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Abstract

The communication revelation principle of mechanism design states that any out-

come that can be implemented using any communication system can also be imple-

mented by an incentive-compatible direct mechanism. In multistage games, we show

that in general the communication revelation principle fails for the solution concept

of sequential equilibrium. However, it holds in important classes of games, including

single-agent games, games with pure adverse selection, games with pure moral hazard,

and a class of social learning games. For general multistage games, we establish that an

outcome is implementable in sequential equilibrium if and only if it is implementable

in a canonical Nash equilibrium in which players never take codominated actions. We

also prove that the communication revelation principle holds for the more permissive

solution concept of conditional probability perfect Bayesian equilibrium.
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1 Introduction

The communication revelation principle states that any social choice function that can be

implemented by any mechanism can also be implemented by a direct mechanism where

communication between players and the mechanism designer or mediator takes a canonical

form: players communicate only their private information to the mediator, the mediator

communicates only recommended actions to the players, and in equilibrium players report

honestly and obey the mediator’s recommendations. This result was developed throughout

the 1970s, reaching its most general formulation in the principal-agent model of Myerson

(1982), which treats one-shot games with both adverse selection and moral hazard.

More recently, there has been a surge of interest in designing dynamic mechanisms and

information systems.1 Forges (1986) showed that the communication revelation principle

(RP) is valid in multistage games under the solution concept of Nash equilibrium (NE).

But NE is usually not a satisfactory solution concept in dynamic games: following Kreps

and Wilson (1982), economists prefer solution concepts that require rationality even after

off-path events and impose “consistency” restrictions on players’off-path beliefs, such as

sequential equilibrium (SE) or various versions of perfect Bayesian equilibrium (PBE). And

it is unknown whether the RP holds for these stronger solution concepts, because– as we

will see– expanding players’opportunities for communication expands the set of consistent

beliefs at off-path information sets.

The current paper resolves this question. We show that in general multistage games the

communication RP fails for SE. However, it holds in important classes of games, including

single-agent games, games with pure adverse selection, games with pure moral hazard, and a

class of social learning games. Our main result establishes that, in general multistage games,

an outcome is implementable in SE if and only if it can be implemented in a canonical Nash

equilibrium in which players never (on or off path) take codominated actions, which are

actions that cannot be motivated by any belief compatible with a player’s own information

1For dynamic mechanism design, see for example Courty and Li (2000), Battaglini (2005), Eső and
Szentes (2007), Bergemann and Välimäki (2010), Athey and Segal (2013), Pavan, Segal, and Toikka (2014),
and Battaglini and Lamba (2019). For dynamic information design, see for example Kremer, Mansour, and
Perry (2014), Ely, Frankel, and Kamenica (2015), Che and Hörner (2017), Ely (2017), Renault, Solan, and
Vieille (2017), Ely and Szydlowski (2019), and Ball (2020).
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and the presumption that her opponents will avoid codominated actions in the future. This

is an extension to SE of the main result of Myerson (1986), which we review in Section

2.2.2 We also show that the communication RP holds in general multistage games for the

solution concept of conditional probability perfect Bayesian equilibrium (CPPBE), a simple

and relatively permissive version of PBE.

Our results have a concise and practical message for applied dynamic mechanism design:

to calculate the set of outcomes implementable in sequential equilibrium by any communi-

cation system, it suffi ces to calculate the set of outcomes implementable in Nash equilibrium

excluding codominated actions, using direct communication.3 These two sets are always the

same, even though actually implementing some outcomes as sequential equilibria might re-

quire a richer communication system (that is, even though the communication RP is generally

invalid for SE).

Let us preview the intuition for our key result: any outcome that can be implemented

in a NE that excludes codominated actions is also implementable in SE. By definition, any

non-codominated action can be motivated by some belief compatible with a player’s own

information. Such a belief can be generated in accordance with Kreps-Wilson consistency

by specifying that all players tremble with positive probability (along a sequence of strategy

profiles converging to the equilibrium) and then honestly report their signals and actions to

the mediator, and the mediator appropriately conditions his recommendations on the reports.

An obstacle to this construction is that a player who trembles to an action for which she

must be punished in equilibrium will not honestly report her deviation. To circumvent

this problem, the mediator may (with probability converging to 0) promise in advance that

he will disregard a player’s report almost-surely (i.e., with probability converging to 1).

Then, the desired belief can be generated by letting players believe that their opponents

received promises to disregard their reports, trembled, and then reported truthfully, and

that subsequently the mediator did not disregard their reports after all. However, to afford

the mediator the ability to make such an advance promise, the communication system must

be enriched with an extra message. Note that the mediator’s “promise to ignore reports”

2Myerson’s main result establishes the same characterization for the novel concept of sequential commu-
nication equilibrium, which is not the same as sequential equilibrium. See Section 2.2.

3The set of codominated actions itself can be calculated recursively. See Appendix A.
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is made with equilibrium probability 0, so our construction is “canonical on path.”4 At the

same time, the need to have this extra message available explains why the communication

RP is invalid for SE.

In several important classes of games, the set of non-codominated actions in each period

does not depend on the history of players’signals and actions. These include single-agent

games, games of pure adverse selection, games of pure moral hazard, and a class of social

learning games. In such games, the above obstacle to implementing non-codominated actions

does not arise, and the communication RP holds for SE. Furthermore, SE and NE are

outcome-equivalent in many of these classes.

By way of further motivation, we note that there seems to be some uncertainty in the

literature as to what is known about the RP in multistage games. A standard approach in the

dynamic mechanism design literature is to cite Myerson (1986) and then restrict attention

to direct mechanisms without quite claiming that this is without loss of generality. Pavan,

Segal, and Toikka (2014, p. 611) are representative:

“Following Myerson (1986), we restrict attention to direct mechanisms where,

in every period t, each agent i confidentially reports a type from his type space

Θit, no information is disclosed to him beyond his allocation xit, and the agents

report truthfully on the equilibrium path. Such a mechanism induces a dynamic

Bayesian game between the agents and, hence, we use perfect Bayesian equilib-

rium (PBE) as our solution concept.”

Our results provide a foundation for this approach, while also showing that Nash, PBE,

and SE are outcome-equivalent in pure adverse selection settings like this one.5

Our simple positive results for games with one agent, pure adverse selection, or pure

moral hazard imply that the subtleties at the heart of our paper are most relevant for multi-

agent, multi-stage games with both adverse selection and moral hazard: that is, multi-agent

dynamic information design. Papers on this topic include Gershkov and Szentes (2009),

4As this discussion indicates, it is important that our definition of sequential equilibrium allows the
mediator to tremble. Section 5.2 discusses the case where the mediator cannot tremble.

5A caveat is that much of the dynamic mechanism design literature assumes continuous type spaces to
facilitate the use of the envelope theorem, while we restrict attention to finite games to have a well-defined
notion of sequential equilibrium. We discuss this point in Section 5.2. We also assume a finite time horizon.
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Aoyagi (2010), Kremer, Mansour, and Perry (2014), Che and Hörner (2017), Halac, Kartik,

and Liu (2017), Sugaya and Wolitzky (2017), Ely (2017), Doval and Ely (2020), and Makris

and Renou (2020). Some of these papers prove versions of the RP directly, while others

appeal to existing results with more or less precision. For example, Kremer, Mansour, and

Perry (2014) do not specify a solution concept and state that the RP is established for their

setting by Myerson; an implication of our Proposition 4 is that the RP is valid in their model

for SE. We hope our results will find application in this emerging literature; to this end, we

provide a compact summary at the end of the paper.

1.1 Example

We begin with an example that illustrates how letting the mediator make advance promises

to disregard players’reports can expand the set of implementable outcomes.

There are two players (in addition to the mediator) and three periods.

In period 1, player 1 takes an action a1 ∈ {A,B,C}.

In period 2, player 1 observes a signal θ ∈ {n, p}, with each realization equally likely.

Then, the mediator (“player 0”) takes an action a0 ∈ {A,B}.

In period 3, the mediator and player 2 observe a common signal s ∈ {0, 1}, where s = 1

iff a0 6= a1. Then, player 2 takes an action a2 ∈ {N,P} (“Not punish,”“Punish”).

Player 1’s payoff equals 1{a0 6=a1} − 1{a2=P} − 3 × 1{a1=C}, and player 2’s payoff equals

−1{(a1,θ)6=(C,p)∧a2=P}, where 1{·} denotes the indicator function. In particular, player 1 wants

to mismatch her action with the mediator’s action; action C is strictly dominated for player

1; and player 2 is willing to punish player 1 iff a1 = C and θ = p.

Consider the outcome distribution 1
2

(A,A,N) + 1
2

(B,B,N). It is trivial to construct a

canonical NE (i.e., a NE with direct communication, where in equilibrium players report their

signals and actions honestly and obey the mediator’s recommendations) that implements

this outcome: the mediator sends message/recommendation m1 = A and m1 = B with

equal probability, plays a0 = m1, and recommends m2 = N if s = 0 and m2 = P if s = 1;

meanwhile, players are honest and obedient. Moreover, this NE is sequential iff player 2

believes with probability 1 that (a1, θ) = (C, p) when s = 1 andm2 = P . Thus, 1
2

(A,A,N)+

1
2

(B,B,N) is implementable in sequential equilibrium iff this belief is consistent.
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Our main result shows that the outcome of any NE that excludes codominated actions is

implementable in SE. In this example, the action a2 = P is not codominated at the history

following signal s = 1, because a2 = P is an optimal action for player 2 if (a1, θ) = (C, p). Our

result thus implies that 1
2

(A,A,N) + 1
2

(B,B,N) is a SE outcome for some communication

system. We now explain intuitively why 1
2

(A,A,N) + 1
2

(B,B,N) is not implementable in

any canonical SE, but is implementable in a non-canonical SE.6

Non-implementability in canonical SE Throughout the paper, by a “tremble” to a

particular action a we mean a sequence of strategies converging to equilibrium along which

a player (or the mediator) takes action a with positive probability converging to 0. In a

canonical equilibrium, players who have not previously lied to the mediator obey all recom-

mendations from the mediator, even those that the mediator sends only as the result of a

tremble. Since action C is strictly dominated for player 1, this implies that action C can

never be recommended in a canonical equilibrium, even as the result of a tremble.7 Hence,

the mediator can only ever recommend m1 ∈ {A,B}. If player 1 trembles to action C af-

ter such a recommendation, she will subsequently (for each possible realization of θ) make

whatever report
(
â1, θ̂

)
minimizes the probability that m2 = P . Since s = 1 whenever

a1 = C, Bayes’rule then implies that Pr ((a1, θ) = (C, p) |s = 1,m2 = P ) ≤ 1
2
(in the limit

where trembles vanish). Hence, player 2 will not follow the recommendation m2 = P when

s = 1, so the desired outcome is not implementable in a canonical SE.

Implementability in non-canonical SE Why does enriching the communication system

overturn this negative result? Suppose the mediator can tremble by giving a “free pass”to

player 1 in period 1. If player 1 gets a free pass in period 1, the mediator will always

recommend m2 = N , barring another mediator tremble. This makes player 1 willing to

truthfully report any pair (a1, θ) after getting a free pass. Now, when player 2 is recommended

m2 = P , he can believe that the mediator trembled by giving player 1 a free pass in period 1,

player 1 trembled to a1 = C, player 1 honestly reported
(
â1, θ̂

)
= (C, p), and the mediator

trembled again by recommending m2 = P . This new possibility can rationalize player 2’s

6For the details, see the proof of Proposition 3.
7That is, action C must lie outside the mediation range in any canonical equilibrium. See Section 2.2.
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belief that (a1, θ) = (C, p).

More precisely, consider the following sequence of strategy profiles, indexed by k ∈ N:

Mediator’s strategy: In period 1, the mediator recommends A and B with equal prob-

ability, while trembling to a third message, “?” (the “free pass”), with probability 1
k
. In

period 2, if m1 ∈ {A,B}, the mediator plays a0 = m1; if m1 = ?, he plays A and B with

probability 1
2
each. In period 3, if m1 ∈ {A,B}, the mediator recommends m2 = N if s = 0

and m2 = P if s = 1; if m1 = ?, with probability 1− 1
k
he recommends m2 = N (regardless

of
(
â1, θ̂

)
and s), and with probability 1

k
he recommends m2 = P if

(
â1, θ̂

)
= (C, p) and

m2 = N otherwise.

Players’strategies: If m1 ∈ {A,B}, player 1 takes a1 = m1 and trembles to each other

action with probability 1
k4 ; if m1 = ?, she plays A and B with probability 1

2
each, while

trembling to C with probability 1
k
. Player 1 always reports her action and signal honestly.

Player 2 always takes a2 = m2.

Note that honesty is always optimal for player 1 in the k → ∞ limit: if m1 ∈ {A,B},

then any deviation from a1 = m1 leads to a2 = P with limit probability 1 regardless of player

1’s report; while if m1 = ?, then a2 = N with limit probability 1 regardless of her report.

Now suppose player 2 observes s = 1 and m2 = P . There are two possible explanations:

either (i) player 1 trembled after m1 ∈ {A,B}, or (ii) the mediator trembled to m1 = ?,

player 1 trembled to a1 = C, player 1 honestly reported
(
â1, θ̂

)
= (C, p), and the mediator

trembled again tom2 = P . Case (i) occurs with probability of order 1
k4 , while case (ii) occurs

with probability of order 1
k3 . Hence, in the k →∞ limit, player 2 believes with probability 1

that (a1, θ) = (C, p). This belief rationalizes a2 = P , as is required to implement the desired

outcome.

Remark 1 The non-implementability result established above uses the fact that the mediator

cannot recommend C in a canonical equilibrium, since player 1 will not obey such a recom-

mendation. However, the target outcome 1
2

(A,A,N) + 1
2

(B,B,N) can be implemented in a

non-canonical equilibrium of the direct mechanism where m1 ∈ {A,B,C} (without introduc-

ing the extra message ?), by using message C as a stand-in for message ?. This trick always

works when each player has a strictly dominated (more generally, codominated) action at

every information set, but not more generally: in the proof of Proposition 3, we give an ex-
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ample where restricting attention to direct mechanisms (even without additionally requiring

honesty and obedience) is with loss of generality.

The remainder of the paper is organized as follows. Section 2 describes the model and

reviews some background theory, including the notion of codominated actions. Section 3

presents our results for SE: the communication RP fails in general but holds in some impor-

tant special classes of games; and in general games an outcome is SE-implementable if and

only if it is implementable in a canonical NE that excludes codominated actions. Section

4 defines CPPBE and shows that the communication RP holds for this more permissive

solution concept. Section 5 summarizes our results and discusses possible extensions. All

proofs are deferred to the print or online appendix.

2 Multistage Games with Communication

2.1 Model

As in Forges (1986) and Myerson (1986), we consider multistage games with communication.

A multistage game G is played by N + 1 players (indexed by i = 0, 1, . . . , N) over T periods

(indexed by t = 1, . . . , T ). Player 0 is a mediator who differs from the other players in three

ways: (i) the players communicate only with the mediator and not directly with each other,

(ii) the mediator is indifferent over outcomes of the game (and can thus “commit” to any

strategy), and (iii) “trembles”by the mediator may be treated differently than trembles by

the other players.8 In each period t, each player i (including the mediator) has a set of

possible signals Si,t, a set of possible actions Ai,t, a set of possible reports to send to the

mediator Ri,t, and a set of possible messages to receive from the mediator Mi,t. For each i

and t, let Sti =
∏t−1

τ=1 Si,τ , let St =
∏N

i=0 Si,t, and let S
t =

∏t−1
τ=1 Sτ , and analogously define A

t
i,

At, At, Rt
i, Rt, Rt, M t

i , Mt, and M t. These sets are all assumed finite. This formulation lets

us capture settings where the mediator receives exogenous signals in addition to reports from

the players, as well as settings where the mediator takes actions (such as choosing allocations

8We also use male pronouns for the mediator and female pronouns for the players.
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for the players). Note also the artificial assumption that the mediator “communicates with

himself,”which simplifies notation.

The timing within each period t is as follows:

1. A signal st ∈ St is drawn with probability p (st|st, at), where (st, at) ∈ St × At is the

vector of past signals and actions. Player i observes si,t ∈ Si,t, the ith component of st.

2. Each player i chooses a report ri,t ∈ Ri,t to send to the mediator.

3. The mediator chooses a message mi,t ∈Mi,t to send to each player i.

4. Each player i takes an action ai,t ∈ Ai,t.

For each t, denote the set of possible histories of signals and actions (“payoff-relevant

histories”) at the beginning of period t by

X t =
{(
st, at

)
∈ St × At : p

(
sτ |sτ−1, aτ−1

)
> 0 ∀τ ≤ t− 1

}
.

Similarly, denote the set of possible payoff-relevant histories after the period t signal realiza-

tion st by

Y t =
{(
st+1, at

)
∈ St+1 × At : p

(
sτ |sτ−1, aτ−1

)
> 0 ∀τ ≤ t

}
.

For each i, let X t
i and Y

t
i denote the projections of X

t and Y t on Sti × Ati and St+1
i × Ati,

respectively. Note that, typically, X t 6=
∏N

i=0X
t
i and Y

t 6=
∏N

i=0 Y
t
i . Assume without loss

of generality that Si,t =
⋃
xt∈Xt supp pi (·|xt) for all i and t, where pi denotes the marginal

distribution of p.

Let H t = X t×Rt×M t denote the set of possible histories of signals, actions, reports, and

messages (“complete histories”) at the beginning of period t, with H1 = ∅. Let Z = HT+1

denote the set of terminal histories of the game. Given a complete history ht = (xt, rt,mt) ∈

H t, let h̊t = xt denote the projection of ht onto X t, the payoff-relevant component of H t; and

let ḣt = (rt,mt) denote the projection of ht onto Rt ×M t, the payoff-irrelevant component

of H t. Let X = XT+1 denote the set of payoff-relevant pure outcomes of the game. Let

ui : X → R denote player i’s payoff function, where u0 is a constant function.
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We refer to the tuple Γ := (N, T, S,A, p, u) as the base game and refer to the pair

C := (R,M) as the communication system. The implementation problem asks, for a given

base game Γ and a given equilibrium concept, which outcomes ρ ∈ ∆ (X) arise in some

equilibrium of the multistage game G = (Γ,C) for some communication system C? Such

outcomes ρ are implementable.

We now introduce histories, strategies, and beliefs. For each i and t, letH t
i = X t

i×Rt
i×M t

i

denote the set of player i’s possible histories of signals, actions, reports, and messages at

the beginning of period t. When a complete history ht ∈ H t is understood, we let hti =

(xti, r
t
i ,m

t
i) denote the projection of h

t onto H t
i ; that is, h

t
i is player i’s information set.

Conversely, let H t [hti] denote the set of histories h
t ∈ H t with i-component hti. Note that,

typically, H t[hti] 6=
∏

j 6=iH
t
j . Let h̊

t
i = xti denote the payoff-relevant component of h

t
i, and let

ḣti = (rti ,m
t
i) denote the payoff-irrelevant component of h

t
i. We also let H

R,t
i = Y t

i ×Rt
i×M t

i

and HA,t
i = Y t

i × Rt+1
i ×M t+1

i denote the sets of reporting and acting histories for player i,

respectively. HR,t[hR,ti ], HA,t[hA,ti ], h̊R,ti , h̊
A,t
i , ḣ

R,t
i , and ḣ

A,t
i are similarly defined.

A behavioral strategy for player i is a function σi =
(
σRi , σ

A
i

)
=
(
σRi,t, σ

A
i,t

)T
t=1
, where

σRi,t : HR,t
i → ∆ (Ri,t) and σAi,t : HA,t

i → ∆ (Ai,t). This standard definition requires that a

player uses the same mixing probability at all nodes in the same information set. Let Σi be

the set of player i’s strategies, and let Σ =
∏N

i=0 Σi.

A belief for player i 6= 0 is a function βi =
(
βRi , β

A
i

)
=
(
βRi,t, β

A
i,t

)T
t=1
, where βRi,t : HR,t

i →

∆
(
HR,t

)
and βAi,t : HA,t

i → ∆
(
HA,t

)
.9 We write σRi,t

(
ri,t|hR,ti

)
for σRi,t

(
hR,ti

)
(ri,t), and

similarly for σAi,t, β
R
i,t, and β

A
i,t. When the meaning is unambiguous, we omit the superscript

R or A and the subscript t from σi and βi, so that, for example, σi can take h
R,t
i or hA,ti as

its argument.

A mediation plan is a function f = (ft)
T
t=1, where ft : Rt+1 → Mt maps a profile of

reports up to and including period t to a profile of period-t messages.10 A mixed mediation

plan is a distribution µ ∈ ∆ (F ), where F denotes the set of (pure) mediation plans. A

behavioral mediation plan is a function φ = (φt)
T
t=1, where φt : Rt+1 ×M t → ∆(Mt) maps

past reports and messages to current messages. Since the mediator can receive signals and

9Since the mediator is indifferent over outcomes, there are no optimality conditions on the mediator’s
strategy, and hence no need to introduce beliefs for the mediator.
10Myerson (1986) calls such a function a feedback rule.
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take actions in our model, he must choose both a mediation plan f and a report/action

strategy σ0. However, we can equivalently view the mediator as choosing only f , while a

separate “dummy player” chooses σ0. The distinctive feature of the mediator is thus the

choice of f , while the strategy σ0 plays no special role in the analysis and is included only for

the sake of generality. As we will see, whether it is most convenient to view the mediator as

choosing a pure, mixed, or behavioral mediation plan depends on the solution concept under

consideration. All three perspectives will be used in this paper. In contrast, we always

view players as choosing behavioral strategies (σi)
N
i=1, and similarly view the mediator’s

report/action strategy σ0 as a behavioral strategy.

Denote the probability distribution on Z induced by behavioral strategy profile σ =

(σi)
N
i=0 and mediation plan f by Prσ,f , and denote the corresponding distribution for a mixed

or behavioral mediation plan by Prσ,µ or Prσ,φ, respectively. Denote the corresponding prob-

ability distribution on X (the “outcome”) by ρσ,f , ρσ,µ, or ρσ,φ. As usual, probabilities are

computed assuming that all randomizations (by the players and the mediator) are stochas-

tically independent. We refer to a pair (σ, f), (σ, µ), or (σ, φ) as simply a profile.

We extend players’payoff functions from terminal histories to profiles in the usual way,

writing ūi (σ, f) for player i’s expected payoff at the beginning of the game under profile

(σ, f), and writing ūi (σ, f |ht) for player i’s expected payoff conditional on reaching the

complete history ht. Note that ūi (σ, f |ht) does not depend on player i’s beliefs, as ht is a

single node in the game tree. The quantities ūi (σ, µ), ūi (σ, φ), and ūi (σ, φ|ht) are defined

analogously. In contrast, we avoid the “bad”notation ūi (σ, µ|ht), which is not well-defined

when Prσ,µ (ht) = 0.

A Nash equilibrium (NE) is a profile (σ, µ) such that ūi (σ, µ) ≥ ūi (σ
′
i, σ−i, µ) for all i 6= 0

and σ′i ∈ Σi.11 (Or put φ in place of µ; the definitions are equivalent by Kuhn’s theorem,

which implies that for any µ, there exists φ such that Prσ,µ = Prσ,φ for all σ, and vice versa.)

11In the context of games with communication, a NE is also called a communication equilibrium (Forges,
1986).
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2.2 Theoretical Background

Our results build on four concepts introduced by Myerson (1986), which we briefly review

here: mediation ranges, conditional probability systems, sequential communication equilib-

ria, and codomination.

A mediation range Q = (Qi,t)i 6=0,t specifies a set of possible messages Qi,t (rti ,m
t
i, ri,t) ⊆

Mi,t that can be received by each player i 6= 0 when the history of communications be-

tween player i and the mediator is given by (rti ,m
t
i, ri,t). Denote the set of mediation plans

compatible with mediation range Q by

F |Q =
{
f ∈ F : fi,t

(
rt+1

)
∈ Qi,t

(
rti ,
(
fi,τ
(
rτ+1

))t−1

τ=1
, ri,t

)
∀i, t, rt+1

}
.

Say that a reporting history hR,ti ∈ HR,t
i is compatible with mediation range Q if mi,τ ∈

Qi,τ (rτi ,m
τ
i , ri,τ ) for all τ < t; similarly, an acting history hA,ti ∈ HA,t

i is compatible with

mediation range Q if mi,τ ∈ Qi,τ (rτi ,m
τ
i , ri,τ ) for all τ ≤ t.

Given a base game Γ = (N, T, S,A, p, u), the direct communication system C∗ = (R∗,M∗)

is given by R∗i,t = Ai,t−1 × Si,t and M∗
i,t = Ai,t, for all i and t. That is, players’reports are

actions and signals, and the mediator’s messages are “recommended” actions. In a game

with direct communication G∗ = (Γ,C∗), player i is honest at reporting history hR,ti if she

reports ri,t = (ai,t−1, si,t), and she is obedient at acting history h
A,t
i if she plays ai,t = mi,t. Let

Σ∗i denote the set of strategies for player i in game G
∗. Let G∗|Q denote the game where, at

each history for the mediator Y t
0 ×Rt+1×M t, the mediator is restricted to sending messages

mi,t ∈ Qi,t (rti ,m
t
i, ri,t) for each i.

Note that players will obey the mediator’s recommendations even after trembles by the

mediator only if the possibility that the mediator trembles to recommending unmotivatable

actions is excluded. This can be achieved by restricting the mediation range. Given a game

with direct communication G∗ and a mediation range Q, the fully canonical strategy profile in

G∗|Q, denoted σ∗, is defined by letting players behave honestly and obediently at all histories

compatible with Q. Later on, this will be contrasted with a more general notion of canonical

strategies, where honesty and obedience are required only for players who have not previously

lied to the mediator. Since the artificial assumption that the mediator “communicates with

11



himself” is purely for notational convenience, there is no loss in assuming throughout the

paper that C0 = C∗0 and σ0 = σ∗0.

With direct communication, given a mediation plan f and a payoff-relevant history xt =

(st, at), the unique complete history ht compatible with the mediator following f and all

players reporting honestly in every period τ < t satisfies ri,τ = (ai,τ−1, si,τ ) and mi,τ =

fi,τ (rτ+1) for all i and τ < t. Denote this history by h̄ (f, xt). Similarly, we denote by h̄ (xt)

the unique complete history ht compatible with all players reporting honestly and acting

obediently in every period τ < t.

Denote the set of terminal histories in G∗ compatible with mediation range Q and honest

behavior by the players by

Z̃|Q =
{
z ∈ Z : ri,t = (ai,t−1, si,t) and mi,t ∈ Qi,t

(
rti ,m

t
i, ri,t

)
∀i, t

}
.

Analogously define Z̃R,t|Q and Z̃A,t|Q. Denote the set of pairs (f, z) ∈ F × Z̃|Q such that

terminal history z is compatible with mediation plan f by

Z̃|Q=
{

(f, z) ∈ F × Z̃|Q : mt = ft
(
rt+1

)
∀t
}
.

Analogously define Z̃R,t|Q, and Z̃A,t|Q. Denote the subset of Z̃|Q with period-t reporting

history hR,t by Z̃
[
hR,t

]
|Q. Z̃[hA,t]|Q, Z̃[hR,ti ]|Q, and Z̃[hA,ti ]|Q are similarly defined.

A conditional probability system (CPS) on a finite set Ω is a function µ (·|·) : 2Ω ×

2Ω\∅ → [0, 1] such that (i) for all non-empty C ⊆ Ω, µ (·|C) is a probability distribution

on C, and (ii) for all A ⊆ B ⊆ C ⊆ Ω with B 6= ∅, we have µ (A|B)µ (B|C) = µ (A|C).

Theorem 1 of Myerson (1986) shows that µ (·|·) is a CPS on Ω if and only if it is the limit

of conditional probabilities derived by Bayes’ rule along a sequence of completely mixed

probability distributions on Ω (see also Rènyi, 1955). Given a CPS µ̄ on Z̃|Q, f ∈ F ,

{f} × Y ⊂ Z̃|Q, and {f} × Y ′ ⊂ Z̃|Q, we write µ̄ (f) =
∑

(f,z)∈Z̃|Q µ̄ (f, z) and µ̄ (Y |f, Y ′) =∑
y∈Y µ̄ (y|f, Y ′). A sequential communication equilibrium (SCE) is then a mixed mediation

plan µ ∈ ∆ (F ) in a direct-communication game G∗ together with a mediation range Q and

a CPS µ̄ on Z̃|Q such that

12



• [CPS consistency] For all f ∈ F |Q, t, hR,t = (st+1, rt,mt, at) ∈ Z̃R,t|Q, hA,t =

(st+1, rt+1,mt+1, at) ∈ Z̃A,t|Q,mt, at, and st+1 such that
(
f, hR,t

)
∈ Z̃R,t|Q and

(
f, hA,t

)
∈

Z̃A,t|Q, we have

µ̄ (f) = µ (f) , µ̄
(
rt|f, hR,t

)
= 1{rt=(at−1,st)},

µ̄
(
at|f, hA,t

)
= 1{at=mt}, µ̄

(
st+1|f, hA,t, at

)
= p

(
st+1|̊hA,t, at

)
,

µ̄
(
mt|f, hR,t, rt

)
= 1{mt=ft(rt,rt)}.

(Here the first argument of µ̄ (·|·) must be read as a subset of Z̃|Q. For example,

µ̄
(
rt|f, hR,t

)
=
∑

z′:(f,z′)∈Z̃[hR,t,rt]|Q µ̄
(
(f, z′) |f, hR,t

)
.)

• [Sequential rationality of honesty] For all i 6= 0, t, σ′i ∈ Σi, and h
R,t
i =

(
st+1
i , rti ,m

t
i, a

t
i

)
∈

HR,t
i such that ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi,τ (rτi ,m

τ
i , ri,τ ) for all τ < t, we have

∑
(f,hR,t)∈Z̃[hR,ti ]|Q

µ̄
(
f, hR,t|hR,ti

)
ūi
(
σ∗, f |hR,t

)
≥

∑
(f,hR,t)∈Z̃[hR,ti ]|Q

µ̄
(
f, hR,t|hR,ti

)
ūi
(
σ′i, σ

∗
−i, f |hR,t

)
.

(1)

• [Sequential rationality of obedience] For all i 6= 0, t, σ′i ∈ Σi, and h
A,t
i =

(
st+1
i , rt+1

i ,mt+1
i , ati

)
∈

HA,t
i such that ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi,τ (rτi ,m

τ
i , ri,τ ) for all τ ≤ t, we have

∑
(f,hA,t)∈Z̃[hA,ti ]|Q

µ̄
(
f, hA,t|hA,ti

)
ūi
(
σ∗, f |hA,t

)
≥

∑
(f,hA,t)∈Z̃[hA,ti ]|Q

µ̄
(
f, hA,t|hA,ti

)
ūi
(
σ′i, σ

∗
−i, f |hA,t

)
.

(2)

This definition of SCE is identical to Myerson’s, except that Myerson defines the CPS µ̄

over F |Q × X rather than F |Q × Z̃|Q. To see that this difference is immaterial, note that

SCE imposes sequential rationality only for players who have not lied to the mediator, and

Z̃|Q ⊂ X × RT+1 ×MT+1 is the set of history profiles at which all players have not lied to

the mediator. Therefore, for any (f, ht) ∈ F |Q × Z̃|Q such that µ̄ (f, ht|hti) > 0 for some hti

where sequential rationality is imposed, the complete history ht is uniquely determined by

f and the payoff-relevant history x = h̊t by specifying that all players have always reported

truthfully: that is, ht = h̄(f, x). Hence, the two definitions are equivalent.

13



Remark 2 Note that a CPS over F |Q × Z̃|Q is equivalent to a CPS over terminal nodes

in the tree of an alternative game where first the mediator chooses a (pure) mediation plan

f and a copy of the original game G follows each choice of f , where paths inconsistent

with the mediator’s initial choice of f are deleted and players’ information sets with the

same history of messages from the mediator are merged. The reader may ask why Myerson

considers CPS’s over F |Q× Z̃|Q (or equivalently F |Q×X) rather than only Z̃|Q. The reason

is that specifying a CPS over F |Q × Z̃|Q implicitly lets the mediator tremble over strategies

rather than actions (i.e., in normal form rather than independently at each information set),

which allows a wider range of off-path expectations of future mediator behavior. Without this

additional flexibility, Myerson’s characterization of SCE outcomes would not be valid.12

Myerson characterizes SCE in terms of codominated actions. The set of codominated

actions for player i at payoff-relevant history yti ∈ Y t
i , denoted Di,t (yti)⊂Ai,t, can be given

either an recursive or a fixed point definition. Here we give the fixed point definition, which

is more concise. We give the recursive definition, which may be more useful for calculating

the correspondence D in applications, in Appendix A.

