Consumer Durables and the Distributional Effects of Credit Supply Shocks

Mengli Sha
Pennsylvania State University

October 29, 2020

Motivation

The Great Recession featured

1. severely worsened liquidity in various financial markets
2. a large decline in the expenditure on consumer durable goods
U.S. Auto Sales (Millions of Vehicles)

Motivation

The Great Recession featured

1. severely worsened liquidity in various financial markets
2. a large decline in the expenditure on consumer durable goods U.S. Auto Sales (Millions of Vehicles)

This paper
\rightarrow Quantifies the contribution of adverse credit supply shocks to the collapse of U.S. auto sales during the Great Recession
\rightarrow Studies aggregate and distributional implications on consumer durable expenditures (CD)

This paper

\rightarrow Quantifies the contribution of adverse credit supply shocks to the collapse of U.S. auto sales during the Great Recession
\rightarrow Studies aggregate and distributional implications on consumer durable expenditures (CD)

Why Cars? Why the Great Recession? Why auto credit?

This paper

\rightarrow Quantifies the contribution of adverse credit supply shocks to the collapse of U.S. auto sales during the Great Recession
\rightarrow Studies aggregate and distributional implications on consumer durable expenditures (CD)

Why Cars? Why the Great Recession? Why auto credit?

\# CD: a large, highly volatile, and procyclical component of GDP: $\downarrow \Delta(\mathrm{CD})=24 \% \downarrow \Delta(r G D P)$ the GR
. $=$ auto: biggest, most volatile component of CD
:- not the cause of the credit crunch during the GR
\# relatively higher frequency of trading
" straightforward to measure quality
\rightarrow Quantifies the contribution of adverse credit supply shocks to the collapse of U.S. auto sales during the Great Recession
\rightarrow Studies aggregate and distributional implications on consumer durable expenditures (CD)

Why Cars? Why the Great Recession? Why auto credit?

= Narrowly defined durables consumption $\downarrow 14.2 \%$ 2007Q4 2009Q2, >> 9.7\% average across all US post-war recessions
". sharper decline in the availability of credit compared to other recessions
\rightarrow Quantifies the contribution of adverse credit supply shocks to the collapse of U.S. auto sales during the Great Recession
\rightarrow Studies aggregate and distributional implications on consumer durable expenditures (CD)

Why Cars? Why the Great Recession? Why auto credit?

.. most auto sales are financed ($>50 \%$ used, $>80 \%$ new)
\# heterogeneity among auto lenders : banks v.s. nonbank financial institutions

Nonbanks. v.s. Banks as Auto Lender Nonbanks

Market Share 2006
Primary Fund Source Repossession Costs

Example
Median Fico Score
Median Loan Rate
44.3\%

Asset Backed Securities (ABS)
Lower
Carmax
655 Fair
10%

Banks

55.7\%

Deposits
Higher
Wells Fargo
703 Good
8.5\%

Nonbanks. v.s. Banks as Auto Lender Nonbanks

Market Share 2006
Primary Fund Source
Repossession Costs
Example
Median Fico Score
Median Loan Rate
44.3\%

Asset Backed Securities (ABS)
Lower
Carmax
655 Fair
10%

Banks

55.7\%

Deposits
Higher
Wells Fargo
703 Good
8.5\%
collapse of the ABS market \rightarrow dramatic increase in the nonbank fund cost.

Auto ABS issuance and spreads

Source. JPMorgan Chase for spreads and Bloomberg for issuance.

Suggestive Evidence of Distributional effects

Figure 1: Auto Loan Origination by Riskscore

(a) Auto Finance Company

(b) Banks \& Credit Unions

Source: New York Fed Consumer Credit Panel/Equifax. Billions

- ${ }^{-}$- subprime lending concentrated on nonbanks

Delinquency

:- more severe shrinkage of credit provided to subprime from nonbanks.

What I do in this paper: Facts

1. Empirical: document novel facts

So far, in the auto loan market
\#- subprime lending is concentrated on nonbanks
" nonbank lending to the subprime shrank dramatically v.s. banks
Later:
"- auto purchase behavior: liquidation \uparrow Retention \uparrow Replacement \downarrow
F- auto loan market: individual auto loan characteristics by lender type, pre and during GR

What I do in this paper: Theory

2. Theoretical develop a dynamic equilibrium model with heterogeneous households and lenders
.- Lenders differ in fund costs and repossession/foreclosure costs
.. Households face uninsurable income and car quality shocks
\#- choice of car qualities
\% saving borrowing decision with the choice of lender new
: default option \rightarrow endogenous auto loan rate schedules based on individual default risk
". Car markets clear

Main Mechanism: Asymmetric Ability to Borrow

When nonbank credit supply shock occurs,

$\quad \begin{array}{l}\text { Safe Household }\end{array}$	Risky Household			
easily switch to bank loans	$\begin{array}{l}\text { nowhere else to borrow from }\end{array}$			
\rightarrow limited increase in loan	\rightarrow big increase in loan rate			
rate	if borrowing from bank	$\}$	\rightarrow little impact on car pur-	\rightarrow big impact:buy no car, or
:---	:---			
chase decision	buy a cheaper car			

When bank credit supply shock occurs,
Being a bank borrower means safe \rightarrow little impact on car purchase decision

What I do in this paper: Quantitative Analysis

3. Estimation of the structural model by Simulated Method of Moments
4. Counterfactual: quantify the contribution of credit supply shocks by comparing Scenario 1, 2, 3
S1 only income shocks
S2 income shocks + nonbank credit supply shocks
S3 income shocks + bank credit supply shocks

What I do in this paper: Quantitative Analysis

3. Estimation of the structural model by Simulated Method of Moments
4. Counterfactual: quantify the contribution of credit supply shocks by comparing Scenario 1, 2, 3
S1 only income shocks
S2 income shocks + nonbank credit supply shocks
S3 income shocks + bank credit supply shocks
$S 2-S 1 \rightarrow$ contribution of Nonbank credit supply shocks

