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Overview introduction

Data has become an essential commodity in modern economies

A few markets for data have emerged, where data sources are
compensated for the data they generate

This paper: A theory of how to individually price the entries of a dataset
so as to reflect their proper value

Our questions:

▶ Normative: How much does each entry contribute to the total value
of the dataset for its owner?

▶ Operational: What is owner’s WTP for an additional data entry?

▶ What drive these prices and how can we compute them?

▶ How are these prices affected by privacy concerns?
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Overview introduction

Our approach leverages a simple insight:

▶ The data-pricing problem is intimately related to how the dataset is
used by its owner to achieve a given goal

▶ When carefully formulated, the two problems are in a special
mathematical relationship

Goal for Today’s Talk

1. Formalize relationship + data-pricing problem

2. Preliminary characterization of price determinants and properties

3. Showcase properties through examples



Overview introduction

Our approach leverages a simple insight:

▶ The data-pricing problem is intimately related to the information
design problem

▶ When carefully formulated, the two problems are in a special
mathematical relationship

Goal for Today’s Talk

1. Formalize relationship + data-pricing problem

2. Preliminary characterization of price determinants and properties

3. Showcase properties through examples



Overview introduction

Our approach leverages a simple insight:

▶ The data-pricing problem is intimately related to the information
design problem

▶ When carefully formulated, the two problems are in a dual
relationship

Goal for Today’s Talk

1. Formalize relationship + data-pricing problem

2. Preliminary characterization of price determinants and properties

3. Showcase properties through examples



Overview introduction

Our approach leverages a simple insight:

▶ The data-pricing problem is intimately related to the information
design problem

▶ When carefully formulated, the two problems are in a dual
relationship

Goal for Today’s Talk

1. Formalize relationship + data-pricing problem

2. Preliminary characterization of price determinants and properties

3. Showcase properties through examples



Modeling Ingredients introduction

A standard and flexible framework:

▶ Finite static games with incomplete information

Data entries and the dataset:

▶ A “data entry” is a state of the world:

Payoff state + players’ private signals about it

▶ The “dataset” consists of all entries + their frequencies

Designer may use entries :

▶ Without players’ consent (no privacy)

▶ Only with players’ consent (privacy)



Preliminary Results introduction

Pricing formula

▶ Individual price for each data entry despite info-design problem
being non-separable across states

What drives the prices?

▶ (1) Designer’s payoff + (2) Designing information equivalent to
gambling against players (novel interpretation for dual variables)

Properties

▶ Price captures externalities that each data entry may exert on others

▶ Price captures dependencies between dimensions of each data entry

The effects of privacy protection

▶ It lowers value of dataset, but can increase price of some entries



Related Literature introduction

Information Design. Kamenica & Gentzkow (’11), Bergemann & Morris (’16, ’19), ...

Duality & Correlated Equilibrium. Nau & McCardle (’90), Nau (’92), Hart &
Schmeidler (’89), Myerson (’97)

Duality & Bayesian Persuasion. Kolotilin (’18), Dworczak & Martini (’19), Dizdar &
Kovac (’19), Dworczak & Kolotilin (’19)

Markets for Information. Bergemann & Bonatti (’19) Bergemann & Bonatti (’15),
Bergmann, Bonatti, Smolin (’18)

Information Privacy. Ali, Lewis, and Vasserman (’20), Bergemann, Bonatti, and Gan
(’20), Acemoglu, Makhdoumi, Malekian, and Ozdaglar, (’20), Acquisti, Taylor, Wagman
(’16)



illustrative example



A Monopolist’s Problem (Bergemann et al. ’15) example

Monopolist sells to potential buyers (assume MC=0)

Monopolist does not directly observe buyers’ valuation

A dataset contains data about the potential buyers:

▶ A share µ > 1
2
of the entries has valuation ω = 2

▶ A share 1− µ of the entries has valuation ω = 1

A data intermediary owns the dataset; can use it without buyers’ consent

Monopolist sets price a and can discriminate depending on the
information she receives



A Monopolist’s Problem (Bergemann et al. ’15) example

Suppose monopolist receives this information about the potential buyer

s′ s′′

ω = 1 1 0

ω = 2 1−µ
µ

1− 1−µ
µ

Monopolist would set

a(s) =

{
1 for “segment” s′

2 for “segment” s′′

The total consumer surplus is V ∗ = 1− µ and for each buyer ω

v∗(ω) =

{
0 if ω = 1

1−µ
µ

if ω = 2



A Monopolist’s Problem example

Our Questions:

▶ What price p(ω) would/should the data intermediary be willing to pay
to add one more buyer with valuation ω to her dataset?

▶ What price p(ω) would “properly” compensate buyer ω for role that
her data plays to achieve V ∗?

Broadly refer to these questions as the data-pricing problem

We do not interpret p(ω) as monetary incentive to give up data

▶ Important, yet distinct issue
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Data Entries and Dataset model

Finite set of players I = {1, . . . , n}

Finite set of payoff states Ω0

Finite set of private types ΩI = Ω1 × . . .× Ωn, players’ own data

Common prior belief µ ∈ ∆(Ω), where Ω = Ω0 × ΩI

We refer to (Ω, µ) as a dataset and to each ω as a data entry



Base Game and Information model

Each player i has finite set of actions Ai. Let A = A1 × . . .×An

Utility function ui : A× Ω0 → R

Base game G =
(
I, (Ω, µ), (Ai, ui)i∈I

)
An information structure is π : Ω → ∆(S1 × . . .× Sn), with Si finite ∀i

BNE(G, π) set of Bayes-Nash equilibria for (G, π)



Designer as a Data Intermediary model

Designer provides information via π to players

Objective is v : A× Ω0 → R

We consider two cases:

1. Omniscient design. Designer already owns dataset and can use it
without players’ consent (akin to no privacy protection)

2. Design w/ Elicitation. Designer has to obtain players’ data and needs
their consent (akin to privacy protection)

We begin by analyzing the data-pricing problem under omniscient design



data-pricing problem



The Notion of A Price data-pricing problem

The data-pricing problem consists in finding a function

p : Ω → R

s.t. p(ω) reflects the “proper” value that ω generates for the designer

p should depend on how data entries are used to produce information

We think of data entries ω’s as inputs into a production problem whose
output is information:

π : Ω → ∆(S)

Data-pricing problem ⇐⇒ Data-use problem



How Is Data Used? data-pricing problem

Build on the information-design literature:

▶ How to optimally use data to produce information so as to maximize
a given objective

For each π, define

V (π) = max
σ∈BNE(G,π)

∑
ω,s,a

v(a, ω0)
(∏

i∈I

σ(ai|ωi, si)
)
π(s|ω)µ(ω)

The information-design problem consists of V ⋆ = max
π

V (π)

Question

▶ What is the proper share of V ∗ to attribute to ω? → p(ω)



Direct Value of Data data-pricing problem

One possible approach to answer this question:

1. Find solution of ID problem π∗ and σ∗

2. Compute direct value of ω. This is the expected payoff from ω

v∗(ω) =
∑
s

v(a, ω0)σ
∗(a|s, ωI)π

∗(s|ω)

Clearly,
∑
ω

µ(ω)v∗(ω) = V