Fix a direct-communication game G∗. For any correspondence B that specifies a set of

actions Bi,t(y
t
i) ⊂ Ai,t for each i 6= 0, t, and yti ∈ Y t

i , let E
t (B) = {f ∈ F : fi,τ (rτ+1) /∈

Bi,τ

(
rτ+1
i

)
∀i, τ > t, rτ+1 ∈ Rτ+1} be the set of mediation plans that avoid actions inB after

period t, with the convention that ET (B) = F ,13 and let φt (B) = {(f, yt) ∈ F ×Y t : ∃i 6= 0

s.t. fi,t (yt) ∈ Bi,t (yti)} be the set of mediation plans f and payoff-relevant history profiles yt

such that f recommends an action in Bi,t(y
t
i) to some player i at y

t. Such a correspondence

B is a codomination correspondence if, for every period t and every probability distribution

π ∈ ∆ (F × Y t) satisfying (i) π (Et (B)× Y t) = 1 and (ii) π (f, yt) > 0 for some (f, yt) ∈
12Roughly speaking, when CPS’s are defined over F |Q × Z̃|Q, a player can believe that her own past

deviations are inherently correlated with future deviations by the mediator. This is not possible when CPS’s
are defined only over Z̃|Q. Indeed, if the SCE definition were strengthened by defining CPS’s only over
Z̃|Q, the proof of Proposition 3 could be adopted to give a counterexample to the claim that every SE-
implementable outcome (and hence, every outcome of a NE in which players avoid codominated actions)
arises in a SCE.
13In this definition, let Bi,τ

(
rτ+1i

)
= ∅ if rτ+1i ∈ Rτ+1i \ Y τi .
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φt (B), there exists i 6= 0, yti , ai,t ∈ Bi,t (yti), and σ
′
i ∈ Σi such that

∑
(f,yt)∈F×Y t,
fi,t(yt)=ai,t

π
(
f, yt

)
ūi
(
σ∗, f |h̄

(
f, yt

))
<

∑
(f,yt)∈F×Y t,
fi,t(yt)=ai,t

π
(
f, yt

)
ūi
(
σ′i, σ

∗
−i, f |h̄

(
f, yt

))
.

That is, if there is positive probability that some player is recommended a codominated

action in period t, but zero probability that any player will be recommended a codominated

action after period t, then some (possibly other) player has a profitable deviation in the

event that she is recommended a codominated action in period t. The correspondence D is

then defined as the union of all codomination correspondences.14

Myerson’s main result is that an outcome arises in a SCE if and only if it arises in a fully

canonical NE in which players never take codominated actions.

Proposition 1 (Myerson (1986; Theorem 2, Lemma 1)) For any base game Γ and

any outcome ρ ∈ ∆ (X), there exists a SCE (µ,Q, µ̄) satisfying ρ = ρσ
∗,µ if and only if

there exist a NE (σ∗, µ) in G∗|Q satisfying ρ = ρσ
∗,µ and Qi,t

(
rt+1
i ,mt

i

)
∩Di,t(r

t+1
i ) = ∅ for

all i 6= 0, t, rt+1
i , and mt

i.

The set of SCE outcomes can be calculated as follows: For every player i and payoff-

relevant history yti , calculate the set of codominated actions Di,t (yti). Delete these actions

from the game tree. Then calculate the set of canonical NE (i.e., communication equilibrium)

outcomes in the resulting game: as is well-known, this set is a compact polyhedron, defined

by a finite set of linear inequalities (the incentive constraints).15

14We occasionally extend the domain of Di,t from Y ti to R
t+1
i by letting Di,t

(
r̃t+1i

)
= ∅ for all r̃t+1i ∈

Rt+1i \ Y ti .
15Establishing the validity of this algorithm requires one fact beyond Proposition 1: the set of NE in G∗|Q

in which codominated actions are never played equals the set of NE in the game tree where codominated
actions are deleted. Since the latter set obviously includes the former, this amounts to showing that deleting
codominated actions never relaxes an incentive constraint: that is, to verify incentive compatibility in G∗|Q,
it suffi ces to consider only deviant strategies that never take codominated actions. This intuitive fact is
established by Myerson (1986; Theorem 3).
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2.3 Communication Revelation Principle: Definition

In a direct-communication game G∗, a strategy profile σ ∈ Σ∗ together with a mediation

range Q is canonical if the following conditions hold:

1. [Previously honest players are honest] σRi,t
(
hR,ti

)
= (ai,t−1, si,t) for all h

R,t
i ∈ H

R,t
i such

that ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi,τ (rτi ,m
τ
i , ri,τ ) for all τ < t.

2. [Previously honest players are obedient] σAi,t
(
hA,ti

)
= mi,t for all h

A,t
i ∈ H

A,t
i such that

ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi,τ (rτi ,m
τ
i , ri,τ ) for all τ ≤ t.

The communication RP states that it is without loss to restrict attention to direct com-

munication systems, and furthermore to restrict attention to canonical strategies.16

Communication Revelation Principle Fix an equilibrium concept. For any game (Γ,C),

any outcome ρ ∈ ∆ (X) that arises in any equilibrium of (Γ,C) also arises in a canonical

equilibrium of (Γ,C∗) |Q for some mediation range Q.

Forges (1986) established the communication RP for NE. For this result, it is not nec-

essary to restrict the mediator’s messages via a mediation range; it suffi ces to consider the

unrestricted mediation range QU given by QU
i,t

(
rt+1
i ,mt

i

)
= Ai,t for all i 6= 0, t, rt+1

i , and mt
i.

Proposition 2 (Forges (1986; Proposition 1)) The communication RP holds for NE,

with the unrestricted mediation range.

As we build on this result, we give a proof in Appendix B.17 The intuition is that,

in any game (Γ,C), we may view each player as reporting her signals and actions to a

“personal mediator”under her control, who then communicates with a “central mediator”

via communication system C, and then recommends actions to the player. Each player may

16Townsend (1988) extends the RP by requiring a player to be honest and obedient even if she has
previously lied to the mediator, and correspondingly lets a player report her entire history of actions and
signals every period (thus giving players opportunities to “confess”any lie). Our results show that enriching
the communication system in this way does not expand the set of implementable outcomes. Townsend’s
motivation was to formulate incentive constraints in terms of one-shot deviations. In contrast, we follow
Myerson in considering multi-shot deviations, as in inequalities (1) and (2).
17Forges’s proof is convincing but informal, as are all other proofs of this result that we are aware of (e.g.,

pp. 106—107 of Mertens, Sorin, and Zamir, 2015).
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as well be honest and obedient vis a vis her personal mediator, since she controls her personal

mediator’s strategy. Now, view the collection of the N personal mediators together with the

central mediator as a single mediator in the direct-communication game (Γ,C∗), where player

i’s personal mediator now automatically executes its equilibrium communication strategy

from game (Γ,C). Then it remains optimal for each player to be honest and obedient, as a

player has access to fewer deviations when she cannot directly control her personal mediator.

3 Sequential Equilibrium

3.1 Definition

Our definition of sequential equilibrium in a multistage game with communication is simply

Kreps-Wilson (1982) sequential equilibrium in the N + 1 player game where the mediator

is treated just like any other player. That is, a sequential equilibrium (SE) is an assessment

(σ, φ, β) consisting of behavioral strategies σ for the players, a behavioral strategy φ for the

mediator, and beliefs β for the players, such that

• [Sequential rationality of reports] For all i 6= 0, t, σ′i, and h
R,t
i , we have

∑
hR,t∈HR,t[hR,ti ]

βi

(
hR,t|hR,ti

)
ūi
(
σ, φ|hR,t

)
≥

∑
hR,t∈HR,t[hR,ti ]

βi

(
hR,t|hR,ti

)
ūi
(
σ′i, σ−i, φ|hR,t

)
.

• [Sequential rationality of actions] For all i 6= 0, t, σ′i, and h
A,t
i , we have

∑
hA,t∈HA,t[hA,ti ]

βi

(
hA,t|hA,ti

)
ūi
(
σ, φ|hA,t

)
≥

∑
hA,t∈HA,t[hA,ti ]

βi

(
hA,t|hA,ti

)
ūi
(
σ′i, σ−i, φ|hA,t

)
.

• [Kreps-Wilson Consistency] There exists a sequence of full-support behavioral strategy

profiles
(
σk, φk

)∞
k=1

such that limk→∞
(
σk, φk

)
= (σ, φ);

βi

(
hR,t|hR,ti

)
= lim

k→∞

Prσ
k,φk

(
hR,t

)
Prσ

k,φk
(
hR,ti

)
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for all i 6= 0, t, hR,ti ∈ H
R,t
i , and hR,t ∈ HR,t[hR,ti ]; and

βi

(
hA,t|hA,ti

)
= lim

k→∞

Prσ
k,φk

(
hA,t

)
Prσ

k,φk
(
hA,ti

)
for all i 6= 0, t, hA,ti ∈ H

A,t
i , and hA,t ∈ HA,t[hA,ti ].

In this definition, the mediator takes a behavioral strategy and trembles independently

at every information set, just like each of the players.18

3.2 Failure of Communication Revelation Principle

Our first substantive result is a negative one: the communication RP is generally invalid

for SE, and even restricting attention to direct communication systems (without necessarily

also restricting attention to canonical strategies) is generally with loss of generality.

Proposition 3 The communication RP does not hold for SE. Furthermore, there exists a

game (Γ,C) and an outcome ρ ∈ ∆ (X) that arises in a SE of (Γ,C) but not in any SE of

(Γ,C∗).

The failure of the RP for SE was previewed in the introduction. The stronger result that

restricting attention to direct communication systems is with loss is proved by extending the

opening example so as to ensure that action C must be recommended at some history. This

implies that a recommendation to play C cannot be used to substitute for the extra “free

pass”message ?, so the set of possible messages must be expanded.

3.3 Special Classes of Games

While the communication RP is invalid for SE in general multistage games, we show that it

does hold in several leading classes of games. Moreover, NE and SE are outcome-equivalent

in many of these classes.

18An alternative definition, where the mediator cannot tremble at all, yields a more restrictive version of
sequential equilibrium, for which our main results do not hold. We discuss this possibility in Section 5.2.
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First, the communication RP holds and NE and SE are outcome-equivalent under a full

support condition: any NE outcome distribution under which no player can perfectly detect

another’s unilateral deviation is a canonical SE outcome distribution. This result is not very

surprising, but the formal proof is not completely straightforward.

Second, the communication RP holds and NE and SE are outcome-equivalent in single-

agent settings. This is a trivial corollary of the full support result. It is applicable to many

models of dynamic moral hazard (e.g., Garrett and Pavan, 2012) and dynamic information

design (e.g., Ely, 2017).

Third, the communication RP holds and NE and SE are outcome-equivalent in the fol-

lowing class of social learning games: A state ω ∈ Ω is drawn with probability p̂ (ω) at

the beginning of the game. Given the state ω and a payoff-relevant history xt = (st, at),

period-t signals st are drawn with probability p̂ (st|ω, xt). We assume that, for each player

i, there is a period ti such that |Ai,t| = 1 for all t 6= ti and |Si,t| = 1 for all t < ti: that

is, each player is “active”in only a single period. Player i’s final payoff ûi (ω, ai,ti) depends

only on the state ω and her own action. Such games are included in our model by letting

p (st|xt) =
∑

ω p̂ (ω) p̂ (st|ω, xt) and ui (x) =
∑

ω Pr (ω|x) ûi (ω, ai,ti) (where ai,ti is i’s action

at outcome x).19 The model of Kremer, Mansour, and Perry (2014) lies in this class.

Fourth, the communication RP holds and NE and SE are outcome-equivalent in games of

pure adverse selection: |Ai,t| = 1 for all i 6= 0 and t ∈ {1, ..., T}. In a pure adverse selection

game, players report types to the mediator, the mediator chooses allocations, and players

take no further actions. Much of the dynamic mechanism design literature assumes pure

adverse selection (e.g., Pavan, Segal, and Toikka (2014) and references therein).

Fifth, the communication RP holds (but NE and SE are not outcome-equivalent) in

games of pure moral hazard : for each i 6= 0, there exist (ũi,t)
T
t=1 and (p̃t)

T
t=1 such that

ui (x) =
∑T

t=1 ũi,t (at), and p (st|yt−1, at−1) = p̃t (st|at−1). In a pure moral hazard game,

payoffs are additively separable across periods, and signals are payoff-irrelevant and time-

separable. This implies that the distribution of future payoff-relevant outcomes is indepen-

dent of the realization of past payoff-relevant outcomes, conditional on the path of future

actions. If these assumptions were violated, a player’s payoff-relevant history would consti-

19Here the dependence of ui (x) on ω is accommodated by allowing |Si,t| > 1 for t > ti.
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tute a “hidden state” that the mediator might need to elicit, possibly leading to a failure

of the communication RP. Pure moral hazard games include finitely repeated games with

complete information.

Proposition 4 The following hold:

1. For any game, if (σ, φ) is a NE and supp ρσ,φi =
⋃
j 6=i,0

⋃
σ′j∈Σj

supp ρ
σ′j ,σ−j ,φ

i for all

i 6= 0, then ρσ,φ is a canonical SE outcome.20

2. If N = 1, any NE outcome is a canonical SE outcome.

3. In social learning games, any NE outcome is a canonical SE outcome.

4. In games of pure adverse selection, any NE outcome is a canonical SE outcome.

5. In games of pure moral hazard, the communication RP holds for SE.

The logic of these results is as follows:

Parts 1 and 2 are intuitive. In any NE, each player’s strategy is sequentially rational

at on-path histories, and each player’s strategy at off-path histories that follow her own

deviation can be changed to a sequentially rational strategy without affecting other players’

on-path incentives. Under the full-support condition, every history is either on path or

follows a player’s own deviation. Hence, any NE can be transformed into an SE by changing

each player’s strategies at histories that follow her own deviation.

In social learning games, since each player moves once and there are no payoff externali-

ties, changing a player’s off-path strategy never affects other players’on-path incentives. So

again NE and SE are outcome-equivalent.

Part 4 follows from noting that the construction in Proposition 5 (in the next subsection)

is canonical in pure adverse selection games.

Finally, in pure moral hazard games, the set of codominated actions in a given period

t does not depend on the payoff-relevant history yt. Hence, the mediator does not need to

elicit information about yt to motivate all non-codominated actions in period t. Under this

condition, we show that the communication RP is valid for SE.21

20Here, ρσ,φi denotes the marginal distribution of ρσ,φ on Xi.
21The set of codominated actions is also independent of the payoff-relevant history for social learning
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3.4 Characterization of SE-Implementable Outcomes

Our main result is that an outcome is implementable in SE if and only if it arises in an SCE,

or equivalently if and only if it arises in a canonical NE that excludes codominated actions.

Define the pseudo-direct communication system C∗∗ = (R∗,M∗∗) by R∗i,t = Ai,t−1 × Si,t
and M∗∗

i,t = Ai,t ∪ {?}, for all i and t, where ? denotes an arbitrary extra message. Under

pseudo-direct communication, in every period a single extra message from the mediator to

each player is permitted.

Proposition 5 For any base game, an outcome is SE-implementable if and only if it arises

in a SCE. In addition, every such outcome arises in a SE with pseudo-direct communication.

The “easy”implication of Proposition 5 is that every SE-implementable outcome arises

in a SCE: we abbreviate this statement as SE ⊂ SCE. This follows from Propositions 6

through 8 in Section 4.

The “hard”implication is that every SCE outcome is SE-implementable (and in particular

can be implemented with pseudo-direct communication): that is, SCE ⊂ SE. In our

construction, message ? is not used on path. Moreover, players are honest and follow all

recommendations other than ?, as long as they have done so in the past. The construction

is thus “almost”canonical.22

Message ? corresponds to the “free pass” in the opening example. As in that example,

the role of message ? is to cause a player to tremble with higher probability. (When a player

instead receives a message mi,t 6= ?, she plays ai,t = mi,t and trembles with much smaller

probability.) In addition, after receiving ?, a player’s future reports to the mediator are

inconsequential (barring future mediator trembles), so honesty is optimal. Based on these

honest reports, the mediator’s future trembles can be specified so that, conditional on a

player receiving a future recommendation to take any non-codominated action, the player’s

games and pure adverse selection games. Thus, the proof of Part 5 of Proposition 4 also implies that the
communication RP holds for SE in social learning games and pure adverse selection games. However, Parts
3 and 4 of Proposition 4 establish the stronger result that NE and SE are outcome-equivalent in such games.
22A second way in which our construction is not canonical is that a previously honest but disobedient

player may not be honest. This difference from Myerson’s approach arises because the SE solution concept
limits the consistent beliefs available to a disobedient player: in particular, a player cannot believe that her
own past deviations are inherently correlated with past or future deviations by other players or the mediator.
This makes it hard to ensure that previously disobedient players are honest.
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beliefs are those required to motivate that action. For instance, in the example, when player

2 receives recommendation m2 = P , he believes that the mediator trembled first to m1 = ?

and then tom2 = P following (â1, θ̂) = (C, p), which generates the belief required to motivate

a2 = P . Note that it is the possibility that one’s opponents received message ?, trembled,

and then reported truthfully that motivates a given player to follow her recommendation.

We end this section by sketching the proof of Proposition 5.

It is useful to first briefly review Myerson’s proof that the outcome of every NE that

excludes codominated actions is a SCE, as we build on this proof. Myerson first shows that

every CPS is generated as the limit of beliefs induced from a sequence of full-support prob-

ability distributions over moves.23 He then constructs an arbitrary SCE with the property

that all non-codominated actions are recommended at each history with positive probability

along a sequence of move distributions converging to the equilibrium. Finally, he constructs

another equilibrium where the mediator mixes this “motivating”SCE with the target NE.

By specifying that trembles are much more likely in the former equilibrium, after any his-

tory in the mixed equilibrium that lies off-path in the target NE, players believe that the

motivating SCE is being played, and therefore follow all non-codominated recommendations.

Taking the mixing probability to 0 yields a SCE with the same outcome as the target NE,

in which all non-codominated recommendations are incentive compatible.

Our construction starts with an arbitrary trembling-hand perfect equilibrium (PE) in

the unmediated game: that is, the limit as ε → 0 of a sequence of NE in the unmediated,

ε-constrained game where each player is required to take each action at each history with

independent probability at least ε. We let the convergence of ε to 0 be slow in comparison to

other trembles we will introduce: that is, action trembles in the PE are relatively likely. In

the SE we construct in the mediated game, the mediator uses the off-path message ? to signal

to a player that the PE is being played. Since the PE is an equilibrium in the unmediated

game, a player who receives message ? believes that her future reports are almost-surely

23This differs from Kreps-Wilson consistency in that the move distributions may not be strategies. For
example, some CPS’s can be generated only by supposing that a player takes different actions at nodes in
the same information set. This gap between SCE and SE has been noted before. See, for example, Kreps
and Ramey (1987) and Fudenberg and Tirole (1991).
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inconsequential, and thus reports honestly.24 Specifically, when the mediator implements

the PE, he recommends mi,t ∈ Ai,t according to the PE strategy of player i with probability

1−
√
ε and recommends mi,t = ? with probability

√
ε, independently across players. Player i

obeys each recommendationmi,t ∈ Ai,t (with negligible trembling probability) and, and after

message ?, takes ai,t according to her PE strategy but trembles with probability
√
ε. Since

the mediator’s tremble to mi,t = ? is independent across players, from the other players’

perspectives, it is as if player i plays her PE strategy while trembling with probability
√
ε×
√
ε = ε.

In order to provide on-path incentives, the mediator must also be able to recommend

specific, non-codominated punishment actions off path. To make these recommendations

incentive compatible, we mix in trembles to mediation plans that recommend all motivatable

actions (as in Myerson’s construction). A key step in our construction is showing that, since

trembles in the PE are relatively likely and players who believe this equilibrium is being

played report truthfully, the mediator tremble probabilities can be chosen to generate the

beliefs required to motivate each non-codominated action.

An important diffi culty is posed by histories that involve multiple surprising signals or

recommendations: for example, a player may receive a 0-probability recommendation to

play some action a in period t and update her beliefs about the mediation plan accordingly,

but may then observe another surprising (i.e., conditional 0-probability) recommendation

to play some action a′ in a later period t′. We need to ensure that every non-codominated

recommendation in period t′ is incentive compatible, no matter what recommendations were

made in earlier periods. This is challenging, because there is no guarantee that the mediation

plan that motivates action a in period t is compatible with the mediation plan that motivates

action a′ in period t′.

To deal with this, we introduce an additional layer of trembles, whereby the mediator

may tremble to recommend any motivatable action even while he still “intends”to imple-

ment the PE. These trembles are less likely than both the action trembles within the PE and

the mediator trembles to mediation plans that rationalize non-codominated actions. There-

24This step is absent in Myerson’s proof, as the SCE solution concept allows mediator trembles to be
inherently correlated with player trembles about which the mediator has no information, so the mediator
does not need to elicit information from players about their trembles.
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fore, when a player receives a 0-probability recommendation to play action a in period t,

she believes with probability 1 that the mediator has trembled to the mediation plan that

motivates action a; but when she later receives another surprising recommendation to play

action a′ in period t′, she switches to believing that, in fact, her period-t recommendation was

due to a recommendation tremble “within”the PE (and thus that, in retrospect, she might

have been better-off disobeying the period-t recommendation), while the current, period-t′

recommendation to play a′ indicates a tremble to the mediation plan that motivates a′.25

To complete the construction, this “motivating equilibrium” (the mixture of the PE,

the mediation plans that motivate each non-codominated action, and the additional layer

of trembles) is mixed with the original target NE, with almost all weight on the latter.

Players therefore believe that the mediator follows the target NE until they observe a 0-

probability signal or recommendation. Subsequently, players assign probability 1 to the

motivating equilibrium, and hence obey all non-codominated recommendations. Since the

target NE excludes codominated actions, all on- and off-path recommendations are incentive

compatible.

4 Conditional Probability Perfect Bayesian Equilibrium

Denote the set of terminal histories in G compatible with mediation range Q by

Z|Q =
{
z ∈ Z : mi,t ∈ Qi,t

(
rti ,m

t
i, ri,t

)
∀i, t

}
.

Note that, in contrast to the set Z̃|Q defined in Section 2.2, the set Z|Q is defined for any

communication system.26 Analogously define ZR,t|Q and ZA,t|Q.

Denote the set of pairs (f, z) ∈ F |Q × Z|Q such that terminal history z is compatible
25This additional layer of trembles is also not needed in Myerson’s proof, because the SCE solution concept

allows mediator trembles to off-path recommendations to be inherently correlated with the earlier player
trembles needed to rationalize such recommendations.
26The set Z̃|Q also contained only histories at which players have been honest. This restriction is not

well-defined with indirect communication and does not appear in the definition of Z|Q.
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with mediation plan f by

Z|Q=
{

(f, z) ∈ F |Q × Z|Q : mt = ft
(
rt+1

)
∀t
}
.

Analogously define ZR,t|Q and ZA,t|Q. Denote the subset of Z|Q with period-t reporting

history hR,t by ZR,t
[
hR,t

]
|Q. Z[hA,t]|Q, Z[hR,ti ]|Q, and Z[hA,ti ]|Q are similarly defined.

We consider perfect Bayesian equilibria in which beliefs are derived from a common CPS

on Z|Q. A conditional probability perfect Bayesian equilibrium (CPPBE) is a profile (σ, µ)

together with a mediation range Q and a CPS µ̄ on Z|Q such that

• [CPS Consistency] For all f ∈ F |Q, t, hR,t = (st+1, rt,mt, at) ∈ ZR,t|Q, hA,t =

(st+1, rt+1,mt+1, at) ∈ ZA,t|Q,mt, at, and st+1 such that
(
f, hR,t

)
∈ ZR,t|Q and

(
f, hA,t

)
∈

ZA,t|Q, we have

µ̄ (f) = µ (f) , µ̄
(
rt|f, hR,t

)
=
∏N

i=0 σ
R
i,t

(
ri,t|hR,ti

)
,

µ̄
(
at|f, hA,t

)
=
∏N

i=0 σ
A
i,t

(
ai,t|hA,ti

)
, µ̄

(
st+1|f, hA,t, at

)
= p

(
st+1|̊hA,t, at

)
,

µ̄
(
mt|f, hR,t, rt

)
= 1{mt=ft(rt,rt)}.

(3)

• [Sequential rationality of reports] For all i 6= 0, t, σ′i ∈ Σi, and h
R,t
i =

(
st+1
i , rti ,m

t
i, a

t
i

)
∈

HR,t
i such that mi,τ ∈ Qi,τ (rτi ,m

τ
i , ri,τ ) for all τ < t, we have

∑
(f,hR,t)∈Z[hR,ti ]|Q

µ̄
(
f, hR,t|hR,ti

)
ūi
(
σ, f |hR,t

)
≥

∑
(f,hR,t)∈Z[hR,ti ]|Q

µ̄
(
f, hR,t|hR,ti

)
ūi
(
σ′i, σ−i, f |hR,t

)
.

(4)

• [Sequential rationality of actions] For all i 6= 0, t, σ′i ∈ Σi, and h
A,t
i =

(
st+1
i , rt+1

i ,mt+1
i , ati

)
∈

HA,t
i such that mi,τ ∈ Qi,τ (rτi ,m

τ
i , ri,τ ) for all τ ≤ t, we have

∑
(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄
(
f, hA,t|hA,ti

)
ūi
(
σ, f |hA,t

)
≥

∑
(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄
(
f, hA,t|hA,ti

)
ūi
(
σ′i, σ−i, f |hA,t

)
.

(5)

To understand this definition, note that the conditional probabilities µ̄
(
f, hR,t|hR,ti

)
and

µ̄
(
f, hA,t|hA,ti

)
in the sequential rationality conditions (4) and (5) correspond to player i’s
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beliefs in the alternative game discussed in Remark 2, where the mediator first chooses a pure

mediation plan f and a copy of the original game G follows each choice of f . In the language

of mechanism design, this corresponds to the designer first unobservably committing to a

deterministic dynamic mechanism, and the players then updating their beliefs about the

mechanism as they play it. Note that in an unmediated game, (i) µ̄ reduces to a CPS on Z,

(ii) µ̄
(
f, hA,t|hA,ti

)
reduces to a belief β

(
hA,t|hA,ti

)
, (iii) (4) disappears, and (iv) (5) reduces

to the usual definition of sequential rationality. In the context of unmediated games, the

CPPBE concept is not new: for example, Fudenberg and Tirole (1991), Battigalli (1996),

and Kohlberg and Reny (1997) study whether imposing additional independence conditions

on top of CPPBE leads to an equivalence with SE in unmediated games. In contrast, we will

see that CPPBE and SE are always outcome-equivalent in mediated games. The basic reason

why independence conditions are not required to obtain equivalence with SE in mediated

games is that the correlation allowed by CPPBE can be replicated through correlation in

the mediator’s messages.27

We first verify that CPPBE is more permissive than SE.28

Proposition 6 Every SE-implementable outcome ρ ∈ ∆ (X) is also CPPBE-implementable:

that is, SE ⊂ CPPBE.

Proof. Fix a SE (σ, φ, β), and let
(
σk, φk

)∞
k=1

be a sequence of full-support behavioral

strategy profiles that converge to (σ, φ) and induce conditional probabilities that converge

to β. By Kuhn’s theorem, there exists an equivalent sequence of full-support profiles(
σk, µk

)∞
k=1

converging to (σ, µ), where the mediator is now viewed as playing a mixed

strategy. By Theorem 1 of Myerson (1986), the limit of the sequence of conditional prob-

abilities on Z|QU derived from
(
σk, µk

)∞
k=1

by Bayes’ rule gives a CPS µ̄ on Z|QU . Since
27Mailath (2019) defines a notion of “almost perfect Bayesian equilibrium,” which appears to coincide

with CPPBE in unmediated multistage games, though this remains to be proved. Most other notions of
“perfect Bayesian equilibrium”(e.g., Fudenberg and Tirole (1991), Watson (2017)) impose some form of “no
signaling what you don’t know,”which is not required by CPPBE.
28As the proof shows, this holds even if the mediation range in the definition of CPPBE is required to be

unrestricted, Q = QU . In fact, Lemma 8 in the online appendix shows that if an outcome ρ is implementable
in CPPBE with some mediation range Q, it is also implementable in CPPBE with mediation range QU . It
therefore would have been without loss to require Q = QU in the definition of CPPBE; however, the current
definition makes the connection between CPPBE and SCE more transparent.
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µ̄
(
f, hR,t|hR,ti

)
= β

(
f, hR,t|hR,ti

)
and µ̄

(
f, hA,t|hA,ti

)
= β

(
f, hA,t|hA,ti

)
, sequential ratio-

nality of (σ, φ, β) implies sequential rationality of
(
σ, µ,QU , µ̄

)
. Hence,

(
σ, µ,QU , µ̄

)
is a

CPPBE and induces the same outcome as (σ, φ, β).

The relationship between CPPBE and SCE is more subtle. The definition of a CPPBE in

the special case where the communication system is direct, C = C∗, is similar to the definition

of a SCE. (Of course, CPPBE is defined for arbitrary communication systems C). There are

three differences:

1. SCE requires not only direct communication, but also canonical equilibrium (i.e., play-

ers are required to be honest and obedient).

2. SCE imposes sequential rationality only for players who have not previously lied to the

mediator.

3. SCE requires that a player who has not previously lied to the mediator believes with

probability 1 that her opponents have also not previously lied to the mediator.

These properties of SCE were already noted by Myerson (1986), who argued informally

that they should be without loss of generality.29 The following result verifies this conjecture,

by showing that the set of SCE outcomes (equivalently, the set of outcomes of canonical NE

in which players avoid codominated actions) equals the set of outcomes implementable in a

canonical CPPBE.

Proposition 7 For any base game Γ, outcome ρ ∈ ∆ (X), and mediation range Q, there

exists a SCE (µ,Q, µ̄) satisfying ρσ
∗,µ = ρ if and only if there exist a canonical strategy profile

σ and CPS µ̄′ such that (σ, µ,Q, µ̄′) is a CPPBE in (Γ,C∗) satisfying ρσ,µ = ρ.

Our final result establishes the communication RP for CPPBE.
29For example, he writes, “. . . there is nothing to prevent us from assuming that every player always assigns

probability zero to the event that any other players have lied to the mediator. . . This begs the question of
whether we could get a larger set of sequentially rational communication equilibria if we allowed players to
assign positive probability to the event that others have lied to the mediator. Fortunately, by the revelation
principle, this set would not be any larger. Given any mechanism in which a player lies to the mediator with
positive probability after some event, there is an equivalent mechansim in which the player does not lie and
the mediator makes recommendations exactly as if the player had lied in the given mechanism,”(p. 342).
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Proposition 8 The communication RP holds for CPPBE, with mediation range equal to

the set of all non-codominated actions: Qi,t

(
rt+1
i ,mt

i

)
= Ai,t\Di,t

(
rt+1
i

)
for all i, t, rt+1

i , and

mt
i.

To prove Propositions 7 and 8, we first establish that every SCE outcome is implementable

in a canonical CPPBE. To show this, we introduce the notions of a “quasi-strategy,”which

is simply a partially defined strategy, and a “quasi-equilibrium,”which is a profile of quasi-

strategies where incentive constraints are satisfied wherever strategies are defined. We say

that a quasi-equilibrium is “valid” if no unilateral deviation by a player can ever lead to

a history where another player’s quasi-strategy is undefined. We show that it makes no

difference whether we consider fully specified CPPBE or (valid) quasi-CPPBE. This result

saves us from having to specify what a player does after she lies to the mediator, and it also

lets us assume that a previously honest player always believes her opponents have also been

honest. Given this simplification, every SCE can be viewed as a canonical quasi-CPPBE.30

We next establish that every (possibly non-canonical) CPPBE outcome is an SCE out-

come: that is, CPPBE ⊂ SCE. This completes the proofs of both Propositions 7 and 8.

Since every CPPBE is a NE, by Proposition 1 it suffi ces to show that codominated actions

are never played in any CPPBE. We prove this as Lemma 10 in Online Appendix I. The

logic of this result is that if a player is willing to take a certain action in a CPPBE, this

action must be motivatable for some belief derived from a CPS, which implies that it is not

codominated.

Combining the inclusion CPPBE ⊂ SCE with Proposition 6, we see that every SE-

implementable outcome arises in SCE: that is, SE ⊂ CPPBE ⊂ SCE. This proves the

“easy”direction of Proposition 5.

In total, Propositions 5, 6, 7, and 8 show that SCE ⊂ SE ⊂ CPPBE ⊂ SCE. This

implies that the characterization of SE-implementable outcomes in Proposition 5 applies

equally to any notion of PBE which is stronger than CPPBE but weaker than SE. Many

notions of PBE that impose some form of “no signaling what you don’t know”fall into this

category, such as PBE satisfying Battigalli’s (1996) “independence property” or Watson’s

30Quasi-strategies are also useful in proving Proposition 5.
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(2017) “mutual PBE.”31

5 Conclusion

5.1 Summary

Our main result is that to calculate the set of outcomes implementable in sequential equi-

librium by any communication system in a multistage game, it suffi ces to calculate the set

of outcomes of canonical Nash equilibria in which players avoid codominated actions.

We also show that the stronger communication revelation principle holds for conditional

probability perfect Bayesian equilibrium, but not for sequential equilibrium. In particular,

while the set of sequential equilibrium-implementable outcomes equals the set of outcomes

of canonical Nash equilibria in which players avoid codominated actions, it may be necessary

to allow one extra message to implement some of these outcomes as sequential equilibria.