What I do in this paper: Quantitative Analysis

3. Estimation of the structural model by Simulated Method of Moments
4. Counterfactual: quantify the contribution of credit supply shocks by comparing Scenario 1, 2, 3
S1 only income shocks
S2 income shocks + nonbank credit supply shocks
S3 income shocks + bank credit supply shocks $S 3-S 1 \rightarrow$ contribution of Bank credit supply shocks

Preview of Findings

\#- the estimated model generates $\mathbf{2 1 \%}$ decline in auto sales
$\%$ very close to 22 \% actual decline documented in Johnson et al. (2014).
". contribution of nonbank shock: 37\%
: close to 33% in Benmelech et al. (2017)
: Policy: Term Asset-backed securities Loan Facility (TALF)
". contribution of bank shock: merely 0.28%
." bank v.s. nonbank shocks: different distributional implications

Relation to the Literature

E- Dynamics of Durable Expenditures
e.g. Mankiw (1982) Bernanke (1985) Eberly (1994) Leahy and Zeira (2005) Berger and Vavra(2015) Guerrieri and Lorenzoni (2017)

- Role of Secondary Markets of Durable Goods e.g. Chen et al (2013), Gavazza et al (2014), Oh (2019)
- ${ }^{-1}$ Aggregate Dynamics of Automobile Sales
e.g. Attanasio (2000), Adda and Cooper (2006), Dupor et al. (2018)

Despite the richness of auto financing, not enough attention paid to
". Consumer credit and Auto Purchase

Relation to the Literature

-(- Dynamics of Durable Expenditures
e.g. Mankiw (1982) Bernanke (1985) Eberly (1994) Leahy and Zeira (2005) Berger and Vavra(2015) Guerrieri and Lorenzoni (2017)

- $=$ Role of Secondary Markets of Durable Goods e.g. Chen et al (2013), Gavazza et al (2014), Oh (2019)
- ${ }^{-1}$ Aggregate Dynamics of Automobile Sales
e.g. Attanasio (2000), Adda and Cooper (2006), Dupor et al. (2018)

Despite the richness of auto financing, not enough attention paid to
". Consumer credit and Auto Purchase
". Benmelech et al. (2017) :the illiquidity of nonbank lenders contributed to $\frac{1}{3}$ of the decline in auto sales: no structual model, missing distributional implications
:- Gavazza and Lanteri (2020) provide a model to study how consumers respond to credit tightening shocks: the distinction between banks and nonbanks is missing

Facts

Facts

[8) auto purchasing

Auto Purchasing and the Loan Market during GR

:- substitution from new to used cars

$$
=\quad \frac{\text { new car sales }}{\text { total sales }} 32 \% \xrightarrow{\downarrow 25 \%} 24 \%
$$

"- less replacement with new cars
$\% \quad \%$ hh replacing used car with new $7 \% \xrightarrow{\downarrow 43 \%} 4 \%$
". more liquidation and retention
$\% \quad \%$ hh liquidation $7 \% \xrightarrow{\uparrow 21 \%} 8.5 \%$
$\% \quad \%$ hh retention $4-15$ yrs old car $40 \% \xrightarrow{\uparrow 6 p p} 46 \%$
Calculated from CEX
"- nonbank market share declined during GR
" nonbank loans to the subprime group dropped dramtically during the Great Recession: shift to safer borrowers

Stylized Facts in the Auto Loan Market

November 2006

	Nonbank					Bank				
Rating	w	R\%	FICO	y	b	w	R $\%$	FICO	y	b
Exceptional	8%	6.0	813	55	19.6	12%	6.9	813	54	17.5
Very Good	15%	6.1	771	57	23.9	24%	7.1	771	55	20.1
Good	21%	7.6	702	46	26.1	31%	7.9	704	45	19.8
Fair	34%	11.2	626	37	26.6	25%	10.1	633	36	18.4
Poor	22%	14.2	526	30	22.8	7%	12.9	537	31	16.0
Average		10.0	656	41.6	24.6		8.5	703	45.1	19.0

y :annual income, b:loan amount in 10k dollars, R:loan rate, w:fraction of each group within bank/nonbank borrower

Source:
Equifax Archive.

Stylized Facts in the Auto Loan Market

November 2006

	Nonbank					Bank				
Rating	w	R\%	FICO	y	b	w	$\mathrm{R} \%$	FICO	y	b
Exceptional	8%	6.0	813	55	19.6	12%	6.9	813	54	17.5
Very Good	15%	6.1	771	57	23.9	24%	7.1	771	55	20.1
Good	21%	7.6	702	46	26.1	31%	7.9	704	45	19.8
Fair	34%	11.2	626	37	26.6	25%	10.1	633	36	18.4
Poor	22%	14.2	526	30	22.8	7%	12.9	537	31	16.0
Average		10.0	656	41.6	24.6		8.5	703	45.1	19.0

y y:annual income, b:loan amount in 10k dollars, R:loan rate, w:fraction of each group within bank/nonbank borrower

1. Nonbank borrowers riskier than banks: average nonbank loan rate $>$ bank loan rate

Stylized Facts in the Auto Loan Market

November 2006

	Nonbank					Bank				
Rating	w	$\mathrm{R} \%$	FICO	y	b	w	$\mathrm{R} \%$	FICO	y	b
Exceptional	8%	6.0	813	55	19.6	12%	6.9	813	54	17.5
Very Good	15%	6.1	771	57	23.9	24%	7.1	771	55	20.1
Good	21%	7.6	702	46	26.1	31%	7.9	704	45	19.8
Fair	34%	11.2	626	37	26.6	25%	10.1	633	36	18.4
Poor	22%	14.2	526	30	22.8	7%	12.9	537	31	16.0
Average		10.0	656	41.6	24.6		8.5	703	45.1	19.0

y :annual income, b:loan amount in 10k dollars, R:loan rate, w:fraction of each group within bank/nonbank borrower
2. within group, nonbank and bank borrowers similar income level
3. $\operatorname{corr}(y, F I C O)=0.4712$

