-3)	-21.65%	34.20%	

The Auto Loan Market pre v.s. during GR

- nonbank market share declined during GR
- nonbank loans to the subprime group dropped dramtically during the Great Recession: shift to safer borrowers

% total loan amount change

	Nonban	k Share	loan amount Δ_{08-06}	
Category (FICO)	2006	2008	Nonbank	Bank
Exceptional (800-850)	35.2%	39.4%	+35%	+8%
Very Good (740-799)	32.3%	33.4%	+7%	-1%
Good (670-739)	35.1%	31.3%	-28%	-11%
Fair (580-669)	51.5%	43.9%	-47%	-15%
Poor (300-579)	70.6%	67.7%	-45%	-15%