There are however some important settings where the communication revelation principle

does hold for sequential equilibrium. These include games where no player can perfectly

detect another’s deviation, games with a single agent, social learning games, and games of

pure adverse selection or pure moral hazard.

5.2 Discussion

Sequential Equilibrium without Mediator Trembles In defining sequential equilib-

rium in games with communication, one must take a position on whether or not the mediator

is “allowed to tremble,”or more precisely whether players are allowed to attribute off-path

observations to deviations by the mediator instead of or in addition to deviations by other

players. In the current paper, the mediator can tremble. If the mediator cannot tremble,

one obtains a more restrictive version of sequential equilibrium, which in a previous version

of this paper we called “machine sequential equilibrium”(MSE), to indicate that the medi-

ator follows his equilibrium strategy mechanically and without error. Gerardi and Myerson

31Watson (2017) defines plain PBE, which does not require the existence of a common CPS across players.
His lectures (available at https://econweb.ucsd.edu/~jwatson/#other) further define “mutual PBE,”which
does require a common CPS.
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(2007; Example 3) showed that, in general, not all SCE outcomes are implementable in

MSE. However, we have shown that Claims 1 through 3 of Proposition 4 hold for MSE, as

does a “virtual-implementation”version of Claim 4. In particular, whether the mediator can

tremble or not is “almost irrelevant”in games of pure adverse selection.

Infinite Games The dynamic mechanism design literature often assumes a continuum of

types or actions to facilitate the use of the envelope theorem, while we restrict to finite games

to have a well-defined notion of SE.32 We conjecture that the communication RP for CPPBE

can be extended to infinite games under suitable measurability conditions. This extension

is not immediate, because we build on Myerson’s characterization of CPS’s as limits of full-

support move distributions, which does not apply in infinite games. Nonetheless, we believe

Myerson’s results can be generalized to infinite games by instead relying on an alternative

characterization of CPS’s as lexicographic probability systems (Halpern, 2010). This is an

interesting question for future research.

Non-Multistage Games Some recent models of dynamic information design go beyond

multistage games to consider general extensive-form games that lack a common notion of a

period (e.g., Doval and Ely, 2020). Modeling communication equilibrium in general extensive-

form games is a long-standing unresolved issue, and different approaches are possible (e.g.,

Forges, 1986; von Stengel and Forges, 2008). Characterizing implementable outcomes in

such games is another open question.
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Appendix: Omitted Proofs

A Recursive Definition of Codomination

Fix a direct-communication game G∗ and a set of mediation plans F ⊂F . For any t, given
a correspondence A′t =

(
A′i,t
)
i 6=0

with A′i,t : Y t
i ⇒ Ai,t, say that σ′i ∈ Σi is A′i,t-obedient if σ

′
i

is honest and obedient at every history ht
′
i with t

′ ≥ t such that mi,t ∈ A′i,t(yti). Say that a
correspondence At = (Ai,t)i 6=0 with Ai,t : Y t

i ⇒ Ai,t is (F ,A′t)-motivatable if there exists a
distribution πt ∈ ∆(F × Y t) such that, for all i 6= 0 and A′i,t-obedient σ

′
i,∑

(f,yt)∈F×Y t
πt
(
f, yt

)
ūi
(
σ∗, f |h̄

(
f, yt

))
≥

∑
(f,yt)∈F×Y t

πt
(
f, yt

)
ūi
(
σ′i, σ

∗
−i, f |h̄

(
f, yt

))
,

and for all yti and all ai,t ∈ Ai,t(y
t
i) there exist f ∈ F and yt−i ∈

∏
j 6=i Y

t
j satisfying

fi,t
(
yti , y

t
−i
)

= ai,t,
(
yti , y

t
−i
)
∈ Y t, and πt

(
f, yti , y

t
−i
)
> 0.

We now characterize Di,t and its complement Dc
i,t by backward induction. We first

recursively construct a finite sequence of correspondences A[0]
T ,A

[1]
T , ...,A

[LT ]
T satisfying A[LT ]

T =

Dc
T . Define A

[0]
T by A[0]

T (yTi ) = ∅ for each i 6= 0 and yTi ∈ Y T
i . Recursively, for each l ≥ 1,

let A[l]
T denote the union of all

(
F,A

[l−1]
T

)
-motivatable correspondences AT .33 Let LT be the

smallest integer l such that A[l]
T = A

[l+1]
T , and let Dc

T = A
[LT ]
T . (Such LT exists because A is

finite.)
By backward induction, for each t < T , let Ft ⊂ F denote the set of mediation plans f

such that fi,t′
(
yt
′
i

)
∈ Dc

i,t′

(
yt
′
i

)
for all i 6= 0, t′ > t, and yt

′
i ∈ Y t′

i .
34 Let A[0]

t (yti) = ∅ for each
i 6= 0 and yti ∈ Y t

i . Recursively, for each l ≥ 1, let A[l]
t denote the union of all

(
Ft,A[l−1]

t

)
-

motivatable correspondences At. Let Lt be the smallest integer l such that A
[l]
t = A

[l+1]
t , and

let Dc
t = A

[Lt]
t . Finally, let D denote the complement of Dc: that is, Di,t (yti) = Ai,t\Dc

i,t (yti)
for each i 6= 0, t, and yti . For a player i 6= 0, period t, and payoff-relevant history yti , an
action ai,t ∈ Ai,t is codominated if ai,t ∈ Di,t (yti).

The equivalence of this recursive definition and the fixed-point definition given in the
text follows from the fact that, for any correspondence Bt = (Bi,t)i 6=0 with Bi,t : Y t

i ⇒ Ai,t
that is not a codomination correspondence, there exists a correspondenceB′t ⊂ Bt such that
every action in Bt\B′t is (Ft,Bc

t)-motivatable, where Ft is the set of mediation plans that
never recommend codominated actions after period t.35 Hence, if some action outside A[l]

t

is not codominated– so
(
A

[l]
t

)c

is not a codominated correspondence– then there exists a

33It may be helpful to note that A[1]i,T
(
yTi
)
is the set of actions that are played with positive probability

by type yTi in the one-shot game where each player j’s type space is Y
T
j , for some correlated equilibrium

and some prior on
∏
j Y

T
j .

34For rt
′+1
i ∈ Rt

′+1
i \ Y t′i , fi,t′(rt

′+1
i ) is not restricted.

35This fact is established by the first paragraph of the proof of Lemma 3 of Myerson (1986), setting k = t
and B1 = Bt ×

∏
τ≥t+1Dτ .
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correspondence
(
A

[l+1]
t

)c

⊂
(
A

[l]
t

)c

such that every action in
(
A

[l]
t

)c

\
(
A

[l+1]
t

)c

= A
[l+1]
t \A[l]

t

is
(
Ft,A[l]

t

)
-motivatable.

B Proof of Proposition 2

Fix a game G = (Γ,C) and a NE (σ, φ). We construct a canonical NE
(
σ̃, φ̃

)
in G∗ = (Γ,C∗)

with ρσ̃,φ̃ = ρσ,φ. We take σ̃ = σ∗: players are honest and obedient at every history. The
mediator’s strategy φ̃ is constructed as follows:
Denote player i’s period t report by r̃i,t = (ãi,t−1, s̃i,t) ∈ Ai,t−1 × Si,t, with Ai,0 = ∅. In

period 1, given report r̃i,1, the mediator draws a “fictitious report” ri,1 ∈ Ri,1 (the set of
possible reports inG) according to σRi,1 (s̃i,1) (player i’s equilibrium strategy inG, given period
1 signal s̃i,1), independently across players. Given the resulting vector of fictitious reports
r1 = (ri,1)i, the mediator draws a vector of “fictitious messages”m1 ∈M1 (the set of possible
messages in G) according to φ1 (m1|r1). Next, given (s̃i,1, ri,1,mi,1), the mediator draws an
action recommendation m̃i,1 ∈ Ai,1 according to σAi,1 (m̃i,1|s̃i,1, ri,1,mi,1), independently across
players. Finally, the mediator sends message m̃i,1 to player i.
Recursively, for t = 2, . . . , T , given player i’s reports r̃i,τ = (ãi,τ−1, s̃i,τ ) for each τ ≤ t

and the fictitious reports and messages (ri,τ ,mi,τ ) for each τ < t, the mediator draws ri,t ∈
Ri,t according to σRi,t(s̃

t
i, r

t
i ,m

t
i, ã

t
i, s̃i,t), independently across players.

36 Given the resulting
vector rt = (ri,t)i, the mediator draws mt ∈ Mt according to φt(mt|rt,mt, rt). Next, given
(s̃i,t, ri,t,mi,t), the mediator draws m̃i,t ∈ Ai,t according to σAi,t(s̃

t
i, r

t
i ,m

t
i, ã

t
i, s̃i,t, ri,t,mi,t),

independently across players.37 Finally, the mediator sends message m̃i,t to player i.
That ρσ̃,φ̃ = ρσ,φ follows by induction from the beginning of the game: given that players

are honest and obedient, r̃ti equals player i’s period t payoff-relevant history, so, conditional
on each profile (r̃ti , r

t
i ,m

t
i)i, the variables ri,t, mi,t, and ai,t are all chosen with the same

probabilities under strategy
(
σ̃, φ̃

)
in game G∗ as they are under strategy (σ, φ) in game G.

It remains to prove that
(
σ̃, φ̃

)
is a NE in G∗. We first show that, for any deviant

strategy σ̃′i that player i can play against
(
σ̃−i, φ̃

)
in game G∗, there exists a strategy σ′i

that yields the same outcome when played against (σ−i, φ) in game G.

Lemma 1 For each i and strategy σ̃′i ∈ Σ∗i , there exists a strategy σ′i ∈ Σi such that
ρσ
′
i,σ−i,φ = ρσ̃

′
i,σ̃−i,φ̃.

Proof. Fix i and σ̃′i ∈ Σ∗i . We construct σ
′
i ∈ Σi as follows: In period 1, given signal si,1,

player i draws a fictitious type report r̃i,1 ∈ Si,1 according to σ̃′Ri,1 (si,1). Player i then sends
report ri,1 ∈ Ri,1 according to σRi,1 (r̃i,1). Next, after receiving message mi,1 ∈ Mi,1, player i
draws a fictitious action recommendation m̃i,1 ∈ Ai,1 according to σAi,1 (r̃i,1, ri,1,mi,1). Finally,
player i takes action ai,1 ∈ Ai,1 according to σ̃′Ai,1 (si,1, r̃i,1, m̃i,1).

36If (s̃ti, ã
t
i, s̃i,t) 6∈ Y ti , the mediator can draw ri,t ∈ Ri,t arbitrarily (e.g., uniformly at random).

37Again, if (s̃ti, ã
t
i, s̃i,t) 6∈ Y ti , the mediator can draw m̃i,t arbitrarily.
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Recursively, for t = 2, . . . , T , given her past signals and actions (si,τ , ai,τ )
t−1
τ=1, her past

fictitious type reports and action recommendations (r̃i,τ , m̃i,τ )
t−1
τ=1, her past reports and

messages (ri,τ ,mi,τ )
t−1
τ=1, and her current signal si,t, player i draws a fictitious type report

r̃i,t ∈ Ai,t−1× Si,t according to σ̃′Ri,t(sti, r̃ti , m̃t
i, a

t
i, si,t). Player i then sends ri,t ∈ Ri,t according

to σRi,t(r̃
t
i , r

t
i ,m

t
i, r̃i,t).

38 Next, after receiving message mi,t ∈ Mi,t, player i draws a fictitious
action recommendation m̃i,t ∈ Ai,t according to σAi,t(r̃ti , rti ,mt

i, r̃i,t, ri,t,mi,t). Finally, player i
takes action ai,t ∈ Ai,t according to σ̃′Ai,t(sti, r̃ti , m̃t

i, a
t
i, si,t, r̃i,t, m̃i,t).

Given this construction, ρσ
′
i,σ−i,φ = ρσ̃

′
i,σ̃−i,φ̃ by the same argument as for ρσ̃,φ̃ = ρσ,φ.

Now suppose towards a contradiction that there exist i 6= 0 and σ̃′i ∈ Σ∗i such that

ūi

(
σ̃′i, σ̃−i, φ̃

)
> ūi

(
σ̃i, σ̃−i, φ̃

)
. By Lemma 1, there exists σ′i ∈ Σi such that

ūi (σ
′
i, σ−i, φ) = ūi

(
σ̃′i, σ̃−i, φ̃

)
> ūi

(
σ̃i, σ̃−i, φ̃

)
= ūi (σi, σ−i, φ) .

This contradicts the hypothesis that (σ, φ) is a NE in G.

C Proof of Proposition 3

Wefirst prove that, in the opening example, the outcome distribution 1
2

(A,A,N)+1
2

(B,B,N)
is implementable in non-canonical SE but not in canonical SE. In the online appendix (Ap-
pendix E), we extend the example to prove that restricting to direct communication is with
loss of generality.

Implementability in Non-Canonical SE Propositions 1 and 5 show that any out-
come that is implementable in a canonical NE in which codominated actions are never
played is SE-implementable. It thus suffi ces to construct a canonical NE that implements
1
2

(A,A,N) + 1
2

(B,B,N) in which players avoid codominated actions. Such a NE is: the
mediator recommends m1 = A and m1 = B with equal probability, plays a0 = m1, and
recommends m2 = N if s = 0 and m2 = P if s = 1. Note that each a1 ∈ {A,B} and
a2 = N are never codominated, and a2 = P is not codominated after s = 1 as P is optimal
if (a1, θ) = (C, p).

Non-Implementability in Canonical SE Since a1 = C is strictly dominated, if a canon-
ical SE implements 1

2
(A,A,N)+ 1

2
(B,B,N), the mediation range Q1 (∅) must equal {A,B}.

That is, the mediator can never recommend m1 = C (even as the result of a “tremble”).
Note that, for each strategy of the mediator and player 2, and for each realization of(

m1, â1, θ̂, s
)
, the resulting probability Pr

(
m2 = P |m1, a1, θ, â1, θ̂, s

)
does not depend on

(a1, θ), since neither the mediator nor player 2 observes (a1, θ). Conditional on reaching

history (m1, a1 = C, θ), player 1 chooses her report
(
â1, θ̂

)
to minimize Pr (m2 = P ) (since

in a canonical equilibrium, with probability 1 conditional on
(
m1, a1, θ, â1, θ̂, s

)
, a2 = P iff

38If r̃t+1i /∈ Y ti , player i can draw ri,t arbitrarily, and similarly for m̃i,t in what follows.
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m2 = P ). Since a1 = C implies s = 1, and when a1 = C player 1 must be willing to report(
â1, θ̂

)
= (C, θ) for each value of θ, we have

Pr
(
m2 = P |m1, â1 = C, θ̂ = n, s = 1

)
= Pr

(
m2 = P |m1, â1 = C, θ̂ = p, s = 1

)
.

In addition, if a canonical SE implements 1
2

(A,A,N) + 1
2

(B,B,N), it must satisfy

Pr (m2 = P |m1, â1 = C, s = 1) > 0 for each m1 ∈ {A,B} .

Otherwise, given that player 2 never plays a2 = P with positive probability when s = 0 (since
s = 0 implies a1 6= C), player 1 could guarantee a payoff of 1

2
by, after each m1 ∈ {A,B},

playing A and B with equal probability and reporting â1 = C. Hence, for each m1 ∈ {A,B},

Pr
(
m2 = P |m1, â1 = C, θ̂ = n, s = 1

)
= Pr

(
m2 = P |m1, â1 = C, θ̂ = p, s = 1

)
> 0.

Since player 1 honestly reports each (a1, θ) in a canonical SE,

Pr (m2 = P |m1, a1 = C, θ = n, s = 1) = Pr (m2 = P |m1, a1 = C, θ = p, s = 1) > 0.

Hence, along any sequence of completely mixed profiles indexed by k converging to the
equilibrium,

lim
k→∞

Prk (m2 = P |m1, a1 = C, θ = n, s = 1) = lim
k→∞

Prk (m2 = P |m1, a1 = C, θ = p, s = 1) > 0.

(6)
Therefore,

Pr ((a1, θ) = (C, p) |s = 1,m2 = P )

= lim
k→∞

Prk ((a1, θ) = (C, p) , s = 1,m2 = P )

Prk (s = 1,m2 = P )

= lim
k→∞

Prk ((a1, θ) = (C, p) , s = 1,m2 = P )

Prk ((a1, θ) = (C, p) , s = 1,m2 = P ) + Prk ((a1, θ) 6= (C, p) , s = 1,m2 = P )

≤ lim
k→∞

Prk ((a1, θ) = (C, p) , s = 1,m2 = P )

Prk ((a1, θ) = (C, p) , s = 1,m2 = P ) + Prk ((a1, θ) = (C, n) , s = 1,m2 = P )

= lim
k→∞

Prk ((a1, θ) = (C, p) , s = 1) Prk (m2 = P | (a1, θ) = (C, p) , s = 1)(
Prk ((a1, θ) = (C, p) , s = 1) Prk (m2 = P | (a1, θ) = (C, p) , s = 1)

+ Prk ((a1, θ) = (C, n) , s = 1) Prk (m2 = P | (a1, θ) = (C, n) , s = 1)

)
= lim

k→∞

Prk (m2 = P | (a1, θ) = (C, p) , s = 1)

Prk (m2 = P | (a1, θ) = (C, p) , s = 1) + Prk (m2 = P | (a1, θ) = (C, n) , s = 1)

=
1

2
,

where the second-to-last line follows because θ = n or p with equal probability, independent
of a1 and s, and the last line follows since (6) holds for each m1 ∈ {A,B}, which are the only
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possible values for m1. This implies that player 2 will not follow recommendation m2 = P
when s = 1 in any canonical SE. Hence, a2 = P cannot be played with positive probability
at any history in any canonical SE. Given this, player 1 can guarantee a payoff of 1

2
by

playing A and B with equal probability after each m1, so 1
2

(A,A,N) + 1
2

(B,B,N) cannot
be implemented.

D Main Results for Sequential Equilibrium

This section contains our analysis of SE, culminating in the proofs of Propositions 4 and 5.

D.1 Quasi-Strategies and Quasi-SE

We begin by introducing notions of “quasi-strategy,” which is simply a partially defined
strategy, and “quasi-equilibrium,”which is a profile of quasi-strategies where incentive con-
straints are satisfied wherever strategies are defined. We use these concepts to show that
defining strategies and assessing sequential rationality only after a subset of histories (which
necessarily includes all on-path histories) suffi ces to establish the existence of a SE with the
specified on-path behavior. The basic idea is that strategies outside the specified subset can
be defined implicitly without affecting incentives at histories within the subset.
Fix a game G = (Γ,C).
Intuitively, a quasi-strategy for player i consists of a subset of histories Ji ⊂ Hi and a

strategy χi that is defined only on Ji. Formally, for each player i, a quasi-strategy (χi, Ji)
consists of

1. A set of histories Ji =
⋃T
t=1

(
JR,ti ∪ J

R,t+
i ∪ JA,ti ∪ J

A,t+
i

)
with JR,ti ⊂ HR,t

i , JR,t+i ⊂
HR,t
i × Ri,t, J

A,t
i ⊂ HA,t

i , and JA,t+i ⊂ HA,t
i × Ai,t = H t+1

i for each t, such that (i) for
each hR,ti ∈ J

R,t
i there exists hT+1

i ∈ JA,T+
i that coincides with hR,ti up to the period-t

reporting history, (ii) for each hT+1
i ∈ JA,T+

i and every hR,ti ∈ HR,t
i that coincides

with hT+1
i up to the period-t reporting history, we have hR,ti ∈ J

R,t
i , and (iii) the same

conditions hold for JR,t+i , JA,ti , and JA,t+i , with hR,ti replaced by
(
hR,ti , ri,t

)
, hA,ti , and(

hA,ti , ai,t

)
, respectively.

2. A function χi =
(
χR,ti , χA,ti

)T
t=1
, where χR,ti : JR,ti → ∆ (Ri,t) and χ

A,t
i : JA,ti → ∆ (Ai,t)

for each t.

The key requirement in the definition of a quasi-strategy (χi, Ji) is thus that for each
history hR,ti ∈ JR,ti there is some continuation path of play that terminates at a history
hT+1
i ∈ JA,T+

i , and conversely any history hR,ti reached along the path of play leading to any
terminal history hT+1

i ∈ JA,T+
i is contained in JR,ti (and similarly for hA,ti ∈ J

A,t
i ). We also

let J = {h ∈ H : hi ∈ Ji ∀i = 0, ..., N}. Note that hR,t ∈ JR,t if and only if hR,ti ∈ J
R,t
i for

all i, and similarly for
(
hR,t, rt

)
∈ JR,t+, hA,t ∈ JA,t, and

(
hA,t, at

)
∈ JA,t+.

Similarly, a quasi-strategy (ψ,K) for the mediator consists of
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1. A set of histories K =
⋃T
t=1 (Kt ∪Kt+) with Kt ⊆ Rt+1×M t and Kt+ ⊆ Rt+1×M t+1

such that (i) for each (rt+1,mt) ∈ Kt there exists
(
rT+1,mT

)
∈ KT that coincides

with (rt+1,mt) up to period t, (ii) for each (rT+1,mT ) ∈ KT and every (rt+1,mt) that
coincides with (rT+1,mT ) up to period t, we have (rt+1,mt) ∈ Kt, and (iii) the same
conditions hold for Kt+, with (rt+1,mt) replaced by (rt+1,mt+1).

2. A function ψ = (ψt)
T
t=1, where ψt : Kt → ∆ (Mt) for each t.

A strategy profile (σ, φ) has support within (J,K) if (i) for each (rt+1,mt) ∈ Kt, φt(mt|rt+1,mt) >
0 only if (rt+1,mt+1) ∈ Kt+, (ii) for each hR,ti ∈ JR,ti , σRi,t(ri,t|h

R,t
i ) > 0 only if (hR,ti , ri,t) ∈

JR,t+i , and (iii) for each hA,ti ∈ J
A,t
i , σAi,t(ai,t|h

A,t
i ) > 0 only if (hA,ti , ai,t) ∈ JA,t+i .

Recall that ḣR,t denotes the payoff-irrelevant component of hR,t. Define hR,t ∈ HR,t|J,K
if hR,ti ∈ J

R,t
i for each i and ḣR,t ∈ Kt−1,+, with the convention that ḣR,1 ∈ K0,+ vacuously

holds. For each i and hR,ti ∈ JR,ti , define hR,t ∈ HR,t[hR,ti ]|J,K if hR,t ∈ HR,t|J,K and hR,t ∈
HR,t[hR,ti ]. Define hA,t ∈ HA,t|J,K , and hA,t ∈ HA,t[hA,ti ]|J,K analogously.
We say a quasi-strategy profile (χ, ψ, J,K) is valid if

1. JR,1 = S1. For each t ≥ 1, hR,t ∈ HR,t|J,K , i 6= 0, σi, τ ≥ t, and hR,τ with
Prσi,χ−i,ψ

(
hR,τ |hR,t

)
> 0, we have hR,τj ∈ JR,τj for each j 6= i and ḣR,τ ∈ Kτ−1,+.39 Sim-

ilarly, for each rτ with Prσi,χ−i,ψ
(
hR,τ , rτ |hR,t

)
> 0, we have

(
ḣR,τ , rτ

)
∈ Kτ ; and for

eachmτ with Prσi,χ−i,ψ
(
hR,τ , rτ ,mτ |hR,t

)
> 0, we have

(
hR,τj , rj,τ ,mj,τ

)
∈ JA,τj for each

j 6= i. The same condition holds when we replace hR,t ∈ HR,t|J,K by hA,t ∈ HA,t|J,K .
That is, no unilateral player-deviation leads to a history where either the mediator’s
or another player’s quasi-strategy is undefined.

2. For each (σ, φ) with support within (J,K), we have Prσ,φ(hT+1 ∈ HT+1|J,K) = 1.40

The first requirement implies that, for every valid quasi-strategy profile (χ, ψ, J,K), every
history hR,t (respectively, hA,t) with Prχ,ψ

(
hR,t

)
> 0 (Prχ,ψ

(
hA,t

)
> 0) lies in HR,t|J,K

(HA,t|J,K). That is, HT+1|J,K includes all on-path histories under (χ, ψ). This implies in
particular that (χ, ψ) induces a well-defined outcome ρχ,ψ ∈ ∆ (X). The second requirement
implies that the same conclusion is true for each strategy profile with support within (J,K).
Finally, a quasi-SE (χ, ψ, J,K, β) is a valid quasi-strategy profile (χ, ψ, J,K) together

with a belief system β such that

1. [Sequential rationality of reports] For all i 6= 0, t, σ′i ∈ Σi, and h
R,t
i ∈ J

R,t
i , we have∑

hR,t∈HR,t[hR,ti ]|J,K

βi

(
hR,t|hR,ti

)
ūi
(
χ, ψ|hR,t

)
≥

∑
hR,t∈HR,t[hR,ti ]|J,K

βi

(
hR,t|hR,ti

)
ūi
(
σ′i, χ−i, ψ|hR,t

)
.

(7)

39If there exists j 6= i with hA,τ−1j 6∈ JA,τ−1j , or if ḣR,τ /∈ Kτ−1, then Prσi,χ−i,ψ
(
hR,τ |hR,t

)
is not well-

defined. In this case, the above condition vacuously holds. The same caution applies to the following
conditions.
40Note that, since (σ, φ) is a fully-specified strategy profile, Prσ,φ is well-defined.
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2. [Sequential rationality of actions] For all i 6= 0, t, σ′i ∈ Σi, and h
A,t
i ∈ J

A,t
i , we have∑

hA,t∈HA,t[hA,ti ]|J,K

βi

(
hA,t|hA,ti

)
ūi
(
χ, ψ|hA,t

)
≥

∑
hA,t∈HA,t[hA,ti ]|J,K

βi

(
hA,t|hA,ti

)
ūi
(
σ′i, χ−i, ψ|hA,t

)
.

(8)

3. [Kreps-Wilson consistency] There exists a sequence of strategy profiles
(
σk, φk

)∞
k=1

such
that

(a)
(
σk, φk

)
has support within (J,K) for each k.

(b) Prσ
k,φk

(
hR,ti

)
> 0 and Prσ

k,φk
(
hA,ti

)
> 0 for all i, hR,ti ∈ J

R,t
i , and hA,ti ∈ J

A,t
i .

(c) limk→∞ σ
R,k
i,t

(
hR,ti

)
= χi,t

(
hR,ti

)
for each i and hR,ti ∈ J

R,t
i , limk→∞ σ

A,k
i,t

(
hA,ti

)
=

χi,t

(
hA,ti

)
for each i and hA,ti ∈ J

A,t
i , and limk→∞ φ

k
t (rt+1,mt) = ψt (rt+1,mt) for

each (rt+1,mt) ∈ Kt.

(d)

βi

(
hR,t|hR,ti

)
= lim

k→∞

Prσ
k,φk

(
hR,t

)
Prσ

k,φk
(
hR,ti

) and βi (hA,t|hA,ti

)
= lim

k→∞

Prσ
k,φk

(
hA,t

)
Prσ

k,φk
(
hA,ti

)
for each i, hR,ti ∈ J

R,t
i , hA,ti ∈ J

A,t
i , hR,t ∈ HR,t[hR,ti ]|J,K , and hA,t ∈ HA,t[hA,ti ]|J,K .

The following lemma shows that it is without loss to consider quasi-SE rather than fully
specified SE.

Lemma 2 For any game G and outcome ρ ∈ ∆ (X), ρ is a SE outcome in G if and only if
ρ = ρχ,ψ for some quasi-SE (χ, ψ, J,K, β) in G. Moreover, for any quasi-SE (χ, ψ, J,K, β),
there exists a SE (σ, φ) such that (σ, φ) and (χ, ψ) coincide on (J,K).

Proof. Fix a game G. One direction is immediate: If (σ, φ, β) is a SE in G, then define
(χ, ψ) = (σ, φ), JR,ti = HR,t

i , JR,t+i = HR,t
i × Ri,t, J

A,t
i = HA,t

i , JA,t+i = HA,t
i × Ai,t, Kt =

Rt ×M t−1, and Kt+ = Rt ×M t. Then (χ, ψ, J,K, β) is a quasi-SE with ρχ,ψ = ρσ,φ.
For the converse, fix a quasi-SE (χ, ψ, J,K, β) and a corresponding sequence of strategy

profiles
(
σ̃k, φ̃

k
)
k
satisfying the conditions of Kreps-Wilson consistency on (J,K). For each

k, let
εk = min

(hR,ti ,ri,t)∈JR,t+i ,

(hA,ti ,ai,t)∈JA,t+i ,

(rt+1,mt+1)∈Kt+

min{σ̃R,ki,t (ri,t|hR,ti ), σ̃A,ki,t (ai,t|hA,ti ), φ̃
k

t (mt|rt+1,mt)}.

LetRk
i,t(h

R,t
i ) = supp σ̃R,ki,t (·|hR,ti ), Aki,t(h

A,t
i ) = supp σ̃A,ki,t (·|hA,ti ), andMk

t (r
t+1,mt) = supp φ̃

k

t (·|rt+1,mt).

Since
(
σ̃k, φ̃

k
)
has support within (J,K),

(
hR,ti , ri,t

)
∈ JR,t+i for each hR,ti ∈ J

R,t
i and ri,t ∈
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Rk
i,t(h

R,t
i ),

(
hA,ti , ai,t

)
∈ JA,t+i for each hA,ti ∈ J

A,t
i and ai,t ∈ Aki,t(h

A,t
i ), and (rt+1,mt+1) ∈ Kt+

for each (rt+1,mt) ∈ Kt and mt ∈Mk
t (r

t+1,mt).
We now define an auxiliary game

(
Γk,C

)
indexed by k. In this game, each player i chooses

a strategy σki ∈ Σi and the mediator chooses a behavioral mediation plan φ
k, subject to the

requirement that their choices coincide with
(
σ̃k, φ̃

k
)
at histories in H|J,K . These strategies

are then perturbed so that every history ht occurs with positive probability, but when k is
large all histories outside H|J,K occur with much smaller probability than any history within
H|J,K . Formally, the game

(
Γk,C

)
is defined as follows:

1. The mediator chooses probability distributions φkt (·|rt+1,mt) ∈ ∆(Mt) for each (rt+1,mt) ∈
(Rt+1 ×M t) \ Kt. At histories (rt+1,mt) ∈ Kt, the mediator is required to choose

φkt (·|rt+1,mt) = φ̃
k

t (·|rt+1,mt).

2. Each player i chooses probability distributions σR,ki,t (·|hR,ti ) ∈ ∆(Ri,t) and σ
A,k
i,t (·|hA,ti ) ∈

∆(Ai,t) for each t, h
R,t
i ∈ H

R,t
i \J

R,t
i , and hA,ti ∈ H

A,t
i \J

A,t
i . At histories hR,ti ∈ J

R,t
i and

hA,ti ∈ J
A,t
i , player i is required to choose σR,ki,t (·|hR,ti ) = σ̃R,ki,t

(
·|hR,ti

)
and σA,ki,t (·|hA,ti ) =

σ̃A,ki,t

(
·|hA,ti

)
.

3. Given
(
σk, φk

)
, the distribution of terminal histories HT+1 is determined recursively

as follows:

Given hR,t ∈ HR,t, each ri,t ∈ Ri,t is drawn independently across players with proba-
bility (

1− εk
k

∣∣∣Ri,t\Rk
i,t(h

R,t
i )
∣∣∣) σ̃R,ki,t (ri,t|hR,ti ) if hR,ti ∈ J

R,t
i ∧ ri,t ∈ Rk

i,t(h
R,t
i ),

εk
k

if hR,ti ∈ J
R,t
i ∧ ri,t /∈ Rk

i,t(h
R,t
i ),(

1− εk
k
|Ri,t|

)
σR,ki,t (ri,t|hR,ti ) + εk

k
if hR,ti /∈ JR,ti .

Given (rt+1,mt) ∈ Rt+1 ×M t, each mt is drawn with probability

(1− εk
k
|Mt\Mk

t (r
t+1,mt)|)φ̃kt (mt|rt+1,mt) if (rt+1,mt) ∈ Kt ∧mt ∈Mk

t (r
t+1,mt),

εk
k

if (rt+1,mt) ∈ Kt ∧mt 6∈Mk
t (r

t+1,mt),(
1− εk

k
|Mt|

)
φkt (mt|rt+1,mt) + εk

k
if (rt+1,mt) /∈ Kt.

Given hA,t ∈ HA,t, each ai,t ∈ Ai,t is drawn independently across players with proba-
bility (

1− εk
k

∣∣∣Ai,t\Aki,t(hA,ti )
∣∣∣) σ̃A,ki,t (ai,t|hA,ti ) if hA,ti ∈ J

A,t
i ∧ ai,t ∈ Aki,t(h

A,t
i ),

εk
k

if hA,ti ∈ J
A,t
i ∧ ai,t /∈ Aki,t(h

A,t
i ),(

1− εk
k
|Ai,t|

)
σA,ki,t (ai,t|hA,ti ) + εk

k
if hA,ti /∈ JA,ti .