Stylized Facts in the Auto Loan Market

November 2006

	Nonbank					Bank				
Rating	w	$\mathrm{R} \%$	FICO	y	b	w	$\mathrm{R} \%$	FICO	y	b
Exceptional	8%	6.0	813	55	19.6	12%	6.9	813	54	17.5
Very Good	15%	6.1	771	57	23.9	24%	7.1	771	55	20.1
Good	21%	7.6	702	46	26.1	31%	7.9	704	45	19.8
Fair	34%	11.2	626	37	26.6	25%	10.1	633	36	18.4
Poor	22%	14.2	526	30	22.8	7%	12.9	537	31	16.0
Average		10.0	656	41.6	24.6		8.5	703	45.1	19.0

y :annual income, b:loan amount in 10k dollars, R:loan rate, w:fraction of each group within bank/nonbank borrower
4. Nonbank borrowers: higher loan amount (higher $\frac{b}{y}$)

How do Loan Rates Depend on Ind. Characteristics

$$
\begin{align*}
R^{B} & =x \beta^{B}+u^{B} \tag{1}\\
R^{N} & =x \beta^{N}+u^{N} \tag{2}\\
y_{1} & =\mathbb{I}\left(R^{B}<R^{N}\right) \tag{3}
\end{align*}
$$

Table 1: the Poor: Selected Results

	(1)	(2)	(3)
	Probit	Bank	Nonbank
y	$0.009^{* * *}$	-0.515^{*}	$-0.195^{* * *}$
	(0.002)	(0.216)	(0.017)
b	$-0.009^{* * *}$	0.375	-0.009
	(0.001)	(0.229)	(0.006)
FICO	$0.004^{* * *}$	-0.228^{*}	$-0.074^{* * *}$
	(0.000)	(0.099)	(0.007)
N	6810	1874	4756
Standard errors in parentheses	${ }^{*}(p<.10),{ }^{* *}(p<.05),{ }^{* * *}(p<.01)$		

In addition to y, b and FICO, X includes: length of loan contract, bank pct (county), cash pct (county), constant

Model

Environment

Time is discrete and infinite.
Agents in the model:

1. Households
2. Auto lender: banks and nonbanks
3. New car producer

Clearing markets:

1. auto loan market: perfect competition
2. car market:

Car Age	Quality	Supply	Demand
≤ 4 yrs old	high(H)	hh + producer	hh
$4-14$ yrs old	$\operatorname{middle}(\mathrm{M})$	hh	hh
>15 yrs old	$\operatorname{low}(\mathrm{L})$	hh	hh

Environment: Households

1. Observe state s_{t}, h_{t} and ϵ_{t}
$s_{t} \equiv\left(e_{t}, d_{t}, l_{t}\right)$
e_{t} idio. earning shock,
$d_{t} \in\{0, H, M, L\}$ car ownership ,
l_{t} level of net wealth
$h_{t} \in\{0,1\}$ default record
$\epsilon_{t} \mathrm{EV} 1$ shock

Environment: Households

1. Observe state s_{t}, h_{t} and ϵ_{t}
2. For each car choice \hat{d}
\rightarrow If can borrow ($h_{t}=0$, no default record):
Default or Repay
." default: current debt clears, car taken away, default record $h_{t+1}=1$

- Repay: choose l_{t+1} and financial institution
$s_{t} \equiv\left(e_{t}, d_{t}, l_{t}\right)$
e_{t} idio. earning shock,
$d_{t} \in\{0, H, M, L\}$ car ownership ,
l_{t} level of net wealth
$h_{t} \in\{0,1\}$ default record
$\epsilon_{t} \mathrm{EV} 1$ shock

Environment: Households

1. Observe state s_{t}, h_{t} and ϵ_{t}
2. For each car choice \hat{d}
\rightarrow If can borrow ($h_{t}=0$, no default record):
Default or Repay
" default: current debt clears, car taken away, default record $h_{t+1}=1$
F- Repay: choose l_{t+1} and financial institution
\rightarrow If cannot borrow ($h_{t}=1$, with default record): choose saving amount $l_{t+1}>0$
$s_{t} \equiv\left(e_{t}, d_{t}, l_{t}\right)$
e_{t} idio. earning shock,
$d_{t} \in\{0, H, M, L\}$ car ownership ,
l_{t} level of net wealth
$h_{t} \in\{0,1\}$ default record
$\epsilon_{t} \mathrm{EV} 1$ shock

Environment: Households

1. Observe state s_{t}, h_{t} and ϵ_{t}
2. For each car choice \hat{d}
\rightarrow If can borrow ($h_{t}=0$, no default record):
Default or Repay

- ${ }^{-1}$ default: current debt clears, car taken away, default record $h_{t+1}=1$
- Repay: choose l_{t+1} and financial institution
\rightarrow If cannot borrow ($h_{t}=1$, with default record): choose saving amount $l_{t+1}>0$

3. car choice prob formed
4. (flag goes away next period w.p. λ for
$h=1$)

$$
s_{t} \equiv\left(e_{t}, d_{t}, l_{t}\right)
$$

e_{t} idio. earning shock,
$d_{t} \in\{0, H, M, L\}$ car ownership ,
l_{t} level of net wealth
$h_{t} \in\{0,1\}$ default record
$\epsilon_{t} \mathrm{EV} 1$ shock

Environment: Financing Choices

Borrowing

Competitive Financial market: bank (B), nonbank (NB)
.- Date t, Lend $q^{I}\left(l^{\prime}, s\right) l^{\prime}, I \in\{B, N B\}$ at cost $r^{I} r^{B}<r^{N B}$
Date $\mathrm{t}+1$, receive l^{\prime} if repay, $\theta^{I} P_{d^{\prime}}$ if default $\theta^{B}<\theta^{N B}$

Saving

through a safe bond at risk free r_{f}.