Given hA,t ∈ HA,t
t and at ∈ At, each st+1 ∈ St+1 is drawn with probability p

(
st+1|̊hA,t, at

)
.
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4. Player i’s payoff at terminal history ht+1 ∈ HT+1 is ui
(̊
ht+1

)
.

The interpretation of the distribution of ri,t in part 3 is as follows (the interpretation of
the distributions ofmt and ai,t are similar): If the current history h

R,t
i lies in JR,ti , then player

i reports each ri,t ∈ Rk
i,t(h

R,t
i ) with probability σ̃R,ki,t (ri,t|hR,ti ) (in which case the resulting pair(

hR,ti , ri,t

)
lies in JR,t+i ), barring a low-probability tremble to a report outside Rk

i,t(h
R,t
i ).

Such low-probability trembles occur with uniform probability εk
k
, which is much smaller

than the probability of any report in the support of σ̃R,ki when k is large. Finally, if the
current history hR,ti is already outside JR,ti , then player i follows her chosen strategy σR,ki ,
while trembling uniformly with probability εk

k
.

Note that the strategy set in the game
(
Γk,C

)
is a product of simplices. In addition, each

player i’s utility is continuous in σk and affi ne (and hence quasi-concave) in σki . Hence, the
Debreu-Fan-Glicksberg theorem guarantees existence of a NE in

(
Γk,C

)
. Moreover, since(

σk, φk
)
has full support on Z for any strategy profile σk in

(
Γk,C

)
, Bayes’rule defines a

belief system βk by

βki
(
ht|hti

)
=

Prσ
k,φk

Γk,C
(ht)

Prσ
k,φk

Γk,C
(hti)

for all i 6= 0, all hti, and all h
t ∈ H t[hti], where PrΓk,C denotes probability in game

(
Γk,C

)
.

So let (σ̄k, φ̄
k
, β̄

k
)k denote a sequence of NE

(
σ̄k, φ̄

k
)
in
(
Γk,C

)
with corresponding

beliefs β̄k. Taking a subsequence if necessary to guarantee convergence, let (σ̄, φ̄, β̄) =

limk→∞(σ̄k, φ̄
k
, β̄

k
). Note that

(
σ̄, φ̄

)
and (χ, ψ) coincide on H|J,K . We claim that (σ̄, φ̄, β̄)

is a SE in (Γ,C). Since β̄ satisfies Kreps-Wilson consistency by construction, it remains to
verify sequential rationality. We consider reporting histories hR,ti ; the argument for acting
histories hA,ti is symmetric.
There are two cases, depending on whether or not hR,ti ∈ JR,ti . If hR,ti /∈ JR,ti , then

hT+1
i /∈ JA,T+

i for all hT+1
i that follow hR,ti , so by inspection the outcome distribution (and

hence player i’s expected payoff) conditional on hR,ti is continuous in σk, φk, εk, and k. Since

σ̄R,ki,t

(
·|hR,ti

)
is sequentially rational in

(
Γk,C

)
(as

(
σ̄k, φ̄

k
)
is a NE in

(
Γk,C

)
, where the

distribution over hT+1 has full support), it follows that σ̄Ri,t
(
·|hR,ti

)
is sequentially rational

in (Γ,C).
Now consider the case where hR,ti ∈ JR,ti . We show that player i believes that hR,t ∈

HR,t[hR,ti ]|J,K with probability 1. Note that, for each hT+1
i ∈ JA,T+

i and hT+1
−i with

(
hT+1
i , hT+1

−i
)
6∈

HT+1[hT+1
i ]|J,K , there exists h′T+1

−i such that (hT+1
i , h′T+1

−i ) ∈ HT+1[hT+1
i ]|J,K and

lim
k→∞

Prσ
k,φk(hT+1

i , hT+1
−i )

Prσ
k,φk(hT+1

i , h′T+1
−i )

= 0.

This follows because in
(
Γk,C

)
each “tremble” leading to a history outside J occurs with

probability at most εk/k (this is an implication of Condition 3(a) of Kreps-Wilson consistency
for quasi-SE and the third condition in the definition of a valid quasi strategy profile),
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while every history hT+1
i ∈ JA,T+

i occurs with positive probability given
(
σk, φk

)
(this is an

implication of Condition 3(b) of Kreps-Wilson consistency for quasi-SE).

Therefore, for each hR,ti ∈ JR,ti , we have β̄i
(
hR,t|hR,ti

)
= βi(h

R,t|hR,ti ) for all hR,t ∈
HR,t[hR,ti ]|J,K . Moreover, by the second condition in the definition of a valid quasi strategy
profile, for any σ′i, player i believes that players −i follow χ−i. Hence, the fact that (7) holds

for belief βi implies that σ
R
i,t(·|h

R,t
i ) = χi,t

(
·|hR,ti

)
is sequentially rational in (Γ,C).

In the proofs of Propositions 4 and 5, it will be convenient to describe the mediator’s
strategy as first choosing a period-t “state”θt ∈ Θt as a function of the mediator’s history
(rt,mt) and the past states θt = (θ1, . . . , θt−1), and then choosing period-t messages mt as
a function of the vector

(
θt, rt,mt, θt, rt

)
. When convenient, we will include these states as

part of the mediator’s history.

D.2 Proof of Proposition 5

Here we prove that every SCE outcome is SE-implementable with pseudo-direct communi-
cation, and hence SCE ⊂ SE. As discussed in Section 4, the reverse inclusion follows from
Propositions 6, 7, and 8.
By Proposition 1, it suffi ces to show that every outcome that arises in a canonical NE

in which codominated actions are never recommended at any history is SE-implementable
with pseudo-direct communication.
Under pseudo-direct communication, we say that player i is faithful at history hti =

(sti, r
t
i ,m

t
i, a

t
i) if ri,τ = (ai,τ−1, si,τ ) for each τ < t and ai,τ = mi,τ for each τ < t with

mi,τ ∈ Ai,τ (i.e., with mi,τ 6= ?). That is, player i is faithful at history hti if thus far she has
been honest and has obeyed all action recommendations. Note that faithfulness places no
restriction on player i’s action in periods τ in which she received message ?. Faithfulness at
histories hR,ti and hA,ti are similarly defined.

Trembling-Hand Perfect Equilibrium As previewed in Section 3.4, our construction
begins by defining an arbitrary trembling-hand perfect equilibrium (PE).
Fix (εk)k∈N satisfying εk → 0 and k (εk)

NT → ∞. For each k, let σ̂k be a NE in the
unmediated, εk-constrained game where each player is required to play each action with
probability at least εk at each information set. Taking a subsequence if necessary,

(
σ̂k
)
k∈N

converges to a PE σ̂ in the unconstrained game (Γ, ∅). Thus, for each i, t, yti , and strategy
σ′i, we have ∑

yt∈Y t[yti ]

β̂i,t
(
yt|yti

)
ūi
(
σ̂|yt

)
≥

∑
yt∈Y t[yti ]

β̂i,t
(
yt|yti

)
ūi
(
σ′i, σ̂−i|yt

)
, (9)

where Y t[yti ] is the set of y
t ∈ Y t with i component equal to yti and

β̂i,t
(
yt|yti

)
= lim

k→∞

Prσ̂
k

(yt)

Prσ̂
k

(yti)
.

For future reference, for each yti , let B̂i,t (yti) = Ai,t\supp σ̂i,t (yti) denote the set of actions that
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are taken at yti only when player i trembles. For r
t+1
i ∈ R∗t+1

i \ Y t
i , we define B̂i,t

(
rt+1
i

)
= ∅.

Consider now the mediated, unrestricted, direct-communication game (Γ,C∗). Suppose
the mediator performs all randomizations in the PE σ̂ on behalf of the players, so that the out-
come of σ̂ results if players are honest and obedient: that is, the mediator follows the behav-
ioral mediation plan φ̃ constructed from σ̂ as in the proof of Proposition 2. Note that, since
σ̂ is a strategy profile in the unmediated game, φ̃i,t (rt+1,mt) depends only on rt+1

i , for all i, t,
and (rt+1,mt). In particular, the correspondence defined by Q̃i,t

(
rt+1
i

)
= supp φ̃i,t

(
rt+1
i

)
for

all i and t is a mediation range.41 Moreover, since player i’s recommendations and player j’s
recommendations are drawn independently, we can write φ̃t(mt|rt+1,mt) =

∏
i φ̃i,t

(
mi,t|rt+1

i

)
for all t, mt, and (rt+1,mt).

Now let
(
σ̃k, φ̃

)
denote the profile in the mediated game (Γ,C∗) where players are honest

and obedient, while trembling uniformly over actions with probability εk. Note that σ̃k

converges to the fully canonical strategy σ∗. Define χ = σ∗, ψ = φ̃, JR,ti = {(st+1
i , rti ,m

t
i, a

t
i) :

ri,τ = (ai,τ−1, si,τ ) ∧ mi,τ ∈ Q̃i,t

(
rτ+1
i

)
∀τ ≤ t − 1} for all i and t (and similarly for JR,t+i ,

JA,ti , and JA,t+i ), Kt = {(rt,mt) : mi,τ ∈ Q̃i,τ

(
rτ+1
i

)
∀i, τ ≤ t } for all t (and similarly for

K+), and

β̃i,t

(
hR,t|hR,ti

)
= lim

k→∞

Prσ̃
k,φ̃
(
hR,t

)
Prσ̃

k,φ̃
(
hR,ti

)
for all i, t, hR,ti , and h

R,t ∈ HR,t[hR,ti ]|J,K (and similarly for β̃i,t
(
hA,t|hA,ti

)
). For yt ∈ Y t [̊hR,ti ],

we write
β̃i,t

(
yt|hR,ti

)
=

∑
hR,t∈HR,t[hR,ti ]|J,K with h̊R,t=yt

β̃i,t

(
hR,t|hR,ti

)
,

and we write ūi
(
σi, σ

∗
−i, φ̃|ḣ

R,t
i , yt

)
for player i’s continuation payoff at the history hR,t

where hR,ti =
(
yti , ḣ

R,t
i

)
(recall that ḣR,ti is the payoff-irrelevant components of hR,ti ) and

hR,tj = h̄j(y
t
j) for each j 6= i.42

Lemma 3
(
χ, ψ, J,K, β̃

)
is a quasi-SE. Moreover, for each i, t, σ′i, h

R,t
i ∈ J

R,t
i , and h′R,ti ∈

JR,ti with h̊R,ti = h̊′R,ti , we have∑
yt∈Y t [̊hR,ti ]

β̃i,t

(
yt|hR,ti

)
ūi

(
σ∗, φ̃|ḣ′R,ti , yt

)
≥

∑
yt∈Y t [̊hR,ti ]

β̃i,t

(
yt|hR,ti

)
ūi

(
σ′i, σ

∗
−i, φ̃|ḣ

′R,t
i , yt

)
.

(10)

Proof. For each i, let Ji be the set of histories where players are honest and all past messages

41Since we construct φ̃ in Proposition 2 such that, after rt+1i ∈ R∗t+1i \ Y t, the mediator sends all action
recommendations with positive probability. Hence, Q̃i,t

(
rt+1i

)
= Ai,t for r

t+1
i ∈ R∗t+1i \ Y t.

42Here, h̄j(ytj) is the history for player j that obtains under honesty and obedience given payoff-relevant
history ytj .
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lie in the mediation range: for each t,

JR,ti =
{
hR,ti ∈ H

R,t
i : ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi,τ (rτi ,m

τ
i , ri,τ ) ∀τ < t

}
,

JA,ti =
{
hA,ti ∈ H

A,t
i : ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi,τ (rτi ,m

τ
i , ri,τ ) ∀τ ≤ t

}
,

JR,t+i =
{(
hR,ti , ri,t

)
: hR,ti ∈ J

R,t
i and ri,t = (ai,t−1, si,t)

}
,

JA,t+i =
{(
hA,ti , ai,t

)
: hA,ti ∈ J

A,t
i

}
.

Similarly, for each t, let

Kt =
{(
rt+1,mt

)
∈ Rt+1 ×M t : mi,τ ∈ Qi,τ (rτi ,m

τ
i , ri,τ ) ∀i, τ < t

}
,

Kt+ =
{(
rt+1,mt+1

)
∈ Rt+1 ×M t+1 : mi,τ ∈ Qi,τ (rτi ,m

τ
i , ri,τ ) ∀i, τ ≤ t

}
.

The quasi-strategy profile (χ, ψ, J,K) satisfies the two defining conditions for validity in G,
since (i) JR,1 = S1 by definition, (ii) histories outside Ji cannot arise as long as player i is
honest and the mediator follows ψ, and (iii) for each i, a terminal history hT+1

i arises with
positive probability when players are honest and take all actions with positive probability
and the mediator sends all messages within the mediation range with positive probability if
and only if all reports in hT+1

i are honest and all messages in hT+1
i lie in the mediation range.

To establish that
(
χ, ψ, J,K, β̃

)
is a quasi-SE, it remains to show sequential rationality:

∑
hR,t∈HR,t[hR,ti ]|J,K

β̃i,t

(
hR,t|hR,ti

)
ūi

(
σ∗, φ̃|hR,t

)
≥

∑
hR,t∈HR,t[hR,ti ]|J,K

β̃i,t

(
hR,t|hR,ti

)
ūi

(
σ′i, σ

∗
−i, φ̃|hR,t

)
(11)

for each i, t, hR,ti ∈ J
R,t
i , and strategy σ′i in game (Γ,C∗) (and similarly for hA,ti ). Since (i)

hR,ti ∈ J
R,t
i implies that player i has been honest, (ii) φ̃t(r

t+1,mt) =
∏

i φ̃i,t
(
rt+1
i

)
, and (iii)

player i always believes that her opponents are honest, for each i, t, hR,ti ∈ J
R,t
i , and σ′i, we

can write (11) as∑
yt∈Y t [̊hR,ti ]

β̃i,t

(
yt|hR,ti

)
ūi

(
σ∗, φ̃|ḣR,ti , yt

)
≥

∑
yt∈Y t [̊hR,ti ]

β̃i,t

(
yt|hR,ti

)
ūi

(
σ′i, σ

∗
−i, φ̃|ḣ

R,t
i , yt

)
.

(12)
Moreover, for each yt ∈ Y t [̊hR,ti ], we have

β̃i,t

(
yt|hR,ti

)
= lim

k→∞

Prσ̃
k,φ̃ (yt) Prσ̃

k,φ̃(mt
i|yt)

Prσ̃
k,φ̃ (yti) Prσ̃

k,φ̃(mt
i|yti)

= lim
k→∞

Prσ̃
k,φ̃ (yt) Prσ̃

k,φ̃(mt
i|yti)

Prσ̃
k,φ̃ (yti) Prσ̃

k,φ̃(mt
i|yti)

= lim
k→∞

Prσ̃
k,φ̃ (yt)

Prσ̃
k,φ̃ (yti)

= lim
k→∞

Prσ̂
k

(yt)

Prσ̂
k

(yti)
= β̂i,t

(
yt|yti

)
,

where the second equality uses Prσ̃
k,φ̃(mt

i|yt) = Prσ̃
k,φ̃(mt

i|yti), which holds since φ̃t(mt|rt+1,mt) =

44



∏
i φ̃i,t

(
mi,t|rt+1

i

)
. Hence, (12) is equivalent to∑

yt∈Y t [̊hR,ti ]

β̂i,t

(
yt|̊hR,ti

)
ūi

(
σ∗, φ̃|ḣR,ti , yt

)
≥

∑
yt∈Y t [̊hR,ti ]

β̂i,t

(
yt |̊hR,ti

)
ūi

(
σ′i, σ

∗
−i, φ̃|ḣ

R,t
i , yt

)
.

By the same argument as in the proof of Proposition 2,
(
σ∗, φ̃

)
induces the same outcome

distribution in (Γ,C∗) as σ̂ does in (Γ, ∅). Hence,∑
yt∈Y t [̊hR,ti ]

β̂i,t

(
yt|̊hR,ti

)
ūi

(
σ∗, φ̃|ḣR,ti , yt

)
=

∑
yt∈Y t [̊hR,ti ]

β̂i,t

(
yt|̊hR,ti

)
ūi
(
σ̂|yt

)
.

In addition, by the same construction as in the proof of Lemma 1, for each hR,ti ∈ J
R,t
i and

every strategy σ′i in game (Γ,C∗), there exists a strategy σ̂′i in game (Γ, ∅) such that∑
yt∈Y t [̊hR,ti ]

β̂i,t

(
yt|̊hR,ti

)
ūi

(
σ′i, σ

∗
−i, φ̃|ḣ

R,t
i , yt

)
=

∑
yt∈Y t [̊hR,ti ]

β̂i,t

(
yt|̊hR,ti

)
ūi
(
σ̂′i, σ̂−i|yt

)
.

Hence, (9) implies (12).
To complete the proof, we show that (12) can be strengthened to (10). To see this,

note that, under strategy σi = σ∗i , since φ̃ implements the play of a PE in the unmediated
game, player i’s continuation play in periods τ ≥ t does not depend on mt

i. Hence, for each
hR,ti ∈ J

R,t
i and h′R,ti ∈ JR,ti with h̊R,ti = h̊′R,ti , we have∑

yt∈Y t [̊hR,ti ]

β̃i,t

(
yt|hR,ti

)
ūi

(
σ∗, φ̃|ḣR,ti , yt

)
=

∑
yt∈Y t [̊hR,ti ]

β̃i,t

(
yt|hR,ti

)
ūi

(
σ∗, φ̃|ḣ′R,ti , yt

)
.

Moreover, again because φ̃ pertains to the unmediated game, players’recommendations are
independent. Hence, for any σ′i that depends on m

t
i, there is another strategy σ

′′
i that does

not depend on mt
i and achieves the same payoff. Hence, for each h

R,t
i ∈ J

R,t
i and h′R,ti ∈ JR,ti

with h̊R,ti = h̊′R,ti , we have

max
σ′i

∑
yt∈Y t [̊hR,ti ]

β̃i,t

(
yt|hR,ti

)
ūi

(
σ′i, σ

∗
−i, φ̃|ḣ

R,t
i , yt

)
= max

σ′i

∑
yt∈Y t [̊hR,ti ]

β̃i,t

(
yt|hR,ti

)
ūi

(
σ′i, σ

∗
−i, φ̃|ḣ

′R,t
i , yt

)
.

Hence, (12) implies (10).
By Kuhn’s theorem, there exists a mixed mediation plan µ̃ ∈ ∆ (F ) such that (σ, µ̃) and(

σ, φ̃
)
induce the same distribution on terminal histories Z in (Γ,C∗) for all strategies σ.

Since φ̃t(mt|rt+1,mt) =
∏

i φ̃i,t
(
mi,t|rt+1

i

)
for all i, t, mt, and (rt+1,mt), we have

µ̃(f) =
∏

i,t µ̃i,t(fi,t) for all f. (13)

For each t, let Ft denote the set of functions ft : Rt+1 →Mt, and define F<t = ×τ<tFτ and
F≥t = ×τ≥tFτ . Thus,

(
f<t, f≥t

)
∈ F for each t. For f<t ∈ F<t, we write f<t ∈ supp µ̃<t if
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there exists f≥t ∈ F≥t such that
(
f<t, f≥t

)
∈ supp µ̃. Define fi ∈ supp µ̃i and f

<t
i ∈ supp µ̃<ti

analogously, focusing on the mediation plan for player i.

Rationalizing Non-Codominated Actions We now construct a sequence of mixed me-
diation plans that induce all non-codominated actions with positive probability.
Let

F ∗ =
{
f ∈ F : fi,t(r

t+1) ∈ Ai,t \Di,t(r
t+1
i ) ∀i, t, rt+1

}
be the set of mediation plans that never recommend codominated actions, and let

F ∗≥t =
{
f≥t ∈ F≥t : fi,τ (r

τ+1) ∈ Ai,τ \Di,t(r
τ+1
i ) ∀i, τ ≥ t, rτ+1

}
be the projection of F ∗ on F≥t.43 As in Myerson’s Lemma 3, the definition of codomination

requires that there exist L ≥ 1 and distributions
(

(π
[l]
t )Ll=1

)T
t=1
with π[l]

t ∈ ∆
(
F ∗≥t ×X t × St

)
for each t and l satisfying the following conditions:
First, define πkt =

∑L
l=1

(
1
k

)l−1
π

[l]
t . Then, for each i, t, and y

t
i , denote the support of f

≥t
i,t

at yti under π
k
t by

suppi,t
(
yti
)

=

{
mi,t ∈ Ai,t :

there exist f≥t and yt with i-component equal to yti
such that πkt

(
f≥t, yt

)
> 0 ∧ f≥ti,t (yt) = mi,t

}
.

Note that this set is the same for all k ∈ N. Finally, for each t, let

Prσ
∗,πkt (f≥t, h̊T+1,mt:T ) = πkt

(
f≥t, h̊R,t

)
Prσ

∗,f≥t
(̊
hT+1,mt:T |h̄

(̊
hR,t

))
,

where mt:T+1 = (mt, . . . ,mT ). Note that supp Prσ
∗,πkt is the same for all k ∈ N.

With these definitions, the required conditions on
(

(π
[l]
t )Ll=1

)T
t=1

are

1. Every non-codominated action is recommended with positive probability:

suppi,t(y
t
i) = Ai,t \Di,t(y

t
i).

2. At every history reached with positive probability under profile
(
σ∗, πkt

)
, honesty and

obedience is optimal under the beliefs βσ
∗,πt derived from

(
σ∗, πkt

)
as k →∞: for each

i, t, τ ≥ t, (̊hR,τi ,mt:τ
i ) satisfying Prσ

∗,πkt (̊hR,τi ,mt:τ
i ) > 0 (for any k ∈ N), and strategy

σ′i, we have ∑
f≥t∈F ∗≥t,yτ∈Y τ [̊hR,τi ]

βσ
∗,πt
i,τ

(
f≥t, yτ |̊hR,τi ,mt:τ

i

)
ūi
(
σ∗|f≥t, yτ

)
≥

∑
f≥t∈F ∗≥t,yτ∈Y τ [̊hR,τi ]

βσ
∗,πt
i,τ

(
f≥t, yτ |̊hR,τi ,mt:τ

i

)
ūi
(
σ′i, σ

∗
−i|f≥t, yτ

)
, (14)

43Note that in the definition of F ∗≥t, there is no restriction for fi,τ (rτ+1) if rτ+1 ∈ R∗τ+1i \ Y τi .
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where

βσ
∗,πt
i,τ

(
f≥t, yτ |̊hR,τi ,mt:τ

i

)
= lim

k→∞

Prσ
∗,πkt (f≥t, yτ ,mt:τ

i )

Prσ
∗,πkt (yτi ,m

t:τ
i )

.

Since every reachable history hR,τ under
(
σ∗, πkt

)
is faithful and f≥t sends only ac-

tion recommendations (that is, ? is not recommended),
(
f≥t, yτ

)
uniquely pins down

hR,τ = h̄ (yτ ) given that we have hR,t = h̄ (yt). Hence, we write ūi
(
σ′i, σ

∗
−i|f≥t, yτ

)
for

ūi
(
σ′i, σ

∗
−i|f≥t, h̄ (yτ )

)
.

“Motivating Equilibrium”Construction We next define a sequence of quasi-strategy
profiles

(
σk, φk, J,K

)
k
in the game with pseudo-direct communication (Γ,C∗∗), where the

quasi-SE profile for the desired “motivating equilibrium”is given by (σ, φ, J,K) = limk→∞
(
σk, φk, J,K

)
.

Players’strategies σk: Each player i is faithful: with probability 1, she plays ai,t = mi,t

after eachmi,t ∈ Ai,t and reports ri,t = (ai,t−1, si,t) after each (ai,t−1, si,t) ∈ Ai,t−1×Si,t. After
receiving message mi,t = ?, with probability 1−√εk player i takes ai,t according to her PE
strategy σ̂i,t(yti), and with probability

√
εk she plays all actions with equal probability.

Mediator’s strategy φk: At the beginning of the game, the mediator draws the following
three variables: First, for each player i and each period t, independently across i and t, he
draws θi,t ∈ {0, 1} with Pr (θi,t = 0) = 1−√εk. Second, again independently for each i and
t, he draws ζ i,t ∈ {0, 1} with Pr

(
ζ i,t = 0

)
= 1−

(
1
k

)2(L+1)T
. Third, independently for each i,

he draws f̃i from µ̃i. Given a vector ζ = ζT+1, let |ζ| =
∑

i,t ζ i,t be the l1-norm of ζ.
In each period t, the mediator has a state

ωt ∈
⋃
f∈supp µ̃ (0, f) ∪

(⋃
1≤t∗≤T,f∈F ∗,≥t∗ (t∗, f)

)
,

with initial state ω0 =
(

0, f̃
)
. Let ω = ωT+1. Given θ = θT+1 and ζ = ζT+1, for each

period t, the mediator recursively calculates the state ωt and recommends mi,t ∈ Ai,t ∪ {?}
as follows:

• Notation: For each i, t, and yt−1
i , denote the number of tuples

(
f<ti , θti,m

t
i

)
with

f<ti ∈ supp µ̃<ti such that, for all τ ≤ t − 1, the mediator sends mi,τ = f<ti,τ (yτi ) if
θi,τ = 0 and sends mi,τ = ? if θi,τ = 1 by

#Mi(y
t−1
i ) =

∣∣∣∣∣∣

(
f<ti , θti,m

t
i

)
∈ supp µ̃<ti × {0, 1}t−1 ×

∏t−1
τ=1 (Ai,τ ∪ {?})

:

{
mi,τ = f<ti,τ (yτi ) ∀τ ≤ t− 1 s.t. θi,τ = 0,
mi,τ = ? ∀τ ≤ t− 1 s.t. θi,τ = 1


∣∣∣∣∣∣ . (15)

Let #M(yt−1) =
∏N

i=0 #Mi(y
t−1
i ). In addition, for f̃<t ∈ supp µ̃<t, denote the number

of recommendation strategies f̃ ′ ∈ supp µ̃ which coincide with f̃<t for the first t − 1
periods by #(f̃<t) = |{f̃ ′ ∈ supp µ̃ : f̃ ′<t = f̃<t}|.

• Calculation of ωt: We define the distribution of ωt given ωt−1, rt+1, θ, and ζ. If
ωt−1 6= ω0 then ωt = ωt−1 with probability 1. If ωt−1 = ω0 then the mediator calculates
the probability of (θ, ζ, ωt−1 = ω0, r

t+1,mt) given σk and the construction of φk up to
period t. Denote this probability by pk (θ, ζ, ω0, r

t+1,mt).
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If pk(θ, ζ, ω0, r
t+1,mt) = 0 then ωt = ωt−1 with probability 1. If pk(θ, ζ, ω0, r

t+1,mt) >
0 then, for each f≥t ∈ F ∗≥t, the mediator draws ωt =

(
t, f≥t

)
with probability

qk
(
ωt|θ, ζ, ω0, r

t+1,mt
)

=

(
1

k

)(L+1)t+2(L+1)T |ζ|

× 1

pk(θ, ζ, ω0, rt+1,mt)
× πkt (f

≥t, rt+1)

#(f̃<t)#M(rt)
,

(16)
and draws ωt = ω0 with the remaining probability. Note that pk (θ, ζ, ω0, r

t+1,mt) > 0
implies that rt+1 corresponds to some yt ∈ Y t, so πkt (f

≥t, rt+1) and #M(rt) are well-
defined.

• Calculation of mt: If ωt =
(

0, f̃
)
, then the mediator recommends mi,t = f̃i,t(r

t+1
i ) if

ζ i,t = θi,t = 0, recommends mi,t = ? if ζ i,t = 0 and θi,t = 1, and recommends all non-
codominated actions Ai,t \Di,t(r

t+1
i ) with equal probability if ζ i,t = 1. If ωt =

(
t, f≥t

)
with t ≥ 1, then the mediator recommends mi,t = f≥ti,t (rt+1).

Definition of K and J : Let KT+ =
{(
rT+1,mT+1

)
: mt ∈

∏
iAi,t ∪ {?} \Di,t(r

t+1
i ) ∀t

}
;

for each t, Kt and Kt+ consist of all truncations of histories in KT+. Let JA,T+
i be the set

of player i’s histories hT+1
i such that (i) mi,t ∈ Ai,t ∪{?} \Di,t(r

t+1
i ) ∀t, (ii) ri,t = (ai,t−1, si,t)

∀t, and (iii) ai,t = mi,t ∀t with mi,t ∈ Ai,t \Di,t(r
t+1
i ); the other elements of Ji consist of all

truncations of histories in JA,T+
i .

Let us give some interpretation of the mediator’s strategy. The mediator’s state ωt
indicates whether the mediator currently intends to implement the PE σ̂ (in which case

ωt =
(

0, f̃
)
) or has switched to implementing some other mediation plan f≥τ for some

τ ≤ t (in which case ωt =
(
τ , f≥τ

)
, where τ is the period when the mediator switched).

The mediator’s state switches at most once in the course of the game: that is, every state ωt
except

(
0, f̃
)
is absorbing. Moreover, the probability that the mediator’s state ever switches

converges to 0 as k →∞. A crucial feature of the construction is that the mediator’s state
transition probability, qk, is determined so that, conditional on the event that the mediator’s
state switches in period t, the likelihood ratio between any two mediation plans and payoff
relevant histories

(
f≥t, h̊t

)
and

(
f ′≥t, h̊′t

)
is the same as the likelihood specified by πkt .

This feature will guarantee that the recommendation to play any non-codominated action is
incentive compatible in the limit as k →∞.
In addition to possibly “trembling”from the initial state

(
0, f̃
)
to another state

(
t, f≥t

)
,

the mediator can also tremble in his recommendations while remaining in state
(

0, f̃
)
.

Specifically, when ωt =
(

0, f̃
)
, θi,t = 1 indicates a mediator tremble that sends message ?

to player i. Player i then plays her PE strategy σ̂i in period t but trembles with probability√
εk. Since Pr (θi,t = 1) =

√
εk from the perspective of each of i’s opponents, they assess

that player i trembles with probability
√
εk ×

√
εk = εk, exactly as in strategy profile σ̂

k.
This argument is formalized in Lemma 5.
Also, when ωt =

(
0, f̃
)
, ζ i,t = 1 indicates a mediator tremble that recommends all non-

codominated actions with positive probabilities. This event is very rare, so that when player
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i is recommended a non-codominated action outside supp σ̂i,t (yti) in period t, she believes
that ζ i,t = 0 and this surprising recommendation is instead due to a switch in the mediator’s
state in period t. However, if she later reaches a history inconsistent with this explanation,
she updates her belief to ζ i,t = 1. This is formalized in Lemma 4.

We note that the quasi-strategy profile (σ, φ, J,K) is valid. To see this, observe that a
profile (σ′, φ′) has full support on (J,K) if and only if each player i is faithful and the support
of the mediator’s recommendation equals

∏
iAi,t ∪ {?} \Di,t(r

t+1
i ) for each t and (rt+1,mt).

Given this observation, the three conditions of the definition of validity are immediate.

Joint Distribution of Histories and Mediator States Given the quasi-strategy profile(
σk, φk

)
just defined, we calculate the joint distribution of

(
θ, ζ, ω, hT+1

)
, which we denote

by δk.
For each (θ, ζ, ω0, r

t+1,mt) such that pk(θ, ζ, ω0, r
t+1,mt) > 0, we have

pk(θ, ζ, ω0, r
t+1,mt) ≥ µ̃

(
f̃
)
× (εk)

NT

|AT | ×
(

1

k

)2(L+1)T |ζ|

.

Hence, for each (θ, ζ, ω0, r
t+1,mt) and ωt 6= ω0, we have

qk
(
ωt|θ, ζ, ω0, r

t+1,mt
)
≤
(

1

k

)(L+1)t

×
∣∣AT ∣∣

(εk)
NT
× 1

µ̃
(
f̃
) × πkt (f

≥t, rt+1)

#(f̃<t)#M(rt)
.

Since k (εk)
NT →∞ as k →∞, this implies

lim
k→∞

qk
(
ωt|θ, ζ, ω0, r

t+1,mt
)

= 0. (17)

Given yt, f<t ∈ supp µ̃<t, θt, and ζt, let M t(f<t, θt, ζt, yt) denote the set of mt such that,
for each i and τ = 1, ..., t − 1, (i) mi,τ = f<ti,τ (yτi ) if ζ i,τ = θi,τ = 0, (ii) mi,τ = ? if ζ i,τ = 0
and θi,τ = 1, and (iii) mi,τ ∈ Ai,τ \Di,τ (y

τ
i ) if ζ i,τ = 1.