Flag 1 households: with default record

$$
\begin{equation*}
V_{1}(e, l, d, \epsilon)=\max _{\hat{d} \in\{0, H, M, L\}}\left\{v_{1}(e, l, d, \hat{d})+\sigma_{\epsilon} \epsilon(\hat{d})\right\} \tag{4}
\end{equation*}
$$

Flag 1 households: with default record

$$
\begin{equation*}
V_{1}(e, l, d, \epsilon)=\max _{\hat{d} \in\{0, H, M, L\}}\left\{v_{1}(e, l, d, \hat{d})+\sigma_{\epsilon} \epsilon(\hat{d})\right\} \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
v_{1}(e, l, d, \hat{d})= & \max _{l^{\prime} \geq 0} u\left(c^{1}, \hat{d}+\xi\right)+\beta \mathbb{E}_{e^{\prime}, d^{\prime} \mid e, \hat{d}}\{\lambda \underbrace{E V^{1}\left(e^{\prime}, l^{\prime}, d^{\prime}\right)}_{\text {Value if flag remains }} \\
& +(1-\lambda) \underbrace{E V^{0}\left(e^{\prime}, l^{\prime}, d^{\prime}\right)}_{\text {value if flag disappears }}\} \tag{5}
\end{align*}
$$

Flag 1 households: with default record

$$
\begin{equation*}
V_{1}(e, l, d, \epsilon)=\max _{\hat{d} \in\{0, H, M, L\}}\left\{v_{1}(e, l, d, \hat{d})+\sigma_{\epsilon} \epsilon(\hat{d})\right\} \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
& v_{1}(e, l, d, \hat{d})= \max _{l^{\prime} \geq 0} u\left(c^{1}, \hat{d}+\xi\right)+\beta \mathbb{E}_{e^{\prime}, d^{\prime} \mid e, \hat{d}}\{\lambda \underbrace{E V^{1}\left(e^{\prime}, l^{\prime}, d^{\prime}\right)}_{\text {Value if flag remains }} \\
&+(1-\lambda) \underbrace{E V^{0}\left(e^{\prime}, l^{\prime}, d^{\prime}\right)}_{\text {value if flag disappears }}\} \tag{5}\\
& c^{1}=l+(1-\Gamma) e-\underbrace{\frac{1}{r_{f}} l^{\prime}}_{\text {saving }}+P_{d}-P_{\hat{d}}-\underbrace{\kappa(d, \hat{d})}_{\text {trans. cost }} \tag{6}
\end{align*}
$$

Γ : loss of income due to credit flag

$$
E V^{i}\left(e^{\prime}, l^{\prime}, d^{\prime}\right) \equiv E_{\epsilon^{\prime}} V_{i}\left(e^{\prime}, l^{\prime}, d^{\prime}, \epsilon^{\prime}\right)
$$

$$
\kappa(d, \hat{d})=\left\{\begin{array}{l}
\lambda_{1} P_{d}+\lambda_{0}, \text { if } d \neq 0 \text { and } \hat{d} \neq d \\
0, \text { Otherwise }
\end{array}\right.
$$

Flag 0 households: no default record

$$
\begin{equation*}
V_{0}(e, l, d, \epsilon)=\max _{\hat{d} \in\{0, H, M, L\}}\left\{v_{0}(e, l, d, \hat{d})+\sigma_{\epsilon} \epsilon(\hat{d})\right\} \tag{7}
\end{equation*}
$$

Flag 0 households: no default record

$$
\begin{equation*}
V_{0}(e, l, d, \epsilon)=\max _{\hat{d} \in\{0, H, M, L\}}\left\{v_{0}(e, l, d, \hat{d})+\sigma_{\epsilon} \epsilon(\hat{d})\right\} \tag{7}
\end{equation*}
$$

$v_{0}(e, l, d, \hat{d})=\max \left\{v_{0}^{B}(e, l, d, \hat{d}), v_{0}^{N B}(e, l, d, \hat{d}), v_{0}^{S}(e, l, d, \hat{d}), v_{0}^{\text {def }}(e, l, d, \hat{d})\right\}$

Flag 0 households: no default record

$$
\begin{align*}
& V_{0}(e, l, d, \epsilon)=\max _{\hat{d} \in\{0, H, M, L\}}\left\{v_{0}(e, l, d, \hat{d})+\sigma_{\epsilon} \epsilon(\hat{d})\right\} \tag{7}\\
& v_{0}(e, l, d, \hat{d})=\max \left\{v_{0}^{B}(e, l, d, \hat{d}), v_{0}^{N B}(e, l, d, \hat{d}), v_{0}^{S}(e, l, d, \hat{d}), v_{0}^{d e f}(e, l, d, \hat{d})\right\} \\
& \forall I \in\{B, N B\}
\end{align*}
$$

$$
\begin{align*}
v_{0}^{I}(e, l, d, \hat{d}) & =\max _{l^{\prime}<0} u\left(c^{I}, \hat{d}+\xi\right)+\beta \mathbb{E}_{e^{\prime}, d^{\prime} \mid e, \hat{d}} E V^{0}\left(e^{\prime}, l^{\prime}, d^{\prime}\right) \tag{8}\\
c^{I} & =l+e-q^{I}\left(l^{\prime}, s\right) l^{\prime}+P_{d}-P_{\hat{d}}-\underbrace{\kappa(d, \hat{d})}_{\text {trans. cost }}
\end{align*}
$$

$$
E V^{i}\left(e^{\prime}, l^{\prime}, d^{\prime}\right) \equiv E_{\epsilon^{\prime}} V_{i}\left(e^{\prime}, l^{\prime}, d^{\prime}, \epsilon^{\prime}\right)
$$