For any t, if ω0 = · · · = ωt−1 =
(

0, f̃
)
and ωt = · · · = ωT =

(
t, f̂≥t

)
, we define t∗(ω) = t
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and f(ω) =
(
f̃<t, f̂≥t

)
. We have44

δk(θ, ζ, ω, hT+1)

= 1{ωt=ω0∀t} × Prφ
k

(ωt = ω0∀t)× Prφ
k

(θ, ζ)× µ̃(f(ω))× Prσ
k (
hT+1|f(ω), θ, ζ

)

+
T∑
t=1

1{t∗(ω)=t}
∑

f̃ :f̃<t=f<t(ω)


pk(θ, ζ, ω0, h̊

R,t,mt)
(

1
k

)(L+1)t+2(L+1)T |ζ|

× 1

pk(θ,ζ,ω0 ,̊hR,t,mt)

πkt (f≥t(ω),̊hR,t)

#(f<t(ω))#M (̊hR,t)

×Prσ
∗
(̊
hT+1|̊hR,t, f≥t(ω)

)
×1{mt∈Mt(f<t(ω),θt,ζt ,̊ht) and mτ=f≥t(ω)(̊hR,τ ) ∀τ≥t}

 .

Canceling out pk and 1
pk
, and

∑
f̃ :f̃<t=f<t(ω) and

1
#(f<t(ω))

, we have

δk(θ, ζ, ω, hT+1)

= 1{ωt=ω0∀t} × Prφ
k

(ωt = ω0∀t)× Prφ
k

(θ, ζ)× µ̃(f(ω))× Prσ
k (
hT+1|f(ω), θ, ζ

)
+

T∑
t=1

1{t∗(ω)=t}

( (
1
k

)(L+1)t+2(L+1)T |ζ| πkt (f≥t(ω),̊hR,t)

#M (̊hR,t)
Prσ

∗
(̊
hT+1|̊hR,t, f≥t(ω)

)
×1{mt∈Mt(f<t(ω),θt,ζt ,̊ht) and mτ=f≥t(ω)(̊hR,τ ) ∀τ≥t}

)
.

Conditions for Quasi-Sequential Equilibrium The main remaining step in the proof
is showing that (σ, φ, J,K), together with a belief system β, is a quasi-SE. (The proof will
then be completed by mixing this quasi-SE with the target SCE outcome.) We first show

that, for each k, i and t, δk
(
hR,ti

)
> 0 for all hR,ti ∈ J

R,t
i and δk

(
hA,ti

)
> 0 for all hA,ti ∈ J

A,t
i .

We then compute β as the limit of conditional probabilities under δk. We will then be ready
to verify sequential rationality given beliefs β.
We show that δk

(
hA,T+
i

)
> 0 for each k, i, and hA,T+

i =
(
sT+1
i , rT+1

i ,mT+1
i , aT+1

i

)
∈

JA,T+
i . Fix any

(
sT+1
−i , a

T+1
−i
)
such that

(
sT+1
i , sT+1

−i , a
T+1
i , aT+1

−i
)
∈ XT+1. For each t, define

θj,t = 1 for each j and t; for each t, define mj,t = ? and ζj,t = 0 for each j 6= i and t; and for
each t, define ζ i,t = 1 if and only if mi,t 6= ?. It suffi ces to show that(

sT+1
i , sT+1

−i , r
T+1,mT+1, aT+1

i , aT+1
−i
)

happens with a positive probability given δk if rt = (at−1, st) for each t and ai,t = mi,t for
each t with mi,t ∈ Ai,t. Since any mi,t ∈ Ai,t \ Di,t(r

t+1
i ) is recommended with a positive

probability given ζ i,t = 1, mj,t = ? is recommended given ζj,t = 0 and θj,t = 1 for each j
and t, and each player j takes all actions with positive probability given mj,t = ?, we have

δk
(
hA,T+
i

)
> 0.

44Here h̊t is the projection of hT+1 on Xt. Since players are faithful, h̊t fully determines the reports,

and hence rT+1 does not appear in this calculation. We also write Prσ
∗
(̊
hT+1 |̊hR,t, f≥t(ω)

)
instead of

Prσ
k
(̊
hT+1 |̊hR,t, f≥t(ω)

)
since (i) if ωt =

(
τ , f̂≥τ

)
for some τ 6= 0, then mt ∈ At and (ii) players follow all

non-? recommendations given σk.
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We now define the belief system β by

βi,t

(
hR,t|hR,ti

)
=
∑
θ,ζ,ωt

βi,t

(
θ, ζ, ωt, h

R,t|hR,ti

)
,

where

βi,t

(
θ, ζ, ωt, h

R,t|hR,ti

)
= lim

k→∞

δk(θ, ζ, ω, hR,t)

δk(hR,ti )

for i-component of hR,t being equal to hR,ti . By construction, this belief system satisfies
Kreps-Wilson consistency given quasi-strategy profile (σ, φ, J,K). Thus, to establish that
(σ, φ, J,K) is a quasi-SE, it remains to verify

1. [Sequential rationality of reports] For all i 6= 0, t, σ′i ∈ Σi, and h
R,t
i ∈ J

R,t
i ,∑

hR,t∈HR,t[hR,ti ]|J,K

βi,t

(
hR,t|hR,ti

)
ūi
(
σ, φ|hR,t

)
≥

∑
hR,t∈HR,t[hR,ti ]|J,K

βi,t

(
hR,t|hR,ti

)
ūi
(
σ′i, σ−i, φ|hR,t

)
.

(18)

2. [Sequential rationality of actions] For all i 6= 0, t, σ′i ∈ Σi, and h
A,t
i ∈ J

A,t
i ,∑

hA,t∈HA,t[hA,ti ]|J,K

βi,t

(
hA,t|hA,ti

)
ūi
(
σ, φ|hA,t

)
≥

∑
hA,t∈HA,t[hA,ti ]|J,K

βi,t

(
hA,t|hA,ti

)
ūi
(
σ′i, σ−i, φ|hA,t

)
.

(19)

Mediator States that Explain a Faithful History We now present Lemma 4, which
was previewed above following the definition of

(
σk, φk, J,K

)
. We first define the notion of

a mediator state “explaining”a given faithful history.
Given a faithful history hR,ti for some i and t, we say (0, ζ) explains hR,ti if there exist

f̃ ∈ supp µ̃, θ, and hR,t−i such that, for each j and τ = 1, ..., t− 1, (i) mj,τ = aj,τ = f̃j,τ (̊h
R,τ
j )

if ζj,τ = θj,τ = 0, (ii) mj,τ = ? if ζj,τ = 0 and θj,τ = 1, (iii) mj,τ = aj,τ ∈ Aj,τ \Dj,τ (̊h
R,τ
j ) if

ζj,τ = 1, and (iv) p (sτ+1|sτ+1, aτ+1) > 0 (and also p (s1) > 0).
Given a faithful history hR,ti for some i and t, we say (t∗, ζ) with t∗ ≥ 1 explains hR,ti

if there exist f̃<t
∗ ∈ supp µ̃<t

∗
, f≥t

∗
, θ, and hR,t−i such that (i)—(iii) hold for τ = 1, ..., t∗,

(iv) p (sτ+1|sτ+1, aτ+1) > 0 for each τ = 0, ..., t − 1, (v) πkt∗
(
f≥t

∗
, h̊R,t

∗
)
> 0, and (vi)

mτ = aτ = f≥t
∗

τ (̊hR,τ ) for each τ = t∗, ..., t− 1.
Similarly, given a faithful history hA,ti , we say (0, ζ) explains hA,ti if (i)—(iii) hold for

τ = 1, ..., t and (iv) holds for τ = 0, ..., t−1; and (t∗, ζ) explains hA,ti if mt = f≥t
∗

t (̊hA,t) holds
in addition to the above conditions (i)—(vi).
Let

Ξ =
⋃

0≤t∗≤T,ζ∈{0,1}NT (t∗, ζ) .

Order the elements of Ξ such that (t∗, ζ) < (t̃∗, ζ̃) if (i) |ζ| <
∣∣∣ζ̃∣∣∣ or (ii) |ζ| = ∣∣∣ζ̃∣∣∣ and t∗ < t̃∗.

Lemma 4 will establish that (t∗, ζ) < (t̃∗, ζ̃) if and only if a mediator trembles to πkt∗ with
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ζj,τ = 1 for |ζ| values of (j, τ) is infinitely more likely than a mediator tremble to πk
t̃∗
with

ζj,τ = 1 for
∣∣∣ζ̃∣∣∣ values of (j, τ).

Given the specified order on Ξ, let ξ(hR,ti ) and ξ(hA,ti ) denote the smallest pairs (t∗, ζ)

that explain hR,ti and hA,ti , respectively. Since Ξ is a finite set and δk
(
hR,ti

)
and δk

(
hA,ti

)
are

strictly positive for all faithful histories hR,ti and hA,ti , such pairs always exist. Note in addition
that each realization (ζ, ω) defines a realization (t∗, ζ) ∈ Ξ. Denote the corresponding random
variable that takes realizations in Ξ by (t∗, ζ).

For any ζti ∈ {0, 1}
t−1, define

(
0, ζti

)
=
(

0, ζ̃
t
)
where ζ̃

t

i = ζti, ζ̃ i,τ = 0 for all τ ≥ t, and

ζ̃j,τ = 0 for all j 6= i and all τ . Define
(
t∗, ζt

∗

i

)
similarly.

Lemma 4 For all faithful histories hR,ti and hA,ti , the following claims hold:

1. We have

lim
k→∞

δk
({

(t∗, ζ) = ξ(hR,ti )
}
|hR,ti

)
= 1, (20)

lim
k→∞

δk
({

(t∗, ζ) = ξ(hA,ti )
}
|hA,ti

)
= 1. (21)

2. Either ξ(hR,ti ) =
(
0, ζti

)
for some ζti, or ξ(h

R,t
i ) =

(
t∗, ζt

∗

i

)
for some 0 < t∗ ≤ t and ζt

∗

i .
Likewise, either ξ(hA,ti ) =

(
0, ζti

)
for some ζti, or ξ(h

A,t
i ) =

(
t∗, ζt

∗

i

)
for some 0 < t∗ ≤ t

and ζt
∗

i .

Claim 1 of the lemma says that ξ(hR,ti ) is an infinitely more likely explanation for faithful
history hR,ti than any other (t∗, ζ), and ξ(hA,ti ) is an infinitely more likely explanation for
faithful history hA,ti than any other (t∗, ζ).
Claim 2 says that the most likely explanation (t∗, ζ) for a faithful history has the following

three properties. First, the most likely explanation never involves a player j 6= i receiving a
recommendation outside the support of σ̂j while the mediator intends to implement σ̂: that
is, ζj,τ = 0 for all j 6= i and all τ . Second, the most likely explanation never involves player
i receiving a future recommendation outside the support of σ̂i while the mediator intends to
implement σ̂: that is, ζ i,τ = 0 for all τ > t (for hR,ti , we also have ζ i,t = 0; note that player i
has not received her period-t recommendation at history hR,ti ). Third, for an acting history
hA,ti , the most likely explanation never involves a recommendation outside the support of σ̂i
while the mediator intends to implement σ̂ in the current period: that is, for each hA,ti with
mi,t ∈ Ai,t ∩ B̂i,t(r

t+1
i ), we have ξ(hA,ti ) =

(
t∗, ζt

∗

i

)
with 0 < t∗ ≤ t.

Proof. We prove first Claim 2 and then Claim 1.
Claim 2: We first observe that, whenever ξ(hR,ti ) = (0, ζ), we have ζ = ζti. To see this,

note that whenever (0, ζ) explains hR,ti , so does (0, ζ ′) with ζ ′i,τ = ζ i,τ for all τ and ζ
′
j,τ = 0

for all j and τ , since, for each τ and aj,τ , we can take ζj,τ = 0, θj,τ = 1, and mj,τ = ?, rather
than ζj,τ = 1 and mj,τ = aj,τ . Moreover, whenever (0, ζ ′) explains hR,ti , so does

(
0, ζti

)
. As(

0, ζti
)
≤ (0, ζ) with strict inequality if ζti 6= ζ, this implies the observation.

We next observe that, whenever ξ(hR,ti ) = (t∗, ζ) for t∗ > 0, we have ζ = ζt
∗

i . To see
this, note that whenever (t∗, ζ) explains hR,ti , so does (t∗, ζ ′) with ζ ′j,τ = ζj,τ for all j and
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τ < t∗ and ζ ′j,τ = 0 for all j and τ ≥ t∗, since mj,τ is independent of ζj,τ for all j and τ ≥ t∗.
Moreover, whenever (t∗, ζ ′) explains hR,ti , so does

(
t∗, ζt

∗

i

)
, since for each τ < t∗ and aj,τ ,

we can take ζj,τ = 0, θj,τ = 1, and mj,τ = ?, rather than ζj,τ = 1 and mj,τ = aj,τ . The
observation follows as

(
t∗, ζt

∗

i

)
≤ (t∗, ζ) with strict inequality if ζt

∗

i 6= ζ. Given these two
observations, Claim 2 for ξ(hR,ti ) holds.
The proof for ξ(hA,ti ) is the same, except that we also show ξ(hA,ti ) 6=

(
0, ζt+1

i

)
with

ζt+1
i =

(
ζti, 1

)
. To see why this new condition holds, note that whenever

(
0, ζt+1

i

)
explains

hA,ti , so does some
(
t∗, ζ̃

t∗

i

)
with t∗ = t and ζ̃ i,τ = ζ i,τ for each τ ≤ t − 1. This is because,

given t∗ = t, for each rt+1
i , each mi,t ∈ Ai,t \ Di,t(r

t+1
i ), and each f̃<t ∈ supp µ̃<t, we have

mi,t ∈ suppi,t(r
t+1
i ). Since

(
t, ζ̃

t

i

)
<
(
0, ζt+1

i

)
, we have ξ(hA,ti ) 6=

(
0, ζt+1

i

)
with ζ i,t = 1.

Claim 1: We prove (20); the proof of (21) is analogous. Let (t∗, ζ) = ξ(hR,ti ).
Denote the smallest probability of any message vector mT+1

i among those in the support
of φ̃i by

ε1 = min
i,mT+1

i ,̊hT+1
i :φ̃i,t(mi,t |̊hti)>0 ∀t

T∏
t=1

φ̃i,t

(
mi,t |̊hti

)
.

Denote the smallest probability of any signal vector sT+1 among those in the support of p
by

ε2 = min
aT+1,sT+1:p(st|st,at)>0 ∀t

T∏
t=1

p
(
st|st, at

)
.

We claim that

δk
(
{(t∗, ζ) = (0, ζ)}, hR,ti

)
≥

(
T∏
t=1

(
1−

(
1

k

)(L+1)t
))

×
(

1

k

)2(L+1)T |ζ|
(

1−
(

1

k

)2(L+1)T
)NT−|ζ|

× (
√
εk)

N(t−1) ×
(√

εk
)N(t−1)

|At| × ε1 × ε2. (22)

The explanation is as follows: Define θ̃
t

i ∈ {0, 1}
t−1 by θ̃i,τ = 0 if mi,τ 6= ? and θ̃i,τ = 1 if

mi,τ = ?. First,
T∏
t=1

(
1−

(
1
k

)(L+1)t
)
is a lower bound for the probability that ωτ = ω0 for all

τ ≤ T . Second, (
1

k

)2(L+1)T |ζ|
(

1−
(

1

k

)2(L+1)T
)NT−|ζ|

is the probability that ζ = ζ (independently of ω). Third, conditional on any ω and ζ,

(1−√εk)|τ≤t−1:mi,τ 6=?| (
√
εk)
|τ≤t−1:mi,τ=?|

(
√
εk)

(N−1)(t−1)
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is a lower bound for the probability that θti = θ̃
t

i and θj,τ = 1 for all j 6= i and τ ≤ t − 1;

moreover, for suffi ciently large k this product is no less than
(√

εk
)N(t−1)

. Fourth, conditional

on any θt such that θti = θ̃
t

i and θj,τ = 1 for all j 6= i and τ ≤ t − 1, for any at, (
√
εk)

N(t−1)

|At|
is a lower bound for the probability that player j takes aj,τ for all j (including j = i) and
τ ≤ t − 1 with θj,τ = 1. Fifth, conditional on ωτ = ω0 for all τ ≤ T , any ζ, and any θ

satisfying θti = θ̃
t

i, ε1 is a lower bound for the probability of (mi,τ )τ∈{1,...,t−1}:mi,τ 6=?. Finally,

conditional on any at, ε2 is a lower bound for the probability of s
t+1
i .

Similarly, for t∗ ≥ 1, denote the smallest probability of any tuple
(
f≥t

∗
, yt
∗
, x
)
in the

support of π[l]
t∗ for any t

∗ and l by

min
t∗≥1,l,f≥t

∗∈F≥t∗ ,yt∗∈Y t∗ ,x∈X
:π

[l]
t∗(f

≥t∗ ,yt
∗
) Prσ

∗
(x|f≥t

∗
,yt
∗
)>0

π
[l]
t∗
(
f≥t

∗
, yt
∗)

Prσ
∗ (
x|f≥t∗ , yt∗

)
≥ ε3.

We claim that

δk
(
{(t∗, ζ) = (t∗, ζ)}, hR,ti

)
≥

(
t∗−1∏
t=1

(
1−

(
1

k

)(L+1)t
))

×
(

1

k

)2(L+1)T |ζ|
(

1−
(

1

k

)2(L+1)T
)NT−|ζ|

× (
√
εk)

N(t∗−1) ×
(√

εk
)N(t∗−1)

|At∗| × ε1 × ε2

×
(

1

k

)(L+1)t∗
1

maxt,̊hR,t∈Y t #M (̊hR,t)
×
(

1

k

)L
× ε3.

The first three lines represent the same probability as (22), up to period t∗ − 1. For the
fourth line, (i) conditional on t∗ ≥ t∗,

(
1
k

)(L+1)t∗ 1

max
t,̊hR,t∈Y t #M (̊hR,t)

is a lower bound for the

probability that t∗ = t∗, (ii) conditional on t∗ = t∗,
(

1
k

)L
is a lower bound for the probability

selecting index l for π[l]
t∗ , for each l ∈ {1, . . . , L}, and (iii) conditional on t∗ = t∗ and l, ε3 is

a lower bound for the probability of
(
f≥t

∗
, x
)
.

In contrast, for each (t̃∗, ζ̃) 6= ξ(hR,ti ), if (t̃∗, ζ̃) does not explain hR,ti then δk
(
{(t∗, ζ) = (t̃∗, ζ̃)}, hR,ti

)
=

0. If (t̃∗, ζ̃) does explain hR,ti , then

δk
(
{(t∗, ζ) = (t̃∗, ζ̃)}, hR,ti

)
≤
(

1

k

)2(L+1)T |ζ̃|+(L+1)t̃∗

,

since
(

1
k

)2(L+1)T |ζ|
is an upper bound for the probability that ζ = ζ and

(
1
k

)(L+1)t̃∗
is an upper

bound for the probability that t∗ = t̃∗.
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Ignoring terms that converge to 1 as k →∞, we have

lim
k→∞

δk
(
{(t∗, ζ) = (t̃∗, ζ̃)}, hR,ti

)
δk
(
{(t∗, ζ) = (t∗, ζ)}, hR,ti

) ≤ lim
k→∞

(
1
k

)2(L+1)T |ζ̃|+(L+1)t̃∗(
1
k

)2(L+1)T |ζ|+(L+1)t∗+L
maxt,̊hR,t∈Y t #M (̊hR,t) (εk)NT

|AT | ε1ε2ε3

.

(23)

Since either |ζ| =
∣∣∣ζ̃∣∣∣ and t∗ < t̃∗ or |ζ| <

∣∣∣ζ̃∣∣∣, we have(
2 (L+ 1)T

∣∣∣ζ̃∣∣∣+ (L+ 1) t̃∗
)
− (2 (L+ 1)T |ζ|+ (L+ 1) t∗ + L)

≥

 2 (L+ 1)T − (L+ 1)T − L if |ζ| <
∣∣∣ζ̃∣∣∣

L+ 1− L if |ζ| =
∣∣∣ζ̃∣∣∣ and t∗ < t̃∗

≥ 1.

Hence, the right-hand side of (23) is no more than

1

k (εk)NT

|AT | ε1ε2ε3 maxt,̊hR,t∈Y t #M (̊hR,t)
.

Since k (εk)
NT →∞ by assumption and ε1, ε2, ε3, and maxt,̊hR,t∈Y t #M (̊hR,t) are constants

independent of k, this converges to 0 as k →∞. Finally, since there are only finitely many
possible values for (t̃∗, ζ̃), this implies (20).

Sequential Rationality We now establish (18) and (19). By Lemma 4, there are two
cases:
Case 1: Reporting histories satisfying ξ(hR,ti ) =

(
0, ζti

)
and acting histories

satisfying ξ(hA,ti ) =
(
0, ζti

)
.

LetΩ0 =
⋃
f̃∈supp µ̃

(
0, f̃
)
be the set of all possible mediator states ω0. Since Prφ

k

(ωt = ω0∀t|ω0)→
1 for each ω0 ∈ Ω0 by (17), ξ(h

R,t
i ) =

(
0, ζti

)
implies limk→∞ δ

k(ωT ∈ Ω0|hR,ti ) = 1, and
ξ(hA,ti ) =

(
0, ζti

)
implies limk→∞ δ

k(ωT ∈ Ω0|hA,ti ) = 1.
For each i, t, and yti , fix any action m

∗
i,t(y

t
i) ∈ Ai,t \ B̂i,t(y

t
i). With a slight abuse of

notation, we write

m∗i,t(h
R,t+1
i ) =

{
mi,t if mi,t ∈ Ai,t \ B̂i,t(̊h

R,t
i )

m∗i,t(̊h
R,t
i ) if mi,t 6∈ Ai,t \ B̂i,t(̊h

R,t
i )

,

where mi,t is the corresponding element of h
R,t+1
i . For each faithful history hR,ti with

δk
(
hR,ti

)
> 0, let λ(hR,ti ) ∈ HR,t

i denote the history where each message mi,τ is replaced

by m∗i,τ (h
R,τ+1
i ) ∈ Ai,τ \ B̂i,τ (̊h

R,τ
i ) for every τ ≤ t − 1. That is, we replace each action rec-

ommendation outside the support of µ̃ with some fixed recommendation within the support.
Note that Prσ̃

k,µ̃
(
λ(hR,ti )

)
> 0 whenever ξ(hR,ti ) =

(
0, ζti

)
and δk

(
hR,ti

)
> 0: this follows
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because, given σ̃k, players take each action profile at with probability at least εk/ |At| > 0 at
every history, and µ̃ recommends all actions in Ai,t \ B̂i,t(r

t+1
i ) in each period with positive

probability. Define λ(hA,ti ) ∈ HA,t
i analogously.

The following lemma confirms that, whenever ξ(hR,ti ) =
(
0, ζti

)
or ξ(hA,ti ) =

(
0, ζti

)
, player

i’s beliefs in the constructed quasi-SE coincide with those in
(
σ̃k, µ̃

)
.

Lemma 5 The following two claims hold:

1. For each hR,ti ∈ J
R,t
i and ζti satisfying ξ(h

R,t
i ) =

(
0, ζti

)
and each yt ∈ Y t [̊hR,ti ], we have

lim
k→∞

δk
(
yt|hR,ti

)
= β̃i,t

(
yt|λ(hR,ti )

)
. (24)

2. For each hA,ti ∈ J
A,t
i and ζti satisfying ξ(h

A,t
i ) =

(
0, ζti

)
and each yt ∈ Y t [̊hA,ti ], we have

lim
k→∞

δk
(
yt|hA,ti

)
= β̃i,t

(
yt|λ(hA,ti )

)
. (25)

Lemma 5 follows from applying Bayes’rule inductively on t. We relegate the proof to
the online appendix.
We now verify (18). ξ(hR,ti ) =

(
0, ζti

)
implies δk(ωt ∈ Ω0|hR,ti ) = 1. Given ωt ∈ Ω0 and

hR,t, (13) implies that the distribution of future recommendationsmτ follows
∏

j φ̃j,τ
(
mj,τ |rτ+1

j

)
for each τ ≥ t. Hence, Lemma 5 implies that (18) is equivalent to∑
yt∈Y t [̊hR,ti ]

β̃i,t

(
yt|λ(hR,ti )

)
ūi

(
σ∗, φ̃|ḣR,ti , yt

)
≥

∑
yt∈Y t [̊hR,ti ]

β̃i,t

(
yt|λ(hR,ti )

)
ūi

(
σ′i, σ

∗
−i, φ̃|ḣ

R,t
i , yt

)
.

Finally, since the payoff-relevant component of λ(hR,ti ) equals that of hR,ti , (10) implies (18).
The proof for (19) is analogous.
Case 2: Reporting histories satisfying ξ(hR,ti ) =

(
t∗, ζt

∗

i

)
and acting histories

satisfying ξ(hA,ti ) =
(
t∗, ζt

∗

i

)
, for t∗ > 0.

The next lemma confirms that, whenever ξ(hR,ti ) =
(
t∗, ζt

∗

i

)
or ξ(hA,ti ) =

(
t∗, ζt

∗

i

)
, player

i’s beliefs in the constructed quasi-SE are given by βσ
∗,πt∗
i .

Lemma 6 The following two claims hold:

1. For each hR,ti ∈ J
R,t
i and ζt

∗

i satisfying ξ(h
R,t
i ) =

(
t∗, ζt

∗

i

)
, each f≥t

∗ ∈ F≥t∗, and each
yt ∈ Y t [̊hR,ti ], we have

lim
k→∞

δk
(
f≥t

∗
, yt|hR,ti

)
= βσ

∗,πt∗
i,t

(
f≥t

∗
, yt|̊hR,ti ,mt∗:t

i

)
. (26)

2. For each hA,ti ∈ J
A,t
i and ζt

∗

i satisfying ξ(h
A,t
i ) =

(
t∗, ζt

∗

i

)
, each f≥t

∗ ∈ F≥t∗, and each
yt ∈ Y t [̊hA,ti ], we have

lim
k→∞

δk
(
f≥t

∗
, yt|hA,ti

)
= βσ

∗,πt∗
i,t

(
f≥t

∗
, yt |̊hA,ti ,mt∗:t+1

i

)
. (27)
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Lemma 6 follows from another application of Bayes’rule. We again relegate the proof to
the online appendix.
Given ξ(hR,ti ) =

(
t∗, ζt

∗−1
i

)
, player i believes that the mediator and players −i do not

tremble after period t∗, and that recommendations are independent of θ and ζ after period
t∗. Hence, by Lemma 6, (18) is equivalent to (14), and therefore follows from the definition
of πkt∗. The proof for (19) is analogous.
This completes the proof that (σ, φ, J,K, β) is a quasi-SE.

Final Construction Fix any canonical NE (σ∗, π∗) in which codominated actions are
never recommended.45 The proof is completed by mixing the “motivating”quasi-SE (σ, φ, J,K, β)
with this NE (with almost all weight on the latter) to create a quasi-SE that implements the
same outcome.
We construct a sequence of quasi-strategy profiles

(
σ̄k, φ̄

k
, J,K

)
indexed by k that limit

to a quasi-SE profile
(
σ̄, φ̄, J,K

)
(with the same sets J and K as in the motivating quasi-SE)

satisfying ρσ̄,φ̄ = ρσ
∗,π∗ .

Players’strategies σk: Players are faithful, and after receiving mi,t = ?, with probability
1−√εk player i takes ai,t according to the PE strategy σ̂i,t(̊hR,ti ), and with probability

√
εk

she takes all actions with equal probability.
Mediator’s strategy φk: At the beginning of the game, the mediator draws f ∈ F ∗

according to π∗ with probability 1 − 1
k
(and subsequently follows f), and the mediator

follows quasi-strategy φk with probability 1
k
.

Letting
(
σ̄, φ̄

)
= limk→∞

(
σ̄k, φ̄

k
)
, we have ρσ̄,φ̄ = ρσ

∗,π∗.
Since J includes all faithful histories where no codominated actions have been recom-

mended,
(
σ̄, φ̄, J,K

)
is valid. For each i, t, hR,ti ∈ JR,ti , and hR,t with i-component hR,ti ,

define

β̄i,t(h
R,t|hR,ti ) = lim

k→∞

Prσ̄
k,φ̄

k (
hR,t

)
Prσ̄

k,φ̄
k

(hR,ti )
.

Define β̄i,t(h
A,t|hA,ti ) analogously. Since Prσ̄

k,φ̄
k

(hR,ti ) > 0 for each hR,ti ∈ J
R,t
i conditional on

the mediator following φk, β̄ is well-defined, and hence Kreps-Wilson consistent.
To prove that

(
σ̄, φ̄, J,K, β̄

)
is a quasi-SE, it remains to verify sequential rationality.

Under belief system β̄, so long as a player i has been faithful and has not observed a signal
or recommendation that occurs with probability 0 conditional on the mediator following π∗,
she believes that with probability 1 the mediator is following π∗ and other players have been
faithful so far. At such a history, it is optimal for player i to be faithful, since (σ∗, π∗) is a NE.
On the other hand, if player i has been faithful and does observe a signal or recommendation
that occurs with probability 0 conditional on mediator strategy π∗, then she believes with
probability 1 that the mediator is following φk and other players have been faithful. In this
case, faithfulness is optimal by (18) and (19).

45Note that if (σ∗∗, π∗) is a canonical NE for some canonical (but possibly not fully canonical) player
strategy profile σ∗∗, then (σ∗, π∗) is also a canonical NE, where σ∗ denotes the fully canonical player strategy
profile. One way of seeing this is to note that the strategy profile constructed in the proof of Proposition 2
is fully canonical.
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Online Appendix

E Extending the Opening Example

In the extended example, there are four players (in addition to the mediator) and four
periods. The roles of players 2 and 4 are similar to those of players 1 and 2 in the original
example, respectively. The timing is as follows:
Period 1. No signals are observed. Player 1 takes an action a1 ∈ {A1, B1}.
Period 2. The mediator observes a1. Player 2 takes a2 ∈ {A2, B2, C2} and player 3

takes a3 ∈ {A3, B3}.
Period 3. Player 2 observes θ ∈ {n, p} such that θ = n with probability 3/4. The

mediator takes a0 ∈ {A0, B0}.
Period 4. The mediator and player 4 observe s ∈ {0, 1}, where s = 0 if a1 = A1 and

either a0 = A0 ∧ a2 = A2 or a0 = B0 ∧ a2 = B2. Player 4 takes a4 ∈ {N,P}.
Player 1’s payoff equals 1{a1=B1} − 1{a2=C2∧a4=P}. Player 2’s payoff is given by

A0 B0

A2 0− 1{a4=P} 1− 1{a4=P}
B2 1− 1{a4=P} 0− 1{a4=P}
C2 −3− 1{a4=P} −3− 1{a4=P}

A0 B0

A2 1− 1{a4=P} 1− 1{a4=P}
B2 1− 1{a4=P} 1− 1{a4=P}
C2 0 0

a1 = A1 a1 = B1

.

Player 3’s payoff is constant. Player 4’s payoff equals −1{(a1,a2,θ)6=(A1,C2,p)}1{a4=P}.
Consider the target outcome distribution where (i) 1

2
A1 + 1

2
B1 is played in period 1, (ii)

when A1 is played in period 1, 1
2

(A2, A3, A0) + 1
2

(B2, B3, B0) is played in periods 2 and 3,
(iii) when B1 is played in period 1, (A2, A3, A0) is played in periods 2 and 3, and (iv) N is
played in period 4. We claim that this distribution is implementable in SE, but not with
C = C∗.

Implementability with C 6= C∗ Again, it suffi ces to implement the target distribution in
a canonical NE in which players avoid codominated actions. Consider the following mediator
strategy:
The mediator draws m1 ∈ {A1, B1} with equal probability.
When m1 = a1 = A1, the mediator draws m0 ∈ {A0, B0} with equal probability, and

recommends m2 = A2 ∧ m3 = A3 if m0 = A0 and recommends m2 = B2 ∧ m3 = B3 if
m0 = B0. If s = 0, he recommends m4 = N ; if s = 1, he recommends m4 = P .
When m1 = A1 but a1 = B1, the mediator recommends m2 = C2, m3 = A3, and m4 = P .
When m1 = B1 (regardless of a1), the mediator recommends m0 = A0, m2 = A2,

m3 = A3, and m4 = N .
It is straightforward to check that this is a NE. Moreover, no codominated actions are

recommended: For player 4, N is weakly dominant and hence never codominated, while P
is recommended only following s = 1. Hence, we need only check that P is not codominated
following s = 1. But this holds, because the event (a1, a2, θ) = (A1, C2, p) is compatible with
s = 1, and in this event P is optimal.
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Given that P is not codominated for player 4 following s = 1, no action is codominated
for player 2, as each a2 ∈ {A2, B2} can be optimal after a1 = A1, and a2 = C2 is optimal
after a1 = B1 when a4 = P is anticipated. Finally, given that a2 = C2 and a4 = P are not
codominated after a1 = B1, action a1 = A1 is not codominated for player 1.