Flag 0 households: no default record

$$
\begin{gather*}
V_{0}(e, l, d, \epsilon)=\max _{\hat{d} \in\{0, H, M, L\}}\left\{v_{0}(e, l, d, \hat{d})+\sigma_{\epsilon} \epsilon(\hat{d})\right\} \\
v_{0}(e, l, d, \hat{d})=\max \left\{v_{0}^{B}(e, l, d, \hat{d}), v_{0}^{N B}(e, l, d, \hat{d}), v_{0}^{S}(e, l, d, \hat{d}), v_{0}^{d e f}(e, l, d, \hat{d})\right\} \\
v_{0}^{S}(e, l, d, \hat{d})=\max _{l^{\prime} \geq 0} u\left(c^{S}, \hat{d}+\xi\right)+\beta \mathbb{E}_{e^{\prime}, d^{\prime} \mid e, \hat{d}} E V^{0}\left(e^{\prime}, l^{\prime}, d^{\prime}\right) \tag{8}\\
c^{S}=l+e-\frac{1}{r_{f}} l^{\prime}+P_{d}-P_{\hat{d}}-\underbrace{\kappa(d, \hat{d})}_{\text {trans. cost }} \\
E V^{i}\left(e^{\prime}, l^{\prime}, d^{\prime}\right) \equiv E_{\epsilon^{\prime}} V_{i}\left(e^{\prime}, l^{\prime}, d^{\prime}, \epsilon^{\prime}\right)
\end{gather*}
$$

Flag 0 households: no default record

$$
\begin{gather*}
V_{0}(e, l, d, \epsilon)=\max _{\hat{d} \in\{0, H, M, L\}}\left\{v_{0}(e, l, d, \hat{d})+\sigma_{\epsilon} \epsilon(\hat{d})\right\} \\
v_{0}(e, l, d, \hat{d})=\max \left\{v_{0}^{B}(e, l, d, \hat{d}), v_{0}^{N B}(e, l, d, \hat{d}), v_{0}^{S}(e, l, d, \hat{d}), v_{0}^{d e f}(e, l, d, \hat{d})\right\} \\
v_{0}^{d e f}(e, l, d, \hat{d})=u\left(c^{d e f}, 0+\xi\right)+\beta \mathbb{E}_{e^{\prime}, d^{\prime} \mid e, 0} E V^{1}\left(e^{\prime}, 0, d^{\prime}\right) \tag{8}\\
c^{d e f}=(1-\Gamma) e-P_{\hat{d}}
\end{gather*}
$$

Γ : loss of income due to default $E V^{i}\left(e^{\prime}, l^{\prime}, d^{\prime}\right) \equiv E_{\epsilon^{\prime}} V_{i}\left(e^{\prime}, l^{\prime}, d^{\prime}, \epsilon^{\prime}\right)$

Financial Institutions

Competitive Financial market: $I \in\{$ bank (B), nonbank (NB) $\}$
= Date t , Lend $q^{I}\left(l^{\prime}, s\right) l^{\prime}$ at cost $r^{I} \quad r^{B}<r^{N B}$
\#r Date $\mathrm{t}+1$, receive l^{\prime} if repay, $\theta^{I} P_{d^{\prime}}$ if default $\theta^{B}<\theta^{N B}$
Loan Contract, for $l^{\prime}<0$,

$$
\begin{equation*}
\underbrace{q^{I}\left(l^{\prime}, s\right) l^{\prime} r^{I}}_{\text {total fund cost }}=\underbrace{\mathbb{E}_{s^{\prime} \mid s}\left(1-\mathbb{D}\left(s^{\prime}\right)\right) l^{\prime}}_{\text {repay }}+\underbrace{\mathbb{E}_{s^{\prime} \mid s}\left\{\mathbb{D}\left(s^{\prime}\right) \theta^{I} P_{d^{\prime}}\right\}}_{\text {value covered from repossessed car }} \tag{9}
\end{equation*}
$$

$\mathbb{D}\left(s^{\prime}\right) \equiv \mathbb{E}_{\epsilon} \mathbb{I}\left(s^{\prime} \in \Psi\right), \Psi$ the default set

Auto Market Clearing

= New Car Producers: perfect competition, linear technology, $P_{H}=m c$. New production x
$\forall \tilde{d} \in\{H, M, L\}$,

$$
\underbrace{\int \mathbb{I}\left(g_{d}(s)=\tilde{d}, d \neq \tilde{d}\right) \mu(s) d s}_{\text {demand of } \tilde{d} \text { cars }}=\underbrace{\int \mathbb{I}\left(g_{d}(s) \neq \tilde{d}, d=\tilde{d}\right) \mu(s) d s}_{\text {supply of } \tilde{d} \text { cars }}+x_{\hat{d}}
$$

$$
x_{\hat{d}}=\left\{\begin{array}{l}
x, \text { if } \hat{d}=H \tag{10}\\
0, \text { Otherwise }
\end{array}\right.
$$

$g_{d}(s)$ policy function of car choice for s household $\mu(s)$ measure of s households

A Recursive Stationary Competitive Equilibrium

is (i) a value function $V(\mathbf{s}, h) \equiv E V_{h}(\mathbf{s})$ and associated policy functions $\hat{d}=g_{d}(\mathbf{s}, \epsilon), l^{\prime}=g_{l}(\mathbf{s}, \epsilon), I_{d e f}=g_{d e f}(\mathbf{s}, \epsilon), I_{f i}=g_{f i}(\mathbf{s}, \epsilon)$ (ii) a stationary distribution $\mu^{*}(e, l, d, h)$, (iii) a vector of prices $\mathbf{P}^{*} \equiv\left(P_{M}^{*}, P_{L}^{*}\right)$, and (iv) loan rate schedules $q^{I}\left(l^{\prime}, \mathbf{s}\right), I \in\{N, N B\}$ such that

1. Individual Optimization: $V(\mathbf{s}, h)$ satisfies (7) and (4) with policy functions $\hat{d}=g_{d}(\mathbf{s}, \epsilon), l^{\prime}=g_{l}(\mathbf{s}, \epsilon), I_{\text {def }}=g_{\text {def }}(\mathbf{s}, \epsilon), I_{f i}=g_{f i}(\mathbf{s}, \epsilon)$
2. Consistency of Loan Rates: the loan rate schedules $q^{I}\left(l^{\prime}, \mathbf{s}\right)$ satisfy (9), where the lenders' perceived default set is consistent with households policy function: $\tilde{g}_{\text {def }}(s, \epsilon)=g_{\text {def }}(s, \epsilon)$
3. Stationarity and Consistency of Beliefs $\mu^{*}(e, l, d, h)$ is consistent with exogeneous processes and policy functions $l^{\prime}=g_{l}(s, \epsilon), I_{\text {def }}=g_{\text {def }}(s, \epsilon)$, $I_{f i}=g_{f i}(s, \epsilon): \mu^{*}(e, l, d, h)=H\left(\mu^{*}(e, l, d, h)\right)$
4. Car markets clear: (10) determines the flow x of production of new cars and holds for $\hat{d} \in\{M, L\}$.

Estimation

Taking the Model to the Data

.. Income Processes: high v.s. low education groups estimated from PSID a la Guvenen (2007) detail
". parameters calibrated outside of the model detail
\#. parameters estimated in the structural model

Utility Function:

$$
u(c, d)= \begin{cases}\log \left(c^{\alpha} d^{1-\alpha}\right) & \text { if } \gamma=1 \tag{11}\\ \frac{\left\{c^{\alpha} d^{1-\alpha}\right\}^{1-\gamma}-1}{1-\gamma} & \text { if } \gamma \geq 0, \gamma \neq 1\end{cases}
$$

Calibrated Parameters

Calibrated Parameters

β_{h}	0.9450	discount factor, hi edu	Gavazza and Lanteri (2020)
γ	1	risk aversion	literature
d_{H}	1	util from H car	normalization

". moments less responsive to these parms compared to estimated ones
\#. later robustness check table

Estimation

$\Theta \equiv\left(\beta_{l}, \alpha, \Gamma, d_{M}, d_{L}, \xi, \underline{\theta}, P_{H}, P_{L}\right)$ solves:

$$
\begin{equation*}
\Upsilon=\min _{\Theta}\left(M^{s}(\Theta)-M^{d}\right)^{\prime} W\left(M^{s}(\Theta)-M^{d}\right) \tag{12}
\end{equation*}
$$

Moments (match pre-crisis):
." Financial: wealth-to-income, debt-to-income Ratio

- Car stock: fraction of \tilde{d} car owners, car ownership rates
- - loan rate: dependence of loan rate on y by lender type
- delinquency: fraction of loans flowing into delinquency
= nonbank market share

Selected Moments

	Data	Model
nonbank share	0.4433	0.4206
Med wi ratio	0.0045	0
\% hh indebt	0.3479	0.3740
\% default	0.0196	0.0221
Med b/y ratio, all	0.2870	0.2894
Med b/y ratio, B	0.2053	0.1549
Med b/y ratio, N	0.2517	0.5061
B, coef y	-0.7366	-0.1202
N, coef y	-0.0941	-0.0369

Selected Moments

	Data	Model
nonbank share	0.4433	0.4206
Med wi ratio	0.0045	0
\% hh indebt	0.3479	0.3740
\% default	0.0196	0.0221
Med b/y ratio, all	0.2870	0.2894
Med b/y ratio, B	0.2053	0.1549
Med b/y ratio, N	0.2517	0.5061
B, coef y	-0.7366	-0.1202
N, coef y	-0.0941	-0.0369

Selected Moments

	Data	Model
nonbank share	0.4433	0.4206
Med wi ratio	0.0045	0
\% hh indebt	0.3479	0.3740
\% default	0.0196	0.0221
Med b/y ratio, all	0.2870	0.2894
Med b/y ratio, B	0.2053	0.1549
Med b/y ratio, N	0.2517	0.5061
B, coef y	-0.7366	-0.1202
N, coef y	-0.0941	-0.0369

Selected Moments

	Data	Model
nonbank share	0.4433	0.4206
Med wi ratio	0.0045	0
\% default	0.0196	0.0221
\% hh indebt	0.3479	0.3740
Med b/y ratio, all	0.2870	0.2894
Med b/y ratio, B	0.2053	0.1549
Med b/y ratio, N	0.2517	0.5061
B, coef y	-0.7366	-0.1202
N, coef y	-0.0941	-0.0369

Selected Moments

	Data	Model
nonbank share	0.4433	0.4206
Med wi ratio	0.0045	0
\% default	0.0196	0.0221
\% hh indebt	0.3479	0.3740
Med b/y ratio, all	0.2870	0.2894
Med b/y ratio, B	0.2053	0.1549
Med b/y ratio, N	0.2517	0.5061
B, coef y	-0.7366	-0.1202
N, coef y	-0.0941	-0.0369

Estimation Results

Table 2: Estimated Parameters

	Estimated Parameters	
β_{l}	0.8965	discount factor, low education group
α	0.9520	weight of non-durable consumption in the utility function
Γ	0.0007	fraction of income loss due to default or default record
d_{M}	0.6869	utility flow from middle quality car
d_{L}	0.3060	utility flow from low quality car
ξ	0.0139	utility flow from alternative ways of transportation
P_{M}	0.2652	the price of a middle quality car
P_{L}	0.0976	the price a of low quality car
$\underline{\theta}$	0.5387	bank fraction of recovery from foreclosure

Model Implications

Model Implications
" Loanrate Schedules

- Lender Choices
- Evaluation of credit supply shocks

Endogenous Loan Rates

both B and NB lower loan rate for higher income today
bank needs more compensation for risk

Choice of Lenders

HH with same $d, \hat{d}=M$ in ss. eqm:

Choice of Lenders

HH with same $d, \hat{d}=M$ in ss. eqm:

Choice of Lenders

HH with same $d, \hat{d}=M$ in ss. eqm:

Choice of Lenders

HH with same $d, \hat{d}=M$ in ss. eqm:

Choice of Lenders

HH with same $d, \hat{d}=M$ in ss. eqm:

Choice of Lenders

HH with same $d, \hat{d}=M$ in ss. eqm:

Credit Supply Shocks

Table 3: Timeline, Shocks and μ

t	0	1	2	3	\ldots
shocks	no	yes	no	no	\ldots
hh exp. P'	P^{*}	P^{*}	P^{*}	P^{*}	..
actual P	$P\left(\mu^{*}\right)$	$P\left(\mu_{1}\right)$	$P\left(\mu_{2}\right)$	$P\left(\mu_{3}\right)$..