Non-Implementability with C = C∗ Suppose towards a contradiction that such a SE
exists. In what follows, each fraction p/q should be read as limk→∞ p

k/qk, where pk, qk > 0
denote probabilities along a sequence of strategy profiles converging to the equilibrium.
For each player i and action ai that is played with positive probability in the target

outcome, assume without loss that ai is played with positive probability after mi = ai.
Moreover, since the on-path actions of players 2 and 3 must be perfectly correlated, it is
without loss to assume that, for i ∈ {2, 3}, ai ∈ {Ai, Bi} is played with probability 1 after
mi = ai. Further, to deter a deviation to a1 = B1 by player 1 following m1 = A1, player
2 must play a2 = C2 with probability 1 after some message, which without loss we take
to be m2 = C2. Since player 3 is indifferent among all outcomes, we can also let a3 = m3

with probability 1. Finally, since player 4 moves last, the usual static revelation principle
argument implies that we can let a4 = m4 with probability 1. We have thus established that,
for players i ∈ {2, 3, 4}, ai = mi with equilibrium probability 1 at every history.
Note that C2 is strictly dominated conditional on a1 = A1 and weakly dominated

conditional on a1 = B1. Since player 2 is willing to take C2 after m2 = C2, we have
Pr (a1 = B1|m2 = C2) = 1. Therefore,

Pr (a1 = B1|m2 = C2, a2 = A2)

=
Pr (a1 = B1) Pr (m2 = C2|a1 = B1) Pr (a2 = A2|a1 = B1,m2 = C2)

Pr (m2 = C2) Pr (a2 = A2|m2 = C2)

=
Pr (a1 = B1) Pr (m2 = C2|a1 = B1) Pr (a2 = A2|m2 = C2)

Pr (m2 = C2) Pr (a2 = A2|m2 = C2)

=
Pr (a1 = B1) Pr (m2 = C2|a1 = B1)

Pr (m2 = C2)

= Pr (a1 = B1|m2 = C2) = 1.

Hence, if player 2 trembles to a2 = A2 after m2 = C2, she believes that a1 = B1 with
probability 1, and she therefore chooses her report

(
â2, θ̂

)
to minimize the probability that

a1 = B1 and a4 = P . Since a1 = B1 implies s = 1 and player 2 can always report as if she
took a2 = C2, this implies that

Pr (a1 = B1, a4 = P |m2 = C2, a2 = A2) ≤ Pr (a1 = B1, a4 = P |m2 = C2, a2 = C2) . (28)

Note that if Pr (a1 = B1, a4 = P |m2 = C2, a2 = A2) < 1 then player 2 would deviate to A2

after m2 = C2. So this probability must equal 1, and hence (28) implies

Pr (a1 = B1, a4 = P |m2 = C2, a2 = C2) = 1.
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Since a1 = B1 implies s = 1, we have

Pr (a1 = B1,m4 = P, s = 1|m2 = C2, a2 = C2) = 1.

Finally, since a2 = C2 with probability 1 after m2 = C2, we have

Pr (a1 = B1, a2 = C2,m4 = P, s = 1|m2 = C2) = 1. (29)

On the other hand, since player 4 is willing to take P after s = 1 and m4 = P , we have
Pr (a1 = A1, a2 = C2, θ = p|s = 1,m4 = P ) = 1. In particular,(

Pr (m2 = C2) Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1|m2 = C2)
+
∑

m2 6=C2
Pr (m2) Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1|m2)

)
(

Pr (m2 = C2)
∑

a1,a2
Pr (a1, a2,m4 = P, s = 1|m2 = C2)

+
∑

m2 6=C2
Pr (m2)

∑
a1,a2

Pr (a1, a2,m4 = P, s = 1|m2)

) = 1.

Since (a+ c) / (b+ d) ≤ (a/b) + (c/d) for all non-negative numbers a, b, c, d, the left-hand
side is no more than

Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1, |m2 = C2)∑
a1,a2

Pr (a1, a2,m4 = P, s = 1|m2 = C2)

+
∑

m2 6=C2

Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1|m2)∑
a1,a2

Pr (a1, a2,m4 = P, s = 1|m2)
.

Note that by (29),

Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1, |m2 = C2)

≤ Pr (a1 = A1, a2 = C2,m4 = P, s = 1|m2 = C2) = 0

and∑
a1,a2

Pr (a1, a2,m4 = P, s = 1|m2 = C2) ≥ Pr (a1 = B1, a2 = C2,m4 = P, s = 1|m2 = C2) = 1.
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Hence,

1 ≤
∑

m2 6=C2

Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1|m2)∑
a1,a2

Pr (a1, a2,m4 = P, s = 1|m2)

≤
∑

m2 6=C2

Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1|m2)

Pr (a1 = A1, a2 = C2,m4 = P, s = 1|m2)

=
∑

m2 6=C2

Pr (a1 = A1, a2 = C2, θ = p,m4 = P |m2)

Pr (a1 = A1, a2 = C2,m4 = P |m2)

=
∑

m2 6=C2

Pr (a1 = A1, a2 = C2|m2) Pr (θ = p,m4 = P |a1 = A1,m2, a2 = C2)

Pr (a1 = A1, a2 = C2|m2) Pr (m4 = P |a1 = A1,m2, a2 = C2)

=
∑

m2 6=C2

Pr (θ = p,m4 = P |a1 = A1,m2, a2 = C2)

Pr (m4 = P |a1 = A1,m2, a2 = C2)
, (30)

where the second line drops the event (a1, a2) 6= (A1, C2) from the denominator and the third
line uses the fact that a2 = C2 implies s = 1.
Now, after a2 = C2, player 2 is strictly better off when player 4 takes N if a1 = A1, and

player 2 is indifferent between player 4’s actions if a1 = B1. Moreover, Pr (a1 = A1|m2) > 0
for each m2 6= C2. Hence, for each m2 6= C2 and θ, after (m2, a2 = C2, θ) player 2 chooses

her report
(
â2, θ̂

)
to minimize the conditional probability that a4 = P given a1 = A1, and

hence to minimize the conditional probability that m4 = P given a1 = A1 (since a4 = m4

with probability 1). Therefore, for each m2 6= C2,

Pr (θ = p,m4 = P |a1 = A1,m2, a2 = C2)

= Pr (θ = p|a1 = A1,m2, a2 = C2) Pr (m4 = P |a1 = A1,m2, a2 = C2, θ = p)

= Pr (θ = p) Pr (m4 = P |a1 = A1,m2, a2 = C2, θ = p)

= Pr (θ = p) min
(â2,θ̂)

Pr
(
m4 = P |a1 = A1,m2, a2 = C2, θ = p, â2, θ̂

)
= Pr (θ = p) min

(â2,θ̂)
Pr
(
m4 = P |a1 = A1,m2, a2 = C2, â2, θ̂

)
= Pr (θ = p) Pr (m4 = P |a1 = A1,m2, a2 = C2) ,

where the fourth equality follows since the distribution of m4 is independent of θ conditional
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on
(
â2, θ̂

)
. Thus,

∑
m2 6=C2

Pr (θ = p,m4 = P |a1 = A1,m2, a2 = C2)

Pr (m4 = P |a1 = A1,m2, a2 = C2)

=
∑

m2 6=C2

Pr (θ = p) Pr (m4 = P |a1 = A1,m2, a2 = C2)

Pr (m4 = P |a1 = A1,m2, a2 = C2)

= Pr (θ = p)
∑

m2 6=C2

1 =
1

4
× 2 =

1

2
.

This contradicts (30).

F Proof of Lemma 5

We prove (24); the proof of (25) is analogous. We will prove the following: for each i, t, faith-

ful history hR,ti with δk
(
hR,ti

)
> 0, ζti, and y

t ∈ Y t [̊hR,ti ], there exist numbers ϕRk (hR,ti , ζti) ≥ 0

and eRk
(
hR,ti , ζti, y

t
)
≥ 0 such that

δk(hR,ti , ζti, y
t|ωT ∈ Ω0) = ϕRk (hR,ti , ζti)

(
Prσ̃

k,µ̃(λ(hR,ti ), yt) + eRk

(
hR,ti , ζti, y

t
))

, 46

limk→∞

eRk

(
hR,ti , ζti, y

t
)

(
1
k

)2(L+1)T
≤ t.

(31)

(31) is suffi cient for (24), since the former implies, for each ζti ∈ {0, 1}t−1 and yt ∈ Y t [̊hR,ti ],

lim
k→∞

δk
(
yt|ζti, h

R,t
i

)
= lim

k→∞
δk
(
yt|ζti, h

R,t
i , ωT ∈ Ω0

)
(by ξ(hR,ti ) =

(
0, ζti

)
and (17))

= lim
k→∞

ϕRk (hR,ti , ζti)
(

Prσ̃
k,µ̃(λ(hR,ti ), yt) + eRk

(
hR,ti , ζti, y

t
))

∑
ỹt∈Y t [̊hR,ti ] ϕ

R
k (hR,ti , ζti)

(
Prσ̃

k,µ̃(λ(hR,ti ), ỹt) + eRk

(
hR,ti , ζti, ỹ

t
)) (by (31))

= lim
k→∞

Prσ̃
k,µ̃(λ(hR,ti ), yt) + eRk

(
hR,ti , ζti, y

t
)

∑
ỹt∈Y t [̊hR,ti ] Prσ̃

k,µ̃(λ(hR,ti ), ỹt) +
∑

ỹt∈Y t [̊hR,ti ] e
R
k

(
hR,ti , ζti, ỹ

t
)

= lim
k→∞

Prσ̃
k,µ̃(λ(hR,ti ), yt)∑

ỹt∈Y t [̊hR,ti ] Prσ̃
k,µ̃(λ(hR,ti ), ỹt)

= β̃i

(̊
hR,t−i |λ(hR,ti )

)
,

46There is a slight redundancy in this notation: the payoff-relevant part of λ(hR,ti ) equals yti , since the
payoff-relevant component of λ(hR,ti ) equals h̊R,ti and yt ∈ Y t [̊hR,ti ].
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where the second-to-last equality follows as Prσ̃
k,µ̃(λ(hR,ti ), yt) ≥ ε1ε2 (εk)

NT /(T |A|T ), eRk
(
hR,ti , ζti, y

t
)
≤(

1
k

)2(L+1)T
T , and k (εk)

NT →∞.
We prove (31) by induction on t. Taking ϕRk (hR,1i , ζ1

i ) = 1 and eRk
(
hR,1i , ζ1

i , y
1
)

= 0, (31)
holds for t = 1.
Suppose it holds for t. We prove it holds for t + 1. For the rest of the proof, arbitrarily

fix hR,t+1
i ∈ JR,t+1

i , ζti ∈ {0, 1}t−1, yt+1 ∈ Y t+1 [̊hR,t+1
i ], and ζ i,t ∈ {0, 1}. Whenever we write

(at, st+1), it means the components in yt+1.
Since θ, ζ, and randomizations under

(
σ̃k, µ̃

)
are independent across players, we have

δk(hR,t+1
i , ζti, y

t+1, ζ i,t|ωT ∈ Ω0)

= δk(hR,ti , ζti, y
t|ωT ∈ Ω0)

×


1{ζi,t=0,mi,t=ai,t∈Ai,t\B̂i,t (̊hR,ti )}

(
1−√εk

) (
1−

(
1
k

)2(L+1)T
)
σ̂i,t(̊h

R,t
i )(ai,t)

+1{ζi,t=0,mi,t=?}
√
εk

(
1−

(
1
k

)2(L+1)T
)((

1−√εk
)
σ̂i,t(̊h

R,t
i )(ai,t) +

√
εk

|Ai,t|

)
+1{ζi,t=1,mi,t=ai,t∈Ai,t\Di,t (̊hR,ti )}

(
1
k

)2(L+1)T 1

|Ai,t|−|Di,t (̊hR,ti )|



×
∑

θ−i,t,ζ−i,t


∏

j 6=i:θj,t=0,ζj,t=0

(
1−√εk

) (
1−

(
1
k

)2(L+1)T
)
σ̂j,t(y

t
j)(aj,t)

×
∏

j 6=i:θj,t=1,ζj,t=0

√
εk

(
1−

(
1
k

)2(L+1)T
)((

1−√εk
)
σ̂j,t(y

t
j)(aj,t) +

√
εk

|Aj,t|

)
×
∏

j 6=i:ζj,t=1,aj,t∈Aj,t\Dj,t(ytj)
(

1
k

)2(L+1)T 1

|Aj,t|−|Dj,t(ytj)|


×p(st+1|yt, at). (32)

By the inductive hypothesis, the first line of (32) equals

ϕRk (hR,ti , ζti)
(

Prσ̃
k,µ̃(λ(hR,ti ), yt) + eRk

(
hR,ti , ζti, y

t
))

.

Note that

Prσ̃
k,µ̃(a−i,t|λ(hR,ti ), yt) =

∏
j 6=i

(
(1− εk) σ̂j,t(ytj)(aj,t) +

εk
|Aj,t|

)
.

Define

ϕ̃k

(̊
hR,ti ,mi,t, ai,t, ζ i,t

)
=


1{ζi,t=0,mi,t=ai,t∈Ai,t\B̂i,t (̊hR,ti )}

(
1−√εk

) (
1−

(
1
k

)2(L+1)T
)
σ̂i,t(̊h

R,t
i )(ai,t)

+1{ζi,t=0,mi,t=?}
√
εk

(
1−

(
1
k

)2(L+1)T
)((

1−√εk
)
σ̂i,t(̊h

R,t
i )(ai,t) +

√
εk

|Ai,t|

)
+1{ζi,t=1,mi,t=ai,t∈Ai,t\Di,t (̊hR,ti )}

(
1
k

)2(L+1)T 1

|Ai,t|−|Di,t (̊hR,ti )|
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and

ẽk
(
yt+1

)
=

∑
θ−i,t,ζ−i,t


∏

j 6=i:θj,t=0,ζj,t=0

(
1−√εk

) (
1−

(
1
k

)2(L+1)T
)
σ̂j,t(y

t
j)(aj,t)

×
∏

j 6=i:θj,t=1,ζj,t=0

√
εk

(
1−

(
1
k

)2(L+1)T
)((

1−√εk
)
σ̂j,t(y

t
j)(aj,t) +

√
εk

|Aj,t|

)
×
∏

j 6=i:ζj,t=1,aj,t∈Aj,t\Dj,t(ytj)
(

1
k

)2(L+1)T 1

|Aj,t|−|Dj,t(ytj)|


−Prσ̃

k,µ̃(a−i,t|λ(hR,ti ), yt)

=

(
1

k

)2(L+1)T ∏
j 6=i

(
1{aj,t∈Aj,t\Dj,t(ytj)}
|Aj,t| −

∣∣Dj,t(ytj)
∣∣ − (1− εk) σ̂j,t(ytj)(aj,t)−

εk
|Aj,t|

)
.

Substituting these into (32), we have

δk(hR,t+1
i , ζti, y

t+1, ζ i,t|ωT ∈ Ω0)

= ϕRk (hR,ti , ζti)
(

Prσ̃
k,µ̃(λ(hR,ti ), yt) + eRk

(
hR,ti , ζti, y

t
))

×ϕ̃k
(̊
hR,ti ,mi,t, ai,t, ζ i,t

)
×
(

Prσ̃
k,µ̃(a−i,t|λ(hR,ti ), yt) + ẽk

(
yt+1

))
×p(st+1|yt, at). (33)

Next, define

ϕRk (hR,t+1
i , ζt+1

i ) = ϕRk (hR,ti , ζti)×
ϕ̃k

(̊
hR,ti ,mi,t, ai,t, ζ i,t

)
Prσ̃

k,µ̃
(
m∗i,t(h

R,t+1
i ), ai,t |̊hR,ti

) .
We can write

δk(hR,t+1
i , ζt+1

i , yt+1|ωT ∈ Ω0) (34)

= ϕRk (hR,t+1
i , ζt+1

i )


Prσ̃

k,µ̃(λ(hR,ti ), yt)× Prσ̃
k,µ̃(a−i,t|λ(hR,ti ), yt)

×Prσ̃
k,µ̃
(
m∗i,t(h

R,t+1
i ), ai,t|̊hR,ti

)
× p(st+1|yt, at)

+eRk

(
hR,t+1
i , ζti, y

t+1
)

 ,

where eRk
(
hR,t+1
i , ζt+1

i , yt+1
)
is defined to satisfy this equality given (33): that is,

eRk

(
hR,t+1
i , ζt+1

i , yt+1
)

=

(
ẽk (yt+1) Prσ̃

k,µ̃(λ(hR,ti ), yt)

+eRk

(
hR,ti , ζti, y

t
)(

Prσ̃
k,µ̃(a−i,t|λ(hR,ti ), yt) + ẽk (yt+1)

) )
×Prσ̃

k,µ̃
(
m∗i,t(h

R,t+1
i ), ai,t|yt

)
× p(st+1|yt, at).
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Since hR,ti is faithful, the distribution of player i’s message and action in period t is fully
determined by her own payoff-relevant history h̊R,ti . Hence,

Prσ̃
k,µ̃
(
m∗i,t(h

R,t+1
i ), ai,t |̊hR,ti

)
= Prσ̃

k,µ̃(m∗i,t(h
R,t+1
i ), ai,t|λ(hR,ti ), yt, a−i,t).

Given this equality, we have

Prσ̃
k,µ̃(λ(hR,ti ), yt)× Prσ̃

k,µ̃(a−i,t|λ(hR,ti ), yt)× Prσ̃
k,µ̃
(
m∗i,t(h

R,t+1
i ), ai,t |̊hR,ti

)
× p(st+1|yt, at)

= Prσ̃
k,µ̃(λ(hR,t+1

i ), yt+1).

Substituting this into (34), we have

δk(hR,t+1
i , ζt+1

i , yt+1|ωT ∈ Ω0)

= ϕRk (hR,t+1
i , ζt+1

i )
(

Prσ̃
k,µ̃(λ(hR,t+1

i ), yt+1) + eRk

(
hR,t+1
i , ζti, y

t+1
))

.

Finally, we have

lim
k→∞

eRk

(
hR,t+1
i , ζt+1

i , yt+1
)

(
1
k

)2(L+1)T
≤ lim

k→∞

ẽk (yt+1)(
1
k

)2(L+1)T
+
eRk

(
hR,ti , ζti, y

t
)

(
1
k

)2(L+1)T

(
1 + ẽk

(
yt+1

))
≤ 1 + t,

where the last line uses limk→∞
ẽk(yt+1)

( 1
k)

2(L+1)T ≤ 1 (and hence ẽk (yt+1) → 0 by (16)) and the

inductive hypothesis that limk→∞
eRk (hR,ti ,ζti,y

t)

( 1
k)

2(L+1)T ≤ t. Hence, (31) holds for t+ 1, as desired.

G Proof of Lemma 6

We prove (26); the proof of (27) is analogous. Let yti = h̊R,ti . By definition of β
σ∗,πt∗
i,t , (26) is

equivalent to

lim
k→∞

δk
(
f≥t

∗
, yt|hR,ti

)
= lim

k→∞

πkt∗(f
≥t∗ , yt

∗
) Prσ

∗ (
yt|f≥t∗ , yt∗

)∑
ỹt∈Y t[yti ],f̃≥t

∗ πkt∗
(
f̃≥t∗ , ỹt∗

)
Prσ

∗
(
ỹt|f̃≥t∗ , ỹt∗

) . (35)

From the definition of δk, δk
(
f≥t

∗
, yR,t|hR,ti , t∗, ζt

∗

i

)
equals

A
∑

f<t
∗

i ,θt
∗
i ,(f<t

∗
j ,θt

∗
j ,m

t∗
j )

j 6=i
πkt∗
(
f≥t

∗
, yt
∗)

Prσ
∗ (
yt|f≥t∗ , yt∗

)
Bi

∏
j 6=iCjD

A
∑

ỹt∈Y t[yti ],f̃≥t
∗
∑

f<t
∗

i ,θt
∗
i ,(f<t

∗
j ,θt

∗
j ,m

t∗
j )

j 6=i
πkt∗
(
f̃≥t∗ , ỹt∗

)
Prσ

∗
(
ỹt|f̃≥t∗ , ỹt∗

)
Bi

∏
j 6=i C̃jD̃

,

(36)
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where the summation is taken over f<t
∗

i ∈ supp µ̃<t
∗

i , θt
∗

i ∈ {0, 1}t
∗−1, and (f<t

∗
j , θt

∗

j ,m
t∗
j ) ∈

supp µ̃<t
∗

j × {0, 1}t∗−1 ×
∏t∗−1

τ=1 (Aj,τ ∪ {?}) ∀j, and we define

A =
(

1
k

)(L+1)t∗+2(L+1)T |ζt∗i | , Bi = 1
#Mi(yt

∗
i )
,

Cj = 1
#Mj(yt

∗
j )
, C̃j = 1

#Mj(ỹt
∗
j )
,

D = 1{mt∗∈Mt∗ (yt∗ ,f<t∗ ,θt
∗
,ζt
∗
i )}, D̃ = 1{mt∗∈Mt∗ (ỹt∗ ,f<t∗ ,θt

∗
,ζt
∗
i )}.

Note that A and Bi cancel in (36). Moreover, we have

D = D00
i ×D01

i ×D•1i ×
∏

j 6=i
(
D0
j ×D1

j

)
,

D̃ = D00
i ×D01

i ×D•1i ×
∏

j 6=i

(
D̃0
j × D̃1

j

)
,

where

D00
i = 1{mi,τ=f<t

∗
i,τ (yτi ) ∀τ≤t∗−1 s.t. ζi,τ=θi,τ=0}, D01

i = 1{mi,τ=? ∀τ≤t∗−1 s.t. ζi,τ=0 and θi,τ=1},
D•1i = 1{mi,τ∈Ai,τ\Di,τ (yτi ) ∀τ≤t∗−1 s.t. ζi,τ=1}, D0

j = 1{mj,τ=f<t
∗

j,τ (yτj ) ∀τ≤t∗−1 s.t. θj,τ=0},
D1
j = 1{mj,τ=? ∀τ≤t∗−1 s.t. θj,τ=1}, D̃0

j = 1{mj,τ=f̃<t
∗

j,τ (ỹτj ) ∀τ≤t∗−1 s.t. θj,τ=0},
D̃1
j = 1{mj,τ=? ∀τ≤t∗−1 s.t. θj,τ=1}.

(The pneumonic here is that the first superscript of Di indicates the value of θi ∈ {0, 1},
where • indicates that θi is not specified, and the second superscript indicates the value of
ζ i ∈ {0, 1}. For player j 6= i, the superscript of Dj indicates the value of θj ∈ {0, 1}.)
Having cancelledA andBi, since (i) the termD00

i D
01
i D

•1
i does not depend on

(
f<t

∗
j , θt

∗

j ,m
t∗
j

)
j 6=i,

(ii) D00
i D

01
i D

•1
i is the only term that depends on (f<t

∗
i , θt

∗

i ) in the numerator of (36), and
(iii)

∏
j 6=i
(
CjD

0
jD

1
j

)
is the only term that depends on

(
f<t

∗
j , θt

∗

j ,m
t∗
j

)
j 6=i, the numerator of

(36) equals

 ∑
f<t
∗

i ,θt
∗
i

D00
i D

01
i D

•1
i

×
πkt∗ (f≥t∗ , yt∗)Prσ

∗ (
yt|f≥t∗ , yt∗

) ∑
(f<t

∗
j ,θt

∗
j ,m

t∗
j )

j 6=i

∏
j 6=i
(
CjD

0
jD

1
j

) .

Since D00
i D

01
i D

•1
i also does not depend on f≥t and yt−i, the denominator of (36) equals ∑

f<t
∗

i ,θt
∗
i

D00
i D

01
i D

•1
i

×
 ∑
ỹt∈Y t[yti ],f̃≥t

∗

πkt∗
(
f̃≥t, ỹt

∗
)

Prσ
∗
(
ỹt|f̃≥t∗ , ỹt∗

) ∑
(f<t

∗
j ,θt

∗
j ,m

t∗
j )

j 6=i

∏
j 6=i
(
CjD

0
jD

1
j

) .
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Moreover,
∑

f<t
∗

j ,θt
∗
j ,m

t∗
j
CjD

0
jD

1
j = 1 by (15). Hence, (36) equals

πkt∗(f
≥t∗ , yt

∗
) Prσ

∗ (
yt|f≥t∗ , yt∗

)∑
ỹt∈Y t[yti ],f̃≥t

∗ πkt∗
(
f̃≥t∗ , ỹt∗

)
Prσ

∗
(
ỹt|f̃≥t∗ , ỹt∗

) .
Taking the limit k →∞, we obtain (35).

H Proof of Claims 1—4 of Proposition 4

We postpone the proof of Claim 5 to Appendix J, since it relies on results proved in Appendix
I.

H.1 Proof of Claim 1

We first show that, if an outcome can be implemented in a NE in which no player can detect
another’s unilateral deviation, it can also be implemented in a canonical NE in which no
player can detect another’s unilateral deviation.

Lemma 7 For any game G = (Γ,C) and NE (σ, φ) with supp ρσ,φi =
⋃
j 6=i,0

⋃
σ′j∈Σj

supp ρ
σ′j ,σ−j ,φ

i

for all i 6= 0, there exists a canonical NE
(
σ̃, φ̃

)
in game G∗ = (Γ,C∗) such that ρσ,φ = ρσ̃,φ̃

and supp ρσ̃,φ̃i =
⋃
j 6=i,0

⋃
σ̃′j∈Σ∗j

supp ρ
σ̃′j ,σ̃−j ,φ̃

i for all i 6= 0.

Proof. Fix such a G and (σ, φ). Let
(
σ̃, φ̃

)
be the profile in G∗ constructed in the proof

of Proposition 2. Recall that ρσ̃,φ̃ = ρσ,φ. By Lemma 1, for each i 6= 0, j 6= i, and σ̃′j ∈ Σ∗j ,

there exists a strategy σ′j ∈ Σj such that ρ
σ′j ,σ−j ,φ

i = ρ
σ̃′j ,σ̃−j ,φ̃

i . Hence, we have

supp ρσ̃,φ̃i = supp ρσ,φi =
⋃
j 6=i,0

⋃
σ′j∈Σj

supp ρ
σ′j ,σ−j ,φ

i ⊃
⋃
j 6=i,0

⋃
σ̃′j∈Σ∗j

supp ρ
σ̃′j ,σ̃−j ,φ̃

i ⊃ supp ρσ̃,φ̃i .

Thus, let (σ, φ) be a canonical NE in gameG∗ = (Γ,C∗) such that supp ρσ,φi =
⋃
j 6=i,0

⋃
σ′j∈Σ∗j

supp ρ
σ′j ,σ−j ,φ

i for all i 6= 0. We first construct a (possibly non-canonical) SE in G∗ with out-
come ρσ,φ. Then we construct a canonical SE with the same outcome.
Non-canonical SE construction: Denote the set of on-path histories for player i by Ĥi =

{hi ∈ Hi : Prσ,φ (hi) > 0}. Since (σ, φ) is canonical, hi ∈ Ĥi if and only if h̊i ∈ supp ρσ,φi and
ri,t = (ai,t−1, si,t) and mi,t = ai,t for all t.
For each k, let σki denote the perturbation of σi where player i trembles uniformly with

probability |Ri,t| /k at each reporting history hR,ti ∈ HR,t
i , and trembles uniformly with

probability |Ai,t| /k at each acting history hA,ti ∈ H
A,t
i .

For each k, let
(
Γk,C∗

)
denote the constrained game where the mediator follows strategy

φ while each player i is required to play σR,ki,t

(
hR,ti

)
at each on-path history hR,ti ∈ Ĥ

R,t
i , is
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required to play σA,ki,t

(
hA,ti

)
at each on-path history hA,ti ∈ ĤA,t

i , is required to send each

report with probability no less than 1/k at each off-path history hR,ti ∈ HR,t
i \ ĤR,t

i , and
is required to take each action with probability no less than 1/k at each off-path history
hA,ti ∈ HA,t

i \ ĤA,t
i . By standard arguments, this game admits a NE

(
σ̄k, φ

)
. Taking a

convergent subsequence if necessary, let (σ̄, φ) = limk→∞
(
σ̄k, φ

)
. Clearly, ρσ̄,φ = ρσ,φ.

Let Mi,t

(
hR,ti , ri,t

)
denote the set of messages mi,t that player i receives with positive

probability at history
(
hR,ti , ri,t

)
under profile

(
σ̄k, φ

)
. Since σ̄k has full support, this set

depends only on player i’s reports and messages
(
rt+1
i ,mt

i

)
at history

(
hR,ti , ri,t

)
. Therefore,

we can define a mediation range Q by Qi,t

(
rt+1
i ,mt

i

)
= Mi,t

(
hR,ti , ri,t

)
for all i, t, rt+1

i , mt
i,

and hR,ti such that
(
rt+1
i ,mt

i

)
equals i’s reports and messages at

(
hR,ti , ri,t

)
.

For each k, let φk denote the perturbation of φ where the mediator trembles uniformly
with probability

∣∣Qi,t

(
rt+1
i ,mt

i

)∣∣ /kN |Z| over messagesmi,t ∈ Qi,t

(
rt+1
i ,mt

i

)
at each

(
rt+1
i ,mt

i

)
,

independently across i and t. Define a belief system β as limk→∞ Prσ̄
k,φk . By construction of

the relative tremble probabilities for players and the mediator, for each i, t, and hR,t ∈ HR,t|Q,
we have

βi,t(h
R,t|hR,ti ) = lim

k→∞
Prσ̄

k,φk(hR,t|hR,ti ) = lim
k→∞

Prσ̄
k,φ(hR,t|hR,ti ),

and similarly for βi,t(h
A,t|hA,ti ).

Let J be the set of histories compatible with the mediation range Q, and let K be the
set of the mediator’s history compatible with the mediation range Q.
We show that (σ̄, φ, J,K, β) is a quasi-SE inG∗. The two conditions for validity hold since

the messages are within the mediation range as long as the mediator follows φ. Consistency
of β is by construction. Sequential rationality at off-path histories hi ∈ Ji \ Ĥi follows from
a standard upper hemi-continuity argument. To verify sequential rationality at on-path
histories, fix hR,ti ∈ Ĥ

R,t
i , note that

βi,t(h
R,t|hR,ti ) = lim

k→∞
Prσ̄

k,φ(hR,t|hR,ti ) = Prσ̄,φ
(
hR,t|hR,ti

)
= Prσ,φ

(
hR,t|hR,ti

)
, (37)

where the second equality follows because Prσ̄,φ
(
hR,ti

)
= Prσ,φ

(
hR,ti

)
> 0. Let Ĥ = {h ∈ J :

Prσ,φ (h) > 0}. (Note that Ĥ is not necessarily equal to
∏

i Ĥi.) Since
⋃
σ′i∈Σi

supp ρ
σ′i,σ−i,φ
j =

supp ρσ,φj for each j 6= i, we have

Prσ
′
i,σ−i,φ

(̊
hT+1
j ∈ supp ρσ,φj ∀j 6= i|hR,t

)
= 1

for all hR,t ∈ ĤR,t and σ′i ∈ Σ∗i .
47 Since (σ, φ) is canonical, with probability 1 conditional on

hR,t ∈ ĤR,t, aj,τ = mj,τ and rj,τ = (aj,τ−1, sj,τ ) for each τ ≥ t. Hence,

Prσ
′
i,σ−i,φ

(
hT+1
j ∈ Ĥj ∀j 6= i|hR,t

)
= 1.

47Note that Prσ
′
i,σ−i,φ is well-defined since (σ̄, φ, J,K) is valid.
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Finally, since σ−i and σ̄−i coincide at all on-path histories, we have

Prσ
′
i,σ̄−i,φ

(
hT+1
j ∈ Ĥj ∀j 6= i|hR,t

)
= 1. (38)

By (37), player i’s belief over hR,t ∈ JR,t at hR,ti under β is the same as the conditional
probability distribution over hR,t ∈ JR,t at hR,ti under (σ, φ); and for each hR,t, by (38),
the conditional probability distribution over Z induced by (σ′i, σ̄−i, φ) is the same as that
induced by (σ′i, σ−i, φ). Hence, since (σ, φ) is a NE, σi is sequentially rational at h

R,t
i . The

argument for acting histories hA,ti ∈ Ĥ
A,t
i is analogous.