S1 income shocks
S2 income shocks + nonbank credit supply shocks
S3 income shocks + bank credit supply shocks

Credit Supply Shocks

Table 3: Timeline, Shocks and μ

t	0	1	2	3	\ldots
shocks	no	yes	no	no	\ldots
hh exp. P'	P^{*}	P^{*}	P^{*}	P^{*}	..
actual P	$P\left(\mu^{*}\right)$	$P\left(\mu_{1}\right)$	$P\left(\mu_{2}\right)$	$P\left(\mu_{3}\right)$..

S1 income shocks
S2 income shocks + nonbank credit supply shocks
S3 income shocks + bank credit supply shocks
$S 2-S 1 \rightarrow$ contribution of Nonbank credit supply shocks

Credit Supply Shocks

Table 3: Timeline, Shocks and μ

t	0	1	2	3	\ldots
shocks	no	yes	no	no	\ldots
hh exp. P'	P^{*}	P^{*}	P^{*}	P^{*}	..
actual P	$P\left(\mu^{*}\right)$	$P\left(\mu_{1}\right)$	$P\left(\mu_{2}\right)$	$P\left(\mu_{3}\right)$..

S1 income shocks
S2 income shocks + nonbank credit supply shocks
S3 income shocks + bank credit supply shocks $S 3-S 1 \rightarrow$ contribution of Bank credit supply shocks

Contribution of Credit Supply Shocks

Table 4: Percentage Changes in Auto Sales and Prices

	S1	S2	
income only	income \& nonbank	income \& bank	
Sales (H)	-13.21%	-20.88%	-13.25%
	(0.336%)	(0.297%)	(0.353%)
Price M	-1.10%	-2.97%	-1.08%
	(0.085%)	(0.084%)	(0.085%)
Price L	-3.25%	-4.08%	-3.24%
	(0.254%)	(0.262%)	(0.249%)
		nonbank	bank
Contribution		36.74%	0.28%

Contribution of Credit Supply Shocks

Table 4: Percentage Changes in Auto Sales and Prices

	S1 income only	S2 income \& nonbank	S3 income \& bank
Sales (H)	-13.21%	$-\mathbf{2 0 . 8 8 \%}$	-13.25%
	(0.336%)	(0.297%)	(0.353%)
Price M	-1.10%	-2.97%	-1.08%
Price L	(0.085%)	(0.084%)	(0.085%)
	-3.25%	-4.08%	-3.24%
	(0.254%)	(0.262%)	(0.249%)
Contribution		nonbank	bank

Enaction \uparrow : 69.2% s.s. $\rightarrow 73.5 \%$ S2
" substitution \downarrow : replacement with new purchase 8.3% s.s. $\rightarrow 6.9 \% \mathrm{~S} 2$
E- liqudation $\uparrow: 15.4 \%$ more $h \mathrm{~h}$ disposed M cars

Distributional Effects: bank v.s. nonbank shock only

Distributional Effects: bigger real effects with nonbank shock

Distributional Effects: trivial real effects with bank shock

Conclusions

Facts: rich heterogeneity between bank v.s. nonbank borrowers

Conclusions

Facts: rich heterogeneity between bank v.s. nonbank borrowers Equilibrium model with hetero. hh and lenders
"- asymmetric ability to borrow

Facts: rich heterogeneity between bank v.s. nonbank borrowers Equilibrium model with hetero. hh and lenders
"- asymmetric ability to borrow
" the estimated model generates $\mathbf{2 1 \%}$ decline in auto sales
:" very close to 22 \% actual decline documented in Johnson et al. (2014).

Conclusions

Facts: rich heterogeneity between bank v.s. nonbank borrowers Equilibrium model with hetero. hh and lenders
"- asymmetric ability to borrow
\#- the estimated model generates $\mathbf{2 1 \%}$ decline in auto sales
:" very close to 22 \% actual decline documented in Johnson et al. (2014).
.. contribution of nonbank shock: 37\%
: close to 33% in Benmelech et al. (2017)
:" Policy: Term Asset-backed securities Loan Facility (TALF)
". contribution of bank shock: merely 0.28%
". bank v.s. nonbank shocks: different distributional implications

Appendix

Auto Finance Co. v.s. Banks

Figure 3: Flow into 90+ delin

Costs Bank v.s. Nonbank

Figure 4: Auto ABS spreads; Bank Prime Loan Rates and Federal Funds Rates

Not just a Demand Side Story

Despite the relatively stable demand for auto loans:
.. Survey of Consumer Finance 07-09 panel
"- "What type of credit did you apply for?"
. 2007: all 19.67% vehicle loan 4.36% (in the past 5 years)
.- 2009: all 14.73% vehicle loan 3.48% (in the past 2 years)
Nonbank auto loan originated to the subprime drop dramatically
Table 5: \% Change in Total Amount of Loan Originated

	Nonbank	Bank
Exceptional	35%	8%
Very Good	7%	-1%
Good	-28%	-11%
Fair	-47%	-15%
Poor	-45%	-15%

Nonbank Credit Shrinkage to the Subprime

1. Cross Sectional: more Fair and Poor in Nonbanks
2. Over Time: obvious shift from riskier to safer for Nonbank
3. Market Share of Nonbank :
\# consumers: $44.3 \% \rightarrow 41 \%$;
\$ loan origination: $51 \% \rightarrow 45 \%$

Change in Total Loan Amount 2008-2006
■ bank pct ■ nonbank, pct

Data Description

\#- 2 periods from Equifax Archive: 2006 November and 2008 November
" Each period, 50k individuals are randomly drawn from records if she opened an auto loan within 30 Days
\# City, State, Zip code, Lender industry code, Loan amount, Loan terms, Loan rate, Income and Fico

Income Process

$$
\begin{aligned}
& y_{t}^{i}=\bar{y}_{t}^{i}+\tilde{y}_{t}^{i} \\
& \bar{y}_{t}^{i}=\gamma_{0}+\gamma_{11} a_{t}^{i}+\gamma_{12} a_{t}^{i, 2}+\gamma_{2} t+\gamma_{3} X_{i}
\end{aligned}
$$

$$
\begin{align*}
\tilde{y}_{t}^{i} & =z_{t}^{i}+\eta_{t}^{i} \tag{13}\\
z_{t}^{i} & =\rho_{z} z_{t-1}^{i}+\epsilon_{z, t}^{i} \tag{14}
\end{align*}
$$

$\delta_{e u}$	0.1453	probability of being separated from current job
$\delta_{u e}$	0.9683	probability of finding a job computed
ρ_{z}^{h}	0.8865	persistence parameter of the permanent shock, high education group
ρ_{z}^{l}	0.8681	persistence parameter of the permanent shock, low education group
σ_{ϵ}^{h}	0.1784	std parameter of the innovation to the permanent shock, high education group
σ_{ϵ}^{l}	0.1662	std parameter of the innovation to the permanent shock, low education group
σ_{η}^{h}	0.0615	std parameter of the transitory shock, high education group
σ_{η}^{l}	0.0590	std parameter of the transitory shock, low education group

Model Fit

Table 6: Moments: Model v.s. Data

	All		High Edu		Low Edu	
	data	model	data	model	data	model
$w i$	0.0045	0	0.0650	0.1475	0	0
f_{H}	0.3201	0.1704	0.3964	0.2739	0.2849	0.1211
f_{M}	0.6069	0.6916	0.5641	0.6058	0.6267	0.7325
f_{L}	0.0730	0.1380	0.0395	0.1203	0.0884	0.1464
f_{0}	0.1091	0.1714	0.0649	0.1097	0.0649	0.1982
$w i_{p 10}$	-0.6569	-0.4884	-0.6784	-0.2197	-0.6424	-0.5420
$w i_{p 25}$	-0.1777	-0.1557	-0.1894	-0.0447	-0.1727	-0.2487
$w i_{p 75}$	0.1812	0.3334	0.5593	0.5109	0.0685	0.2271
$f_{l<0}$	0.3479	0.3740	0.3501	0.2907	0.3465	0.4097
$\bar{d} i^{m}$	0.2870	0.2894	0.2570	0.2074	0.3326	0.3338

Model Fit: 2

Table 7: Moments: Model v.s. Data 2

	data			model		
\bar{R}_{B}	1.0853			1.0721		
\bar{R}_{B}^{m}	1.0777			1.0656		
$\underline{R}^{\text {NB }}$	1.1000			1.1304		
$\bar{R}_{\sim}^{m}{ }^{m}$	1.0906			1.1222		
$\overline{d i}_{B}^{m}$	0.2053			0.1549		
$\bar{d} i_{N B}^{m}$	0.2517			0.5061		
$r_{\text {def }}$	0.0196			0.0221		
Nonbank Share		0.4433			0.4206	
	$\hat{\rho}_{0}$	$\hat{\rho}_{y}$	$\hat{\rho}_{b}$	$\hat{\rho}_{0}$	$\hat{\rho}_{y}$	$\hat{\rho}_{b}$
Probit Equation	-0.7052	0.7044	-0.6314	0.3514	2.0079	-8.7463
Heckit Bank	2.9221	-0.7366	0.6073	1.1338	-0.1202	0.4098
Heckit Nonbank	1.0996	-0.0941	0.0128	1.2576	-0.0369	-0.2581

Back

Percentage Changes in Auto Sales and Contribution of Nonbank Shocks

	S2 \% H Sales Benchmark	Contribution -20.88%	36.74%
$\beta_{h}=0.898$	0.945	Calibrated Parameters	
$\gamma=1.500$	1	-22.51%	32.67%
$d_{H}=0.900$	1	-19.24%	37.37%
$\bar{\theta}=0.882$	0.98	-22.13%	31.49%
		-20.86%	21.97%
$\underline{\theta}=0.5925$	0.5383	Estimated Parameters	
$\beta_{l}=0.9427$	0.8965	-21.54%	33.19%
$\alpha=0.9055$	0.9520	-17.22%	26.18%
$d_{M}=0.6176$	0.6869	-10.96%	30.40%
$d_{L}=0.2742$	0.3060	-21.63%	32.90%
$\xi=0.0151$	0.0139	-21.39%	33.33%
$\Gamma=7.4 e(-3)$	$6.73 e(-3)$	-21.73%	32.90%

The Auto Loan Market pre v.s. during GR

" nonbank market share declined during GR
". nonbank loans to the subprime group dropped dramtically during the Great Recession: shift to safer borrowers
\% total loan amount change

	Nonbank Share		loan amount Δ_{08-06}	
Category (FICO)	2006	2008	Nonbank	Bank
Exceptional (800-850)	35.2%	39.4%	$+35 \%$	$+8 \%$
Very Good (740-799)	32.3%	33.4%	$+7 \%$	-1%
Good (670-739)	35.1%	31.3%	-28%	-11%
Fair (580-669)	51.5%	43.9%	-47%	-15%
Poor (300-579)	70.6%	67.7%	-45%	-15%