Canonical SE construction: First, construct a canonical strategy profile (σ̃, φ̃) from (σ̄, φ)
as in the proof of Proposition 2. As in that proof, we let r and m denote the mediator’s
fictitious reports and messages, and let r̃ and m̃ denote actual reports and messages. Here
we also let h̃R,t ∈ H̃R,t and h̃A,t ∈ H̃A,t denote the reporting and acting histories without
fictitious reports or messages. Thus,

(
σ̃, φ̃

)
is a canonical NE satisfying ρσ̃,φ̃ = ρσ,φ. To

complete the proof, we construct beliefs β̃, subsets of histories J̃ and K̃, and a mediation
range Q̃ such that (σ̃, φ̃, J̃ , K̃, β̃) is a quasi-SE and, for each i, J̃i includes all histories where
player i has not lied to the mediator or received a message outside the mediation range.
For each k, let (σ̃k, φ̃

k
) denote the perturbation of (σ̃, φ̃) where (i) players report honestly

with probability 1 at all reporting histories h̃R,ti , (ii) players tremble uniformly over actions
with probability |Ai,t| /k at all acting histories h̃A,ti , and (iii) the mediator trembles uniformly
with probability |Ri,t| /k when she draws fictitious report ri,t at history (r̃t+1, rt,mt, m̃t)
(but does not tremble when he draws fictitious messages mt or recommendations m̃t). By
construction, for each sT+1, rT+1, mT+1, and aT+1, we have

Prσ̃
k,φ̃

k (
sT+1, rT+1,mT+1, aT+1

)
= Prσ̄

k,φ
(
sT+1, rT+1,mT+1, aT+1

)
. (39)

Let M̃i,t

(
h̃R,ti , r̃i,t

)
denote the set of messages m̃i,t that player i receives with positive

probability at history
(
h̃R,ti , r̃i,t

)
under profile (σ̃k, φ̃

k
). Since players −i take all actions with

positive probability and the mediator selects each fictitious report with positive probability,
this set depends only on player i’s reports and messages

(
r̃t+1
i , m̃t

i

)
at
(
h̃R,ti , r̃i,t

)
. Therefore,

we can define a mediation range Q̃ by Q̃i,t

(
r̃t+1
i , m̃t

i

)
= M̃i,t

(
h̃R,ti , r̃i,t

)
for all i, t, r̃t+1

i ,

m̃t
i, and h̃

R,t
i such that

(
r̃t+1
i , m̃t

i

)
equals player i’s reports and messages at

(
h̃R,ti , r̃i,t

)
. By

construction, Prσ̃
k,φ̃

k
(
m̃i,t|h̃R,ti , r̃i,t

)
> 0 if and only if m̃i,t ∈ Q̃i,t

(
r̃t+1
i , m̃t

i

)
.

For each i, let J̃A,T+
i equal the set of histories h̃T+1

i such that Prσ̃
k,φ̃

k
(
h̃T+1
i

)
> 0. Let

K̃T+ equal the set of mediator histories
(
r̃T+1, m̃T+1

)
such that there exists σ̂ ∈ Σ such

that Prσ̂,φ̄
k (
r̃T+1, m̃T+1

)
> 0. Let the other elements of J̃ and K̃ include all truncations of

histories in J̃A,T+ and K̃T+. Since J̃i includes all histories where player i has not lied to the
mediator or received a message outside the mediation range, (σ̃, φ̃, J̃ , K̃) is valid.
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Define a belief system β̃ on
(
J̃ , K̃

)
as limk→∞ Prσ̃

k,φ̃
k

. This is well defined because

Prσ̃
k,φ̃

k

(h̃R,ti ) > 0 and Prσ̃
k,φ̃

k

(h̃A,ti ) > 0 for all i, t, h̃R,ti ∈ J̃
R,t
i , and h̃A,ti ∈ J̃

A,t
i . By construc-

tion, β̃ is consistent, and for each h̃R,ti ∈ J̃R,ti and h̃R,t with β̃i,t
(
h̃R,t|h̃R,ti

)
> 0, all players

have been truthful at h̃R,t.
It remains to show that (σ̃, φ̃, J̃ , K̃, β̃) is sequentially rational. We prove this for reporting

histories; the argument for acting histories is analogous. Suppose towards a contradiction
that there exist i 6= 0, t, h̃R,ti ∈ J̃

R,t
i , and a strategy σ̃′i ∈ Σ∗i such that∑

h̃R,t∈H̃R,t[h̃R,ti ]|J̃,K̃ ,rt,mt

β̃i,t

(
h̃R,t, rt,mt|h̃R,ti

)
ūi

(
σ̃′i, σ̃−i, φ̃|h̃R,t, rt,mt

)
>

∑
h̃R,t∈H̃R,t[h̃R,ti ]|J̃,K̃ ,rt,mt

β̃i,t

(
h̃R,t, rt,mt|h̃R,ti

)
ūi

(
σ̃, φ̃|h̃R,t, rt,mt

)
.

Here, β̃ naturally extends to the belief about the profile of the history h̃R,t and fictitious
reports and messages (rt,mt). This implies that there exists (rti ,m

t
i) with β̃i,t

(
rti ,m

t
i|h̃

R,t
i

)
>

0 such that ∑
h̃R,t∈H̃R,t[h̃R,ti ]|J̃,K̃ ,rt,mt

β̃i,t

(
h̃R,t, rt,mt|h̃R,ti , rti ,m

t
i

)
ūi

(
σ̃′i, σ̃−i, φ̃|h̃R,t, rt,mt

)
>

∑
h̃R,t∈H̃R,t[h̃R,ti ]|J̃,K̃ ,rt,mt

β̃i,t

(
h̃R,t, rt,mt|h̃R,ti , rti ,m

t
i

)
ūi

(
σ̃, φ̃|h̃R,t, rt,mt

)
,

where the summation is taken over (rt,mt) whose i-component equals (rti ,m
t
i).

Since player i believes that nobody has lied to the mediator, by the same construction
as in the proof of Lemma 1, there exists σ′i ∈ Σ∗i such that, for each

(
h̃R,t, rt,mt

)
=

(st+1, r̃t, rt,mt, m̃t, at) with β̃i,t
(
h̃R,t, rt,mt|h̃R,ti , rti ,m

t
i

)
> 0, we have

ūi

(
σ̃′i, σ̃−i, φ̃|h̃R,t, rt,mt

)
= ūi

(
σ′i, σ−i, φ|st+1, rt,mt, at

)
.

Similarly, by construction of
(
σ̃, φ̃

)
, we have

ūi

(
σ̃, φ̃|h̃R,t, rt,mt

)
= ūi

(
σ, φ|st+1, rt,mt, at

)
.
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In total, there exist i 6= 0, t, h̃R,ti ∈ J̃
R,t
i , (rti ,m

t
i) with β̃i,t

(
rti ,m

t
i|h̃

R,t
i

)
> 0, and a strategy

σ′i ∈ Σ∗i such that∑
st+1,rt,mt,at

β̃i,t

(
st+1, rt,mt, at|h̃R,ti , rti ,m

t
i

)
ūi
(
σ′i, σ−i, φ|st+1, rt,mt, at

)
>

∑
st+1,rt,mt,at

β̃i,t

(
st+1, rt,mt, at|h̃R,ti , rti ,m

t
i

)
ūi
(
σ, φ|st+1, rt,mt, at

)
,

where the summation is take over (st+1, rt,mt, at) whose i-component corresponds to the

counterpart of
(
h̃R,ti , rti ,m

t
i

)
.

Since (σ̄, φ, J,K, β) is a quasi-SE in G∗, to derive a contradiction, it remains to show

that, for each i 6= 0, t, h̃R,ti = (st+1
i , r̃ti , m̃

t
i, a

t
i) ∈ J̃

R,t
i , (rti ,m

t
i) with β̃i,t

(
rti ,m

t
i|h̃

R,t
i

)
> 0, and

(st+1, rt,mt, at) whose i-component equals
(
st+1
i , rti ,m

t
i, a

t
i

)
, we have

β̃i,t
(
st+1, rt,mt, at|st+1

i , r̃ti , r
t
i ,m

t
i, m̃

t
i, a

t
i

)
= βi,t

(
st+1, rt,mt, at|st+1

i , rti ,m
t
i, a

t
i

)
. (40)

By construction, given β̃i,t
(
rti ,m

t
i|h̃

R,t
i

)
> 0, we have

(
st+1
i , rti ,m

t
i, a

t
i

)
∈ JR,ti .

To prove (40), note that, for all k we have

Prσ̃
k,φ̃

k (
st+1, rt,mt, at|st+1

i , r̃ti , r
t
i ,m

t
i, m̃

t
i, a

t
i

)
= Prσ̃

k,φ̃
k (
st+1, rt,mt, at|st+1

i , rti ,m
t
i, a

t
i

)
= Prσ̄

k,φ
(
st+1, rt,mt, at|st+1

i , rti ,m
t
i, a

t
i

)
,

where the first equality follows because (i) given h̃R,ti ∈ J̃
R,t
i , we have r̃i,τ = (ai,τ−1, si,τ ) for

all τ ≤ t and (ii) the distribution of m̃t
i is fully determined by (r̃ti , r

t
i ,m

t
i), and the second

equality follows from (39). Therefore,

β̃i,t
(
st+1, rt,mt, at|st+1

i , r̃ti , r
t
i ,m

t
i, m̃

t
i, a

t
i

)
= lim

k→∞
Prσ̃

k,φ̃
k (
st+1, rt,mt, at|st+1

i , r̃ti , r
t
i ,m

t
i, m̃

t
i, a

t
i

)
= lim

k→∞
Prσ̄

k,φ
(
st+1, rt,mt, at|st+1

i , rti ,m
t
i, a

t
i

)
= βi,t

(
st+1, rt,mt, at|st+1

i , rti ,m
t
i, a

t
i

)
.

H.2 Proof of Claims 2, 3, and 4

Claim 2: Note that the condition supp ρσi =
⋃
j 6=i,0

⋃
σ′j∈Σj

supp ρ
σ′j ,σ−j ,φ

i is vacuous when
N = 1. Hence, the result follows from Claim 1.
Claim 3: The only difference from the proof of Claim 1 is in the verification that the

non-canonical assessment (σ̄, φ, J,K, β) in G∗ is sequentially rational at on-path histories
hR,ti ∈ ĤR,t

i and hA,ti ∈ ĤA,t
i . There, this followed from equations (37) and (38). Here,

note that in game G∗ player i faces sequential rationality constraints only in periods t ≥ ti.
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Sequential rationality at on-path histories in period ti now follows from (37) and the fact
that player i’s payoff does not depend on actions taken in periods τ ≥ ti (other than her
own action ai,ti). The latter fact also implies sequential rationality in periods t > ti.
Claim 4: Claim 4 follows from the fact that players’reports are always canonical in the

equilibrium that will be constructed in the proof of Proposition 5.

I Results for CPPBE

This section contains our analysis of CPPBE, culminating in the proofs of Propositions 7
and 8.

I.1 Quasi-Strategies and Quasi-CPPBE

As in Appendix D.1, we begin by introducing notions of “quasi-strategy,”which is simply
a partially defined strategy, and “quasi-equilibrium,”which is a profile of quasi-strategies
where incentive constraints are satisfied wherever strategies are defined.
Fix a game G = (Γ,C). A quasi-strategy (χi, Ji) for each player i is defined exactly as in

Appendix D.1.
Intuitively, a quasi-strategy (ψ, P, F |P ) for the mediator consists of a subset of reports P ,

a set of mediation plans F |P that specify messages only after reports in P , and a probability
distribution ψ over F |P . Formally, a quasi-strategy (ψ, P, F |P ) for the mediator consists of

1. A set of reports P =
∏T+1

t=1 P
t with P t ⊂ Rt for each t, such that (i) for every rt ∈ P t

there exists rT+1 ∈ P T+1 that coincides with rt up to period t, and (ii) for every
rT+1 ∈ P T+1 and t, the period-t truncation of rT+1, denoted rt+1, satisfies rt+1 ∈ P t+1.

2. A set F |P , where each f = (ft)t ∈ F |P consists of, for each t = 1, . . . , T , a function
ft : P t+1 →Mt.

3. A probability distribution ψ ∈ ∆ (F |P ).

Let Z|J,P be the set of
(
f, hT+1

)
such that hT+1 =

(
sT+1, rT+1,mT+1, aT+1

)
∈ HT+1,

hT+1
i ∈ JT+1

i for each i, and fi,t (rt+1) = mi,t for each i and t. For each i and hT+1
i ∈ JT+1

i , let
Z[hT+1

i ]|J,P =
{(
f, hT+1

)
∈ Z|J,P : hT+1 ∈ HT+1[hT+1

i ]
}
. Define ZR,t|J,P , ZR,t+|J,P , ZA,t|J,P

and ZR,t+1|J,P as the projections of Z|J,P to F × HR,t, F × HR,t × Rt, F × HA,t, and
F ×HA,t × At, respectively. Define ZR,t[hR,ti ]|J,P and ZA,t[hA,ti ]|J,P analogously.
We say a quasi-strategy profile (χ, ψ, J, P, F |P ) is valid if

1. JR,1 = S1. For each t ≥ 1, f ∈ F |P , hR,t with
(
f, hR,t

)
∈ ZR,t|J,P , i 6= 0, σi, τ ≥ t, and

hR,τ with Prσi,χ−i,f
(
hR,τ |hR,t

)
> 0, we have hR,τj ∈ JR,τj for each j 6= i and the report-

component rτ of hR,τ lies in P τ .48 Similarly, for each rτ with Prσi,χ−i,f
(
hR,τ , rτ |hR,t

)
>

0, we have (rτ , rτ ) ∈ P τ+1, where rτ is the report in hR,τ ; and for each mτ with

48If hA,t−1j 6∈ JA,t−1j for some j 6= i or rt /∈ P t, then Prσi,χ−i,f
(
hR,τ |hR,t

)
is not well-defined. In this case,

the condition vacuously holds. The same caution applies to the following conditions.
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Prσi,χ−i,f
(
hR,τ , rτ ,mτ |hR,t

)
> 0, we have

(
hR,τj , rj,τ ,mj,τ

)
∈ JA,τj for each j 6= i.

The same condition holds when we replace hR,t with
(
f, hR,t

)
∈ ZR,t|J,P by hA,t with(

f, hA,t
)
∈ ZA,t|J,P . That is, no unilateral player-deviation leads to a history where

either the mediator’s or another player’s quasi-strategy is undefined.

2. For each i and t, if hR,ti ∈ J
R,t
i then there exist f and hR,t−i ∈ J

R,t
−i such that (f, hR,ti , hR,t−i ) ∈

ZR,t|J,P . Similarly, for each i and t, if hA,ti ∈ JA,ti then there exist f and hA,t−i ∈ J
A,t
−i

such that (f, hA,ti , hA,t−i ) ∈ ZA,t|J,P .

The first requirement implies that, for every valid quasi-strategy profile (χ, ψ, J,K), every
mediation plan f and terminal history hT+1 with Prχ,ψ

(
f, hT+1

)
> 0 lies inZ|J,P . The second

requirement implies that the projection of Z|J,P on HT+1
i includes all histories hT+1

i ∈ JT+1
i .

Finally, a quasi-CPPBE
(
χ, ψ, J, P, F |P , ψ̄

)
is a valid quasi-strategy profile (χ, ψ, J, P, F |P )

together with a CPS ψ̄ on Z|J,P such that no player has a profitable deviation at any history
in JR,ti and JA,ti : that is, we have

1. [CPS consistency] For all f , t, hR,t, rt,mt, at, and st+1 such that
(
f, hR,t, rt,mt, at, st+1

)
∈

ZR,t+1|J,P , we have

ψ̄ (f) = ψ (f) , ψ̄
(
rt|f, hR,t

)
=
∏N

i=0 χ
R
i,t

(
ri,t|hR,ti

)
,

ψ̄
(
mt|f, hR,t, rt

)
= 1{mt=ft(rt,rt)}, ψ̄

(
at|f, hR,t, rt,mt

)
=
∏N

i=0 χ
A
i,t

(
ai,t|hR,ti , ri,t,mi,t

)
,

ψ̄
(
st+1|f, hR,t, rt, at

)
= p

(
st+1|̊hA,t, at

)
,

2. [Sequential rationality of reports] For all i 6= 0, t, σ′i ∈ Σi, and h
R,t
i ∈ J

R,t
i , we have∑

(f,hR,t)∈ZR,t[hR,ti ]|J,P

ψ̄
(
f, hR,t|hR,ti

)
ūi
(
χ, f |hR,t

)
≥

∑
(f,hR,t)∈ZR,t[hR,ti ]|J,P

ψ̄
(
f, hR,t|hR,ti

)
ūi
(
σ′i, χ−i, f |hR,t

)
.

(41)

3. [Sequential rationality of actions] For all i 6= 0, t, σ′i ∈ Σi, and h
A,t
i ∈ J

A,t
i , we have∑

(f,hA,t)∈ZA,t[hA,ti ]|J,P

ψ̄
(
f, hA,t|hA,ti

)
ūi
(
χ, f |hA,t

)
≥

∑
(f,hA,t)∈ZA,t[hA,ti ]|J,P

ψ̄
(
f, hA,t|hA,ti

)
ūi
(
σ′i, χ−i, f |hA,t

)
.

(42)

Let ρχ,ψ ∈ ∆ (X) denote the outcome distribution induced by valid quasi-strategy profile
(χ, ψ). The following lemma says that it is without loss to consider quasi-CPPBE rather
than fully specified CPPBE.

Lemma 8 For any game G and outcome ρ ∈ ∆ (X), ρ is a CPPBE outcome if and only if
ρ = ρχ,ψ for some quasi-CPPBE profile

(
χ, ψ, J, P, F |P , ψ̄

)
in G. Moreover, given a quasi-

CPPBE profile
(
χ, ψ, J, P, F |P , ψ̄

)
, for each Q such that J ⊂ Z|Q, there exists a CPPBE

(σ, µ,Q, µ̄) such that (σ, µ) and (χ, ψ) coincide on (J, P ).
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Proof. Fix a gameG. If (σ, µ,Q, µ̄) is a CPPBE, then let J be the set of histories compatible
with the mediation range: for each t, define

JR,ti =
{
hR,ti ∈ H

R,t
i : mi,τ ∈ Qi,τ (rτi ,m

τ
i , ri,τ ) ∀τ < t

}
,

JA,ti =
{
hA,ti ∈ H

A,t
i : mi,τ ∈ Qi,τ (rτi ,m

τ
i , ri,τ ) ∀τ ≤ t

}
,

JR,t+i =
{(
hR,ti , ri,t

)
: hR,ti ∈ J

R,t
i and ri,t ∈ Ri,t

}
, and

JA,t+i =
{(
hA,ti , ai,t

)
: hA,ti ∈ J

A,t
i and ai,t ∈ Ai,t

}
.

Let P = R, and let F |P be the set of mediation plans compatible with the mediation range:

F |P =

T∏
t=1

{
ft :

t∏
τ=1

Rτ → Qt

(
rt, (fτ (rτ , rτ ))

t−1
τ=1 , rt

)}
.

Given this definition, we now show that (σ, µ, J, P, F |P , µ̄) is a quasi-CPPBE. The two
defining conditions for validity holds, since (i) JR,1 = S1 by definition, (ii) histories outside
Ji cannot arise as long as the mediator follows µ, and (iii) every message history in J can
arise for some mediation plan in F |P . CPS consistency and sequential rationality follow from
the fact that (σ, µ,Q, µ̄) is a CPPBE.
For the converse, fix a quasi-CPPBE

(
χ, ψ, J, P, F |P , ψ̄

)
and a mediation range Q with

J ⊂ Z|Q. We say that a move distribution on Z|J,P is a triple
(
αF , αR, αA

)
, where αF ∈

∆(F |P ), αR =
(
αR,t

)T
t=1

with αR,t : ZR,t|J,P → ∆(Rt), and αA =
(
αA,t

)T
t=1

with αA,t :

ZA,t|J,P → ∆(At). A move distribution on Z|J,P has full support if we have (i) for each
f ∈ F |P , αF (f) > 0, (ii) for each

(
f, hR,t

)
∈ ZR,t|J,P , αR,t(rt|f, hR,t) > 0 if and only if

(hR,t, rt) ∈ ZR,t+|J,P , and (iii) for each
(
f, hA,t

)
∈ ZA,t|J,P , αA,t(at|f, hA,t) > 0 if and only if

(f, hA,t, at) ∈ Z t+1|J,P .
By Theorem 1 of Myerson (1986), every CPS is the limit of conditional probabilities

derived from a sequence of full support move distributions. Thus, there exists a sequence of
move distributions

(
αF,k, αR,k, αA,k

)
k
with full support on Z|J,P such that (i) αF,k(f)→ ψ (f)

for all f ∈ F |P , (ii) αR,k(rt|f, hR,t)→
∏N

i=0 χ
R
i,t

(
ri,t|hR,ti

)
for all

(
f, hR,t, rt

)
∈ ZR,t+|J,P , and

(iii) αA,k(at|f, hA,t)→
∏N

i=0 χ
A
i,t(ai,t|h

A,t
i ) for all

(
f, hA,t, at

)
∈ Z t+1|J,P . For each k, let

εk = min
t,(f,hR,t,rt,mt,at)∈Zt+1|J,P

min{αF,k,t(f), αR,k,t(rt|f, hR,t), αA,k,t(at|f, hR,t, rt,mt)} > 0. (43)

Let Rk
t (f, h

R,t) = suppαR,k,t(rt|f, hR,t) and Akt (f, hA,t) = suppαA,k,t(at|f, hR,t, rt,mt).
Given f ∈ F |P , denote the set of mediation plans that coincide with f after history J t

by

F (f) =

{
f ′ ∈ F |Q : f ′t−1(rt) = ft−1 (rt) for all t and rt

s.t. there exists hR,t ∈ JR,t with report component equal to rt
}
.

Note that, given J ⊂ Z|Q, validity implies that the mediator sends messages compatible
with mediation range Q for each rt such that there exists hR,t ∈ JR,t with report component
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equal to rt. Hence, F (f) is non-empty.
For each k, define an auxiliary game

(
Γk,C

)
as follows:

1. The mediator uses the mixed mediation plan µk ∈ ∆ (F |Q) defined as follows: (i) with
probability 1− εk

k
, draw f ∈ F |P according to αF,k ∈ ∆(F |P ), and then draw f ′ ∈ F |Q

uniformly at random from F (f); (ii) with probability εk
k
, draw f ′ ∈ F |Q uniformly at

random from F |Q.

2. Each player i chooses probability distributions σR,ki,t (·|hR,ti ) ∈ ∆(Ri,t) and σ
A,k
i,t (·|hA,ti ) ∈

∆(Ai,t) for each t, h
R,t
i ∈ H

R,t
i \J

R,t
i , and hA,ti ∈ H

A,t
i \J

A,t
i . At histories hR,ti ∈ J

R,t
i and

hA,ti ∈ J
A,t
i , player i is required to choose σR,ki,t (·|hR,ti ) = χR,ti,t

(
·|hR,ti

)
and σA,ki,t (·|hA,ti ) =

χA,ti,t

(
·|hA,ti

)
.

3. Given σk and f , the distribution of terminal histories HT+1 is determined recursively
as follows:

Given f ∈ F |Q and hR,t ∈ HR,t, each rt ∈ Rt is drawn with probability(
1− εk

k

∣∣Rt\Rk
t (f, h

R,t)
∣∣)αR,k(rt|f, hR,t) if

(
f, hR,t

)
∈ ZR,t|J,P ∧ rt ∈ Rk

t (f, h
R,t),

εk
k

if
(
f, hR,t

)
∈ ZR,t|J,P ∧ rt 6∈ Rk

t (f, h
R,t),∏N

i=0

((
1− εk

k
|Ri,t|

)
σR,ki,t (ri,t|hR,ti ) + εk

k

)
if
(
f, hR,t

)
6∈ ZR,t.

Given f ∈ F |Q and hA,t ∈ HA,t, each at ∈ At is drawn with probability(
1− εk

k

∣∣At\Akt (f, hA,t)∣∣)αA,k(at|f, hA,t) if
(
f, hA,t

)
∈ ZA,t|J,P ∧ at ∈ Akt (f, hA,t),

εk
k

if
(
f, hA,t

)
∈ ZA,t|J,P ∧ at 6∈ Akt (f, hA,t),∏N

i=0

((
1− εk

k
|Ai,t|

)
σA,ki,t (ai,t|hA,ti ) + εk

k

)
if
(
f, hA,t

)
6∈ ZA,t|J,P .

Given hA,t ∈ HA,t
t and at ∈ At, each st+1 ∈ St+1 is drawn with probability p

(
st+1|̊hA,t, at

)
.

4. Player i’s payoff at terminal history hT+1 is ui(̊hT+1).

As in the proof of Lemma 3,
(
Γk,C

)
admits a NE (σ̄k, µk). Moreover, for any σk,

(
σk, µk

)
has full support on F |Q × Z|Q in

(
Γk,C

)
. Hence, (σ̄k, µk) induces a CPS µ̄k on F |Q × Z|Q

by Bayes’rule.
Let (σ̄k, µk, µ̄k)k denote a sequence of NE (σ̄k, µk) and corresponding CPS’s µ̄k in

(
Γk,C

)
.

Taking a convergent subsequence if necessary, let (σ̄, µ, µ̄) = limk→∞(σ̄k, µk, µ̄k). Note that
(σ̄, µ) and (χ, ψ) coincide on (J, P ). We claim that (σ̄, µ,Q, µ̄) is a CPPBE in (Γ,C). Since
µ̄ is a CPS as the limit of conditional probabilities, it remains to verify sequential rationality.
The proof is exactly parallel to the corresponding part of the proof of Lemma 3. We include
it for completeness.
We consider reporting histories hR,ti ; the argument for acting histories h

A,t
i is analogous.

There are two cases, depending on whether or not hR,ti ∈ JR,ti . If hR,ti /∈ JR,ti , then hT+1
i /∈

JT+1
i for all hT+1

i that follow hR,ti , so by inspection the outcome distribution (and hence player
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i’s expected payoff) conditional on hR,t is continuous in σk, µk, εk, and k. Since σ̄ki,t
(
·|hR,ti

)
is sequentially rational in

(
Γk,C

)
(as
(
σ̄k, µk

)
is a NE in

(
Γk,C

)
where the distribution over

hT+1 has full support), it follows that σRi,t
(
·|hR,ti

)
is sequentially rational in (Γ,C).

Now consider the case where hR,ti ∈ JR,ti . We show that player i believes that hR,t ∈
ZR,t[hR,ti ]|J,P with probability 1. Note that, for each hT+1

i ∈ JT+1
i and

(
f, hT+1

)
6∈ ZR,t[hR,ti ]|J,P ,

there exists
(
f̃ , h̃T+1

)
∈ ZR,t[hR,ti ]|J,P such that

lim
k→∞

µ̄k(f, hT+1)

µ̄k(f̃ , h̃T+1)
= 0.

This follows because in
(
Γk,C

)
each “tremble” leading to a history outside J occurs with

probability at most εk/k, while every history hT+1
i ∈ JT+1

i occurs with positive probability
given move distribution

(
αF,k, αR,k, αA,k

)
(this is an implication of the third condition in the

definition of a valid quasi-strategy profile), and with this distribution each move occurs with
probability at least εk.
Therefore, for each hR,ti ∈ JR,ti and

(
f, hR,t

)
∈ ZR,t[hR,ti ]|J,P , we have µ̄(f, hR,t|hR,ti ) =

ψ̄(f, hR,t|hR,ti ), and the conditional probability that
(
f, hR,t

)
∈ ZR,t[hR,ti ]|J,P equals 1. Hence,

the fact that (41) holds with CPS ψ̄ implies that σRi,t(·|h
R,t
i ) = χi,t

(
·|hR,ti

)
is sequentially

rational in (Γ,C).

I.2 SCE Implies CPPBE

Lemma 9 For any base game Γ, mediation range Q, and SCE (µ,Q, µ̄), there exists a
canonical strategy profile σ and CPS µ̄′ such that (σ, µ,Q, µ̄′) is a CPPBE in (Γ,C∗) with
the same outcome distribution.

Proof. In the direct-communication game G∗ = (Γ,C∗), let J be the set of truthful histories
compatible with the mediation range: for each t, define

JR,ti =

{
hR,ti ∈ H

R,t
i :

ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi,τ (rτi ,m
τ
i , ri,τ ) ∀τ < t

}
,

JA,ti =

{
hA,ti ∈ H

A,t
i :

ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi,τ (rτi ,m
τ
i , ri,τ ) ∀τ ≤ t

}
,

JR,t+i =
{(
hR,ti , ri,t

)
: hR,ti ∈ J

R,t
i and ri,t = (ai,t−1, si,t)

}
, and

JA,t+i =
{(
hA,ti , ai,t

)
: hA,ti ∈ J

A,t
i and ai,t ∈ Ai,t

}
.

Let P = R, and let F |P be the set of mediation plans compatible with the mediation range:

F |P =

T∏
t=1

{
ft :

t∏
τ=1

Rτ → Qt

(
rt, (fτ (rτ , rτ ))

t−1
τ=1 , rt

)}
.
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Consider the quasi-strategy profile (χ, µ, J, P, F |P ) where, for each i, χi is honest and obe-
dient at each hi ∈ Ji. This quasi-strategy profile is valid, since (i) histories outside Ji can
arise only if player i is dishonest or the mediator uses a mediation plan outside F |P , and (ii)
every message history in J can arise for some mediation plan in F |P . Moreover, by inspec-
tion, (χ, µ, J, P, F |P , µ̄) is a quasi-CPPBE in G∗ if (µ,Q, µ̄) is a SCE. Hence, the former is
a quasi-CPPBE in G∗. Moreover, Ji includes all histories at which player i has been honest
and the mediator’s messages lie in the mediation range. Hence, Lemma 8 implies that there
exists a canonical CPPBE (σ, µ,Q, µ̄′) in G∗ with the same mediation range and outcome
as (µ,Q, µ̄).

I.3 CPPBE and Codominated Actions

We now show that, in any CPPBE, players do not take codominated actions at any history.

Lemma 10 For any game G, mediation range Q, and CPPBE (σ, µ,Q, µ̄), suppσAi,t(h
A,t
i )∩

Di,t(̊h
A,t
i ) = ∅ for all i, t, and hA,ti ∈ H

A,t
i .

I.3.1 Proof of Lemma 10

Fix a game G, mediation range Q, CPPBE (σ, µ,Q, µ̄), and sequence of full-support CPS’s(
µ̄k
)
k
converging to µ̄. For each i and t, the sequential rationality condition at history hA,ti

is ∑
(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄(f, hA,t|hA,ti )ūi
(
σ, f |hA,t

)
= max

σ′i∈Σi

∑
(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄(f, hA,t|hA,ti )ūi
(
σ′i, σ−i, f |hA,t

)
.

(44)
We wish to prove the following lemma, which establishes the corresponding sequential

rationality condition in the direct-communication game G∗. Let F̃ be the set of mediation
plans in game G∗. For each i, t, and yti ∈ Y t

i , let M̃i,t (yti) =
⋃
hA,ti :̊hA,ti =yti

suppσAi,t(h
A,t
i ); and,

for each r̃t+1
i ∈ R∗t+1

i , let

Q̃i,t(r̃
t+1
i ) =

{
M̃i,t

(
r̃t+1
i

)
if r̃t+1

i ∈ Y t
i

Ai,t otherwise
. (45)

Given Q̃, let F̃ |Q̃ be the set of mediation plans in game G∗ with mediation range Q̃.

Lemma 11 In game G∗, for each t, there exists a CPS µ̃t on F̃ |Q̃ × Y t such that, for each
i, yti ∈ Y t

i , m̃i,t ∈ M̃i,t (yti), and σ
′
i ∈ Σ∗i ,∑

(f̃ ,yt)∈F̃ |Q̃×Y t[yti ]

µ̃t(f̃ , y
t|yti , m̃i,t)ūi

(
σ∗, f̃ |h̄

(
f̃ , yt

)
, m̃i,t

)
≥

∑
(f̃ ,yt)∈F̃ |Q̃×Y t[yti ]

µ̃t(f̃ , y
t|yti , m̃i,t)ūi

(
σ′i, σ

∗
−i, f̃ |h̄

(
f̃ , yt

)
, m̃i,t

)
. (46)
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Before proving Lemma 11, we first show how it implies Lemma 10. Toward a contra-
diction, suppose that there exists a period t such that M̃i,t (yti) ∩ Di,t(y

t
i) 6= ∅ for some

i and yti ∈ Y t
i . Let t∗ be the last such period. Note that, for all f̃ ∈ F̃ |Q̃, we have

f̃i,t (r̃t+1) ∩Di,t(r̃
t+1
i ) = ∅ for all t > t∗, i, and r̃t+1 such that r̃t+1

i ∈ Y t
i : that is, recommen-

dations after period t∗ exclude codominated actions.
Let E ⊂ F̃ |Q̃ × Y t∗ denote the set of pairs

(
f̃ , yt

∗
)
such that f̃i,t∗(yt

∗
) ∈ Di,t∗(y

t∗
i ) for

some i. Define µ̃Et∗
(
f̃ , yt

∗
)

= µ̃t∗(f̃ , y
t∗|E). For each m̃i,t∗ ∈ Di,t∗(y

t∗
i ), the conditioning

event m̃i,t∗ in (46) implies that the realized pair
(
f̃ , yt

∗
)
lies in E. Hence, (46) implies that,

for each i and m̃i,t∗ ∈ M̃i,t∗
(
yt
∗
i

)
∩Di,t∗(y

t∗
i ), we have∑

(f̃ ,yt
∗
)∈F̃ |Q̃×Y t

∗
:

f̃i,t∗ (yt
∗

)=m̃i,t∗

µ̃Et∗(f̃ , y
t∗)ūi

(
σ∗, f̃ |h̄

(
f̃ , yt

∗
))
≥

∑
(f̃ ,yt

∗
)∈F̃ |Q̃×Y t

∗
:

f̃i,t∗ (yt
∗

)=m̃i,t∗

µ̃Et∗(f̃ , y
t∗)ūi

(
σ′i, σ

∗
−i, f̃ |h̄

(
f̃ , yt

∗
))

.

This contradicts the hypothesis that m̃i,t∗ ∈ Di,t∗(y
t∗
i ), which completes the proof of Lemma

10.
We now prove Lemma 11. Let φ≥t denote a collection of functions (φτ )τ≥t, where φt :

R∗t+1 → ∆
(
M∗

t ×ZA,t|Q
)
(where here ZA,t|Q ⊂ F |Q × HA,t denotes the set of mediation

plans and period-t acting histories in G with mediation range Q), and for τ > t, φτ :
ZA,τ−1|Q×R∗τ → ∆

(
M∗

τ ×HA,τ
)
. Intuitively, φ≥t may be viewed as a continuation strategy

for the mediator in the direct-communication game starting with arbitrary past reports
r̃t+1 ∈ R∗t+1 in period t.

Lemma 12 For each t, in game G∗, there exists (
(
φkτ
)
τ≥t)k with limit φτ = limk→∞ φ

k
τ for

each τ ≥ t such that, for each i, yti ∈ Y t
i , and m̃i,t ∈ M̃i,t (yti), we have∑

yt∈Y t[yti ]

µ̄k(yt|yti)φkt
(
m̃i,t|yt

)
> 0 for all k, (47)

and, for all σ′i ∈ Σ∗i ,∑
yt∈Y t[yti ]

µ̄(yt|yti , m̃i,t)ūi
(
σ∗, (φτ )τ≥t |yt,

{
r̃t+1 = yt

}
, m̃i,t

)
(48)

≥
∑

yt∈Y t[yti ]

µ̄(yt|yti , m̃i,t)ūi
(
σ′i, σ

∗
−i, (φτ )τ≥t |yt,

{
r̃t+1 = yt

}
, m̃i,t

)
,

where µ̄ is defined by

µ̄(yt|yti , m̃i,t) = lim
k→∞

µ̄k(yt|yti)φkt (m̃i,t|yt)∑
ỹt∈Y t[yti ]

µ̄k(ỹt|yti)φkt (m̃i,t|ỹt)
.

Proof. Construction of
(
φkτ
)
τ≥t: This is similar to the proof of Proposition 2. For each

k, first define
(
φkτ
)
τ≥t recursively in τ , then define φτ = limk→∞ φ

k
τ for all τ ≥ t.
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For each canonical r̃t+1 ∈ R∗t+1, the mediator draws a mediation plan and “fictitious
history”

(
f, hA,t

)
∈ ZA,t|Q according to µ̄k(f, hA,t|yt) for yt = r̃t+1.49 Then, he recommends

m̃i,t ∈ Ai,t to player i according to σAi,t(hA,t). This defines φkt .
For each τ > t, we now define φkτ as a function of

(
f, hA,τ−1, ai,τ−1, si,τ

)
with (ai,τ−1, si,τ ) =

r̃i,τ . For each i, the mediator draws a “fictitious report”ri,τ ∈ Ri,τ according to σRi,τ (h
A,τ−1
i , r̃i,τ ),

independently across players. Next, given rτ , the mediator calculates the vector of “fictitious
messages”mτ = fτ (r

τ , rτ ), where rτ is the report component of hA,τ−1. Finally, the me-
diator draws recommendation m̃i,τ ∈ Ai,τ according to σAi,τ (h

A,τ−1
i , ai,τ−1, si,τ , ri,τ ,mi,τ ) with

(ai,τ−1, si,τ ) = r̃i,τ , independently across players. This then defines h
A,τ
i = (hA,τ−1

i , ai,τ−1, si,τ , ri,τ ,mi,τ )
with (ai,τ−1, si,τ ) = r̃i,τ .
Proof of (47): For each yt ∈ Y t, since µ̄k(f, hA,t|yt) has full support over

(
f, hA,t

)
∈

ZA,t [yt] |Q, we have φkt (m̃i,t|yt) > 0 for each i and m̃i,t ∈ M̃i,t (yti). Hence, (47) is satisfied.
Proof of (48): Toward a contradiction, suppose (48) is violated for some i, yti ∈ Y t

i ,
m̃i,t ∈ M̃i,t (yti), and σ

′
i ∈ Σ∗i . Denote the conditional probability of

(
f, hA,t

)
∈ ZA,t|Q and

x ∈ X given yt, r̃t+1 = yt, and m̃i,t by

Prσ
∗,(φτ )τ≥t

(
f, hA,t, x|yt,

{
r̃t+1 = yt

}
, m̃i,t

)
.

By construction, for each σ̃ ∈ Σ∗,

Prσ̃,(φτ )τ≥t
(
f, hA,t, x|yt,

{
r̃t+1 = yt

}
, m̃i,t

)
= lim

k→∞
Prφ

k
t
(
f, hA,t|yt,

{
r̃t+1 = yt

}
, m̃i,t

)
Prσ̃,(φτ )τ≥t

(
x|yt,

{
r̃t+1 = yt

}
, f, hA,t, m̃i,t

)
= µ̄(f, hA,t|yt, m̃i,t) Prσ̃,(φτ )τ≥t

(
x|yt,

{
r̃t+1 = yt

}
, f, hA,t, m̃i,t

)
= µ̄(f, hA,t|yt, m̃i,t) Prσ̃,(φτ )τ≥t

(
x|f, hA,t, m̃i,t

)
.

In the last line, we omit yt since Prφ
k
t (·|yt, m̃i,t) assigns probability 1 to h̊A,t = yt, and we also

omit {r̃t+1 = yt} by defining Prσ̃,(φτ )τ≥t
(
x|f, hA,t, m̃i,t

)
as follows: conditional on hA,t, define

r̃t+1 = h̊A,t and calculate the conditional distribution of x given σ̃ and
(
f, hA,t, r̃t+1, m̃i,t

)
.

By definition, for each yt ∈ Y t[yti ],

µ̄(yt|yti , m̃i,t)µ̄(f, hA,t|yt, m̃i,t) = µ̄(f, hA,t|yti , m̃i,t)1{̊hA,t=yt}.

Hence, the violation of (48) implies∑
(f,hA,t)∈ZA,t|Q :̊hA,t∈Y t[yti ]

µ̄(f, hA,t|yti , m̃i,t)ūi
(
σ∗, (φτ )τ≥t |f, hA,t, m̃i,t

)
<

∑
(f,hA,t)∈ZA,t|Q :̊hA,t∈Y t[yti ]

µ̄(f, hA,t|yti , m̃i,t)ūi
(
σ′i, σ

∗
−i, (φτ )τ≥t |f, hA,t, m̃i,t

)
.

49As in the proof of Proposition 2,
(
f, hA,t

)
can be chosen arbitrarily if r̃t+1 is not a feasible payoff-relevant

history. A similar comment applies to ri,τ and h
A,τ
i in the next paragraph.
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Therefore, there must exist hA,ti with µ̄(hA,ti |yti , m̃i,t) > 0 such that∑
(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄(f, hA,t|hA,ti , m̃i,t)ūi
(
σ∗, (φτ )τ≥t |f, hA,t, m̃i,t

)
<

∑
(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄(f, hA,t|hA,ti , m̃i,t)ūi
(
σ′i, σ

∗
−i, (φτ )τ≥t |f, hA,t, m̃i,t

)
. (49)

Note that (φτ )τ≥t is constructed so that the conditional distribution of x given
(
f, hA,t

)
and m̃i,t under

(
σ∗, (φτ )τ≥t

)
in game G∗ is the same as the conditional distribution of x given(

f, hA,t
)
and ai,t = m̃i,t ∈ suppσAi,t(h

A,t
i ) in game G with mediation range Q under (σ, f):∑

(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄(f, hA,t, m̃t|hA,ti , m̃i,t)ūi
(
σ∗, (φτ )τ≥t |f, hA,t, m̃i,t

)
=

∑
(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄(f, hA,t, m̃t|hA,ti , m̃i,t)ūi
(
σ|f, hA,t, m̃i,t

)
.

To derive a contradiction, it suffi ces to find a strategy σ̂′i in G with mediation range Q that
attains the expected payoff in the second line of (49),∑

(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄(f, hA,t|hA,ti , m̃i,t)ūi
(
σ′i, σ

∗
−i, (φτ )τ≥t |f, hA,t, m̃i,t

)
=

∑
(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄(f, hA,t|hA,ti , m̃i,t)ūi
(
σ̂′i, σ−i|f, hA,t, m̃i,t

)
,

since the existence of such a strategy contradicts (44). The same construction as in the proof
of Lemma 1 defines such a strategy σ̂′i.
Proof of Lemma 11. We now prove (46). For each k, by Kuhn’s theorem, there exists a

collection of mixed mediation plan
(
µ̃kr̃t+1

)
r̃t+1 in G∗, with µ̃

k
r̃t+1 ∈ ∆

(
F̃
)
for each r̃t+1, that

satisfies the following condition: for each yt ∈ Y t, r̃t+1 ∈ R∗t+1, strategy σ′ ∈ Σ∗, and vector
(m̃t, at, (sτ , r̃τ , m̃τ , aτ )

T
τ=t+1), we have

Pr
σ′,(φkτ)τ≥t

(
m̃t, at, (sτ , r̃τ , m̃τ , aτ )

T
τ=t+1 |yt, r̃t+1

)
=

∑
f̃∈∆(F̃ )

µ̃kr̃t+1(f̃) Prσ
′
(
m̃t, at, (sτ , r̃τ , m̃τ , aτ )

T
τ=t+1 |f, yt, r̃t+1

)
.

(That is,
(
σ′,
(
φkτ
)
τ≥t

)
and

(
σ′, µ̃kr̃t+1

)
give rise to the same distribution of histories in G∗
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conditional on yt and r̃t+1.) In particular, if r̃t+1 = yt, we have

Pr
σ′,(φkτ)τ≥t

(
m̃t, at, (sτ , r̃τ , m̃τ , aτ )

T
τ=t+1 |yt

)
=

∑
f̃∈∆(F̃ )

µ̃kyt(f̃) Prσ
′
(
m̃t, at, (sτ , r̃τ , m̃τ , aτ )

T
τ=t+1 |f̃ , yt

)
.

Define
µ̃k(yt, f̃ , m̃t) = µ̄k(yt)× µ̃kyt(f̃)× 1{m̃t=f̃(yt)}.

Let µ̃ = limk→∞ µ̃
k. Since each f̃ ∈ supp µ̃ satisfies f̃i,τ (r̃τ+1) ∈ Q̃i,τ (r̃

t+1
τ ) for all τ ≥ t, (48)

implies ∑
(f̃ ,yt)∈F̃ |Q̃×Y t[yti ]

µ̃t(f̃ , y
t|yti , m̃i,t)ūi

(
σ∗, f̃ |yt,

{
r̃t+1 = yt

}
, m̃i,t

)
≥

∑
(f̃ ,yt)∈F̃ |Q̃×Y t[yti ]

µ̃t(f̃ , y
t|yti , m̃i,t)ūi

(
σ′i, σ

∗
−i, f̃ |yt,

{
r̃t+1 = yt

}
, m̃i,t

)
. (50)

For each f̃ , we can write f̃ = (f̃<t, f̃≥t) with f̃<t = (f̃τ )
t−1
τ=1 and f̃

≥t = (f̃τ )
T
τ=t. Since

the past recommendations m̃t do not affect the continuation strategy, there exists µ̂t such
that µ̂t(f̃) = µ̂<tt (f̃<t) × µ̂≥tt (f̃≥t) and (50) holds with µ̂t in place of µ̃t. Since under µ̂t
recommendations prior to period t are independent of those after period t, this yields (46).

I.4 Proof of Propositions 7 and 8

Proposition 7: By Lemma 9, for each SCE (µ,Q, µ̄), there exists a canonical CPPBE
(σ, µ,Q, µ̄′) in G∗ with ρσ,µ = ρσ

∗,µ. Conversely, take a CPPBE (σ, µ,Q, µ̄) in G∗ with
canonical σ and outcome ρ. As in the proof of Lemma 9, let J be the set of histories such
that players are honest and messages are compatible with mediation range Q, let P = R,
and let F |P be the set of mediation plans compatible with mediation range Q. Since σ is
canonical, the quasi-CPPBE (σ, µ, J, P, F |P ) is SCE.
Proposition 8: By Lemma 10, players do not take codominated actions at any history

for any C. Since every CPPBE (σ, µ,Q, µ̄) is a NE, there exists a NE with outcome ρ where
players do not take codominated actions at any history. Hence, by Proposition 1, there exists
a SCE (µ′, Q′, µ̄′) with ρ = ρσ

∗,µ and Qi,t

(
rt+1
i ,mt

i

)
= Ai,t \Di,t(r

t+1
i ). Hence, by Lemma 9,

there exists a canonical CPPBE (σ, µ′, Q′, µ̄′′) with outcome ρ.

J Proof of Claim 5 of Proposition 4

We first establish a preliminary result. Fix a game G, mediation range Q, and CPPBE
(σ, µ,Q, µ̄). For each i, let Σi (σ−i, µ, µ̄) ⊂ Σi denote the set of sequentially rational strategies
for player i against (σ−i, µ) under CPS µ̄: that is, the set of strategies σ̂i such that, for each
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t and hR,ti ,∑
(f,hR,t)∈ZR,t[hR,ti ]|Q

µ̄(f, hR,t|hR,ti )ūi
(
σ̂i, σ−i, f |hR,t

)
= max

σ′i∈Σi

∑
(f,hR,t)∈ZR,t[hR,ti ]|Q

µ̄(f, hR,t|hR,ti )ūi
(
σ′i, σ−i, f |hR,t

)
and, for each hA,ti ,∑
(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄(f, hA,t|hA,ti )ūi
(
σ̂i, σ−i, f |hA,t

)
= max

σ′i∈Σi

∑
(f,hA,t)∈ZA,t[hA,ti ]|Q

µ̄(f, hA,t|hA,ti )ūi
(
σ′i, σ−i, f |hA,t

)
.

Let M̂i,t (yti) =
⋃
hA,ti :̊hA,ti =yti

⋃
σ̂i∈Σ∗i (σ−i,µ,µ̄) supp σ̂Ai,t(h

A,t
i ). The following lemma shows that

codominated actions are never taken by any sequentially rational strategy σ̂i ∈ Σi (σ−i, µ, µ̄).

Lemma 13 For any game G, mediation range Q, and CPPBE (σ, µ, µ̄), M̂i,t (yti)∩Di,t (yti) =
∅ for all i, t, and yti ∈ Y t

i .

Proof. Suppose otherwise that there exists t such that M̂i,t (yti) ∩ Di,t (yti) 6= ∅ for some i
and yti ∈ Y t

i . Let t
∗ be the last such period, and fix i, σ̂i ∈ Σi (σ−i, µ, µ̄), yt

∗
i , and action

m̃i,t∗ such that m̃i,t∗ ∈
⋃
hA,t

∗
i :̊hA,t

∗
i =yt

∗
i

supp σ̂Ai,t∗(h
A,t∗

i ) ∩Di,t∗(y
t∗
i ).

For each t, yti ∈ Y t
i , and r̃

t+1
i ∈ R∗t+1

i , let

Q̂i,t(r̃
t+1
i ) =

{
M̂i,t

(
r̃t+1
i

)
if r̃t+1

i ∈ Y t
i

Ai,t otherwise

and let Q̂ = (Q̂i, Q̃−i), where Q̃j is defined in (45) for j 6= i. By Lemma 10, for each t the
range of Q̃−i,t excludes all codominated actions; and by definition of t∗, for each t > t∗, the
range of Q̂i,t excludes all codominated actions as well.
Applying the same construction as in the proof of Lemma 10 with σ̂i in place of σi yields

a CPS µ̃t∗ on F̃ |Q̂ × Y t∗ such that, for each σ′i ∈ Σ∗i ,∑
(f̃ ,yt)∈F̃ |Q̂×Y t[yti ]

µ̃t(f̃ , y
t|yti , m̃i,t)ūi

(
σ̂i, σ−i, f̃ |h̄

(
f̃ , yt

)
, m̃i,t

)
≥

∑
(f̃ ,yt)∈F̃ |Q̂×Y t[yti ]

µ̃t(f̃ , y
t|yti , m̃i,t)ūi

(
σ′i, σ−i, f̃ |h̄

(
f̃ , yt

)
, m̃i,t

)
.

Let E ⊂ F̃ |Q̃ × Y t∗ denote the set of pairs
(
f̃ , yt

∗
)
such that f̃i,t∗(yt

∗
) = m̃i,t∗. Letting

µ̃Et∗
(
f̃ , yt

∗
)

= µ̃t∗(f̃ , y
t∗ |E), we have

∑
(f̃ ,yt

∗
)∈F |Q̂×Y t

∗
:

f̃i,t∗ (yt
∗

)=m̃i,t∗

µ̃Et∗(f̃ , y
t∗)ūi

(
σ∗, f̃ |h̄

(
f̃ , yt

∗
))
≥

∑
(f̃ ,yt

∗
)∈F |Q̂×Y t

∗
:

f̃i,t∗ (yt
∗

)=m̃i,t∗

µ̃Et∗(f̃ , y
t∗)ūi

(
σ′i, σ

∗
−i, f̃ |h̄

(
f̃ , yt

∗
))

.

This contradicts the hypothesis that m̃i,t∗ ∈ Di,t∗(y
t∗
i ).
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Turning to the proof of the claim, note that in games of pure moral hazard, for each i
and t, the set of codominated actions for player i in period t does not depend on the realized
payoff-relevant history yti : that is, there exists a set Di,t ⊂ Ai,t such that Di,t (yti) = Di,t for
all yti ∈ Y t

i . Let Ȳ
t
i be the set of payoff-relevant histories that can be reached without any

player taking a codominated action:{
yti ∈ Y t

i : ∃yt−i s.t.
(
yti , y

t
−i
)
∈ Y t and an,τ ∈ An,τ \Dn,τ for each n and τ ≤ t− 1

}
.

Define L and πkt as in the proof of Proposition 5, where now each π
[l]
t ∈ ∆

(
F ∗≥t × Y t

)
depends only on its first component.
Fix a canonical NE (σ∗, µ∗) in G∗ where players never take codominated actions at any

history.50 We first construct a (possibly non-canonical) SE (σ̃, µ̃) in G∗ with outcome ρσ
∗,µ∗,

and then construct a canonical SE (σ̃∗, µ̃∗) with the same outcome.

Construction of
(
σ̃k, µ̃k

)
We first construct a sequence of profiles

(
σ̃k, µ̃k

)
indexed by k

that limits to a (quasi) SE in G∗.
Mediator’s Strategy: At the beginning of the game, the mediator draws ζt ∈ {0, 1} for

each t = 0, ..., T such that ζt = 1 with probability
(

1
k

)2(L+1)T
, independently across periods.

Given (ζt)
T
t=0, the mediator draws (ωt)

T
t=0 as follows: For t = 0, ω0 = (0, f), where f is

distributed according to µ∗(f). For each t ≥ 1, given
(
ωt−1, ζt−1

)
, ωt is determined as

follows:

1. If ζt−1 = 0, then ωt = ωt−1 with probability 1− 1
k
, and ωt =

(
t, f≥t

)
with probability

1
k
πkt
(
f≥t
)
.

2. If ζt−1 = 1, then ωt =
(
t, f≥t

)
with probability πkt

(
f≥t
)
.

Given (ζt, ωt), the mediator’s recommendation is determined as follows: If ζt = 0, then
mt = f (rt+1) if ωt = ω0 and mt = f≥τ (rt+1) if ωt =

(
τ , f≥τ

)
. If ζt = 1, then the mediator

draws each mi,t ∈ Ai,t \Di,t with equal probability 1/ (|Ai,t| − |Di,t|), independently across
i and t.
Each realization of the mediator’s randomization defines the realization of the first ele-

ment of ωt, for each t. Let t∗(t) be the corresponding random variable, which takes values
in {0, ..., t}.
Player i’s Strategy: We say that player i is honest and obedient at history hR,ti if ri,τ =

(ai,τ−1, si,τ ) and ai,τ = mi,τ for all τ < t, and is honest and obedient at history hA,ti if
ri,τ = (ai,τ−1, si,τ ) for all τ ≤ t and ai,τ = mi,τ for all τ < t. Let ĴR,ti (resp., ĴA,ti ) be the set
of histories hR,ti (resp., hA,ti ) such that player i has been honest and obedient and h̊

R,t
i ∈ Ȳ t

i .
For each k, let

(
Γk,C∗

)
denote the following auxiliary game:

1. The mediator follows µ̃k.

2. Each player i chooses probability distributions σR,ki,t (·|hR,ti ) ∈ ∆(Ri,t) and σ
A,k
i,t (·|hA,ti ) ∈

∆(Ai,t \ Di,t) for each t, h
R,t
i ∈ HR,t

i \Ĵ
R,t
i and hA,ti ∈ H

A,t
i \Ĵ

A,t
i . Note that player i is

50As in footnote 45, it is without loss to consider here the fully canonical strategy profile σ∗.
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required not to take a codominated action. At histories hR,ti ∈ ĴR,ti and hA,ti ∈ ĴA,ti ,
player i is required to report ri,t = (ai,t−1, si,t) and take ai,t = mi,t, respectively.

3. Given
(
σk, µ̃k

)
, the distribution of terminal nodes HT+1 is determined recursively as

follows:

Given hR,t ∈ HR,t, each ri,t ∈ Ri,t is drawn independently across players with proba-

bility σR,ki,t

(
ri,t|hR,ti

)
.

Given hA,t ∈ HA,t, each ai,t ∈ Ri,t is drawn independently across players with proba-
bility (

1− |Ai,t|
(

1

k

)3(L+1)T 2
)
σA,ki,t (ai,t|hA,ti ) +

(
1

k

)3(L+1)T 2

.

Given hA,t ∈ HA,t
t and at ∈ At, each st+1 ∈ St+1 is drawn with probability p

(
st+1|̊hA,t, at

)
.

4. Player i’s payoff at terminal history ht+1 ∈ HT+1 is ui
(̊
ht+1

)
.

As in the proof of Lemma 2,
(
Γk,C∗

)
admits a NE

(
σ̂k, µ̃k

)
.

Now define strategy σ̃k by σ̃R,ki = σ̂R,ki and

σ̃A,ki,t (ai,t|hA,ti ) =

(
1− |Ai,t|

(
1

k

)3(L+1)T 2
)
σ̂A,ki,t (ai,t|hA,ti ) +

(
1

k

)3(L+1)T 2

.

Note that the distribution over terminal histories under
(
σ̂k, µ̃k

)
in game

(
Γk,C∗

)
is the same

as that under
(
σ̃k, µ̃k

)
in game (Γ,C∗). Let (σ̃, µ̃) = limk→∞

(
σ̃k, µ̃k

)
. Note that (σ̃, µ̃) is a

profile in (Γ,C∗).

We next claim that, for each i and σ′i ∈ Σ∗i such that supp
(
σ′A,ti (hA,ti )

)
∩ Di,t = ∅

for all t and hA,ti , we have ū(σ̃, µ̃) ≥ ū(σ′i, σ̃−i, µ̃): that is, no player i has a profitable
deviation that avoid codominated actions. To see this, let φ̃ denote the behavioral mediation
plan induced by µ̃, and let φ∗ denote the behavioral mediation plan induced by µ∗. Then
φ̃t (·|rt+1,mt) = φ∗t (·|rt+1,mt) for all (rt+1,mt) satisfying Prσ̂,φ̃ (rt+1,mt) > 0 for some player

strategy σ̂. Similarly, for each i, σ̃Ri,t
(
·|hR,ti

)
= σ∗Ri,t

(
·|hR,ti

)
for all hR,ti where player i has

been honest and obedient and h̊R,ti ∈ Ȳ t
i , and similarly for acting histories h

A,t
i . Hence, for

any on-path history hR,ti under (σ̃, µ̃), the continuation play of i’s opponents differs from that
under (σ∗, µ∗) only following a deviation by player i to a codominated action. Therefore, for

any σ′i ∈ Σ∗i such that supp
(
σ′A,ti (hA,ti )

)
∩Di,t = ∅ for all t and hA,ti , the fact that (σ∗, µ∗)

is a NE implies that ū(σ̃, µ̃) ≥ ū(σ′i, σ̃−i, µ̃).

Construction of Quasi-SE (σ̃, µ̃, J̃ , K̃, β̃). We now define subsets of histories J̃ and K̃
along with beliefs β̃ and a mediation range Q̃ such that (σ̃, µ̃, J̃ , K̃, β̃) is a quasi-SE in game
G∗|Q̃.
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Define Q̃i,t(r
t+1
i ,mt

i) = Ai,t \Di,t for each i, t, and (rt+1
i ,mt

i). For each i, let J̃
A,T+
i equal

the set of histories hT+1
i such that Prσ̃

k,µ̃k
(
hT+1
i

)
> 0. Let K̃T+ equal the set of mediator

histories
(
r̃T+1, m̃T+1

)
such that there exists σ′ ∈ Σ satisfying Prσ

′,µ̃k
(
rT+1,mT+1

)
> 0. Let

the other elements of J̃ and K̃ include all truncations of histories in J̃A,T+ and K̃T+. Since
J̃i includes all histories where player i has not lied to the mediator or received a message
outside the mediation range Q̃, (σ̃, µ̃, J̃ , K̃) is valid. Define belief system β̃ by

β̃i,t

(
hR,t|hR,ti

)
= lim

k→∞

Prσ̃
k,µ̃k

(
hR,t

)
Prσ̃

k,µ̃k
(
hR,ti

)
for each hR,t ∈ HR,t[hR,ti ]|J̃ ,K̃ . Since Prσ̃

k,µ̃k
(
hR,ti

)
> 0 for each hR,ti ∈ J̃R,ti , this is well-

defined. Since β̃ is consistent by construction, it remains to verify sequential rationality of
(σ̃, µ̃, J̃ , K̃, β̃).
As in the proof of Claim 1 of Proposition 4, sequential rationality at histories outside

ĴR,ti or ĴA,ti follows from a standard upper hemi-continuity argument.
Fix any hR,ti ∈ Ĵ

R,t
i . By Lemma 13, it suffi ces to show that player i never has a profitable

deviation to a strategy that avoids codominated actions. By definition of ĴR,ti , there exists(
ωt, ζt

)
= (ω1, ..., ωt−1, ζ1, ..., ζt−1) such that Prσ

∗,µ̃k
(
hR,ti |ωt, ζt

)
> 0, where as usual σ∗

denotes the fully canonical strategy profile. Since under µ̃k any sequence
(
ωt, ζt

)
occurs

with probability at least
(

1
k

)2(L+1)T+2(L+1)T 2

, while under σ̃k players’ actions differ from

those under σ̂k with probability at most
(

1
k

)3(L+1)T 2

, player i assesses that other players are
honest and obedient with probability 1. Hence, it suffi ces to verify that, for each i, t, τ ≤ t,
and hR,ti ∈ Ĵ

R,t
i , σ̃i is sequentially rational conditional on the event that all players are honest

and obedient and t∗(t) = τ . There are three mutually exclusive events to which player i
assigns positive probability:

1. If t∗(t) = 0 then Prσ̃,µ̃
(
hR,ti

)
> 0. Sequential rationality follows since ū(σ̃, µ̃) ≥

ū(σ′i, σ̃−i, µ̃) for any strategy σ′i that avoids codominated actions.

2. If t∗(t) = τ < t then ωt =
(
τ , f≥τ

)
. Since the mediator draws f≥τ from πkτ , by the

same argument as in the ξ
(
hR,ti

)
=
(
t∗, ζt

∗

i

)
case of the proof of Proposition 5 (i.e.,

the discussion immediately following Lemma 6), honesty is optimal.

3. If t∗(t) = t then with probability 1 future recommendations are independent of the
current report. Hence, honesty is optimal.

Next fix any hA,ti ∈ ĴA,ti . Again, player i assesses that other players are honest and
obedient with probability 1. She also assesses that ζt = 1 with probability 0, since (i) for

any
(
hR,ti , ri,t

)
, each mi,t ∈ Ai,t \Di,t occurs with positive probability conditional on ζt = 0

and t∗(t) = t, (ii) ζt = 0 and t∗(t) = t occur with probability at least
(

1−
(

1
k

)2(L+1)T
) (

1
k

)L
,

while ζt = 1 occurs with probability at most
(

1
k

)2(L+1)T
. Hence, we again consider three
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mutually exclusive events: t∗(t) = 0, t∗(t) = τ < t, and t∗(t) = t and ζt = 0. The proof
of sequential rationality in the first two events is the same as for reporting histories. In the
last event, sequential rationality follows from the same argument as in the ξ

(
hR,ti

)
=
(
t, ζti

)
case of the proof of Proposition 5.

Construction of
(
σ̃∗,k, µ̃∗,k

)
We first construct a sequence of profiles

(
σ̃∗,k, µ̃∗,k

)
indexed

by k that limits to a quasi-SE profile in G∗.
Definition of the Mediator’s Strategy µ̃∗,k. As in Proposition 2, in each period t, given

player i’s canonical report r̃t+1
i ∈ Y t

i , the mediator draws a fictitious report ri,t according
to σ̂R,ki,t (hR,ti ), where hR,ti = (yti , r

t
i ,m

t
i) with y

t = r̃t+1
i .51 Given fictitious reports rt+1 and

fictitious messages mt, the mediator draws fictitious message mt from φ̃
k

t (r
t+1,mt), where φ̃

k

is the behavioral strategy induced by µ̃k. He then draws the recommendation m̃i,t according
to σ̂A,ki,t (m̃i,t|r̃t+1

i , rt+1
i ,mt+1

i ).
Definition of Player i’s Strategy σ̃∗,ki . We define σ̃

∗,k
i to specify that player i is honest

and obedient, but trembles uniformly over actions with probability |Ai,t|
(

1
k

)3(L+1)T 2

: for each
ai,t ∈ Ai,t and hA,ti ∈ H

A,t
i ,

σ̃∗A,ki,t (ai,t|hA,ti ) = 1{ai,t=mi,t}

(
1− |Ai,t|

(
1

k

)3(L+1)T 2
)

+

(
1

k

)3(L+1)T 2

.

Construction of Quasi-SE (σ̃∗, µ̃∗, J,K, β) Define σ̃∗ = limk→∞ σ̃
∗,k and µ̃∗ = limk→∞ µ̃

∗,k.
We will construct J , K, and β such that (σ̃∗, µ̃∗, J,K, β) is a quasi-SE in G∗. By the first
sentence of Lemma 2, this implies that there exists a SE in G∗ that implements the same
outcome. We will also construct a mediation range Q such that J includes all histories com-
patible with the mediation range where players have been honest. By the second sentence
of Lemma 2, this implies that the SE is canonical.
Definition of Q. For each i and t, if r̃t+1

i ∈ Y t
i we define

Qi,t(r̃
t+1
i ) =

⋃
(rt+1
i ,mt+1

i )
s.t. ri,τ∈supp σ̂R,ki,t (yτi ,r

τ
i ,m

τ
i ) with yτi =r̃τ+1

i for each τ≤t
mi,τ∈Ai,τ\Di,τ for each τ≤t

supp σ̂A,ki,t (·|yti , rt+1
i ,mt+1

i )

where yti = r̃t+1
i ; and if r̃t+1

i /∈ Y t
i we define Qi,t(r̃

t+1
i ) = Ai,t.

Definition of (J,K, β). Define KT+ = HT+1
0 and define JA,T+

i as the set of all histories
compatible with the mediation range where players have been honest. Let the other elements
of J and K include all truncations of histories in JA,T+ and KT+. Since Qi,t(r̃

t+1
i ) contains

all messages ever sent under µ̃∗,k when the history of communications between the mediator
and player i is r̃t+1

i , (σ̃∗, µ̃∗, J,K) is valid.

51If r̃t+1i ∈ R∗t+1i \ Y ti , then the mediator draws ri,t uniformly at random, and similarly for m̃i,t in what
follows.
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Next, for each hR,ti ∈ J
R,t
i and hR,t ∈ HR,t[hR,ti ]|J,K , define

βi,t

(
hR,t|hR,ti

)
= lim

k→∞

Prσ̃
∗,k,µ̃∗,k

(
hR,t

)
Prσ̃

∗,k,µ̃∗,k
(
hR,ti

) .
To see that the denominator of this expression is positive (so the quotient is well-defined),
note that, since (i) under µ̃k every sequence ζt occurs with positive probability and, given
ζt = 1, for each i the mediator sends each mi,t ∈ Ai,t \ Di,t with positive probability at
every history, and (ii) players tremble uniformly over actions under σ̃∗,ki , it follows that

Prσ̃
∗,k,µ̃∗,k

(
hR,ti

)
> 0 for all hR,ti ∈ J

R,t
i . Define βi,t

(
hA,t|hA,ti

)
analogously. These beliefs are

consistent by construction.
Sequential Rationality: Since the construction of

(
σ̃∗,k, µ̃∗,k

)
from

(
σ̃k, µ̃k

)
is the same as

the construction of
(
σ̃k, φ̃

k
)
from

(
σ̄k, φ

)
in the proof of Claim 1 of Proposition 4, sequential

rationality of (σ̃∗, µ̃∗, J,K, β) follows from sequential rationality of
(
σ̃, µ̃, J̃ , K̃, β̃

)
.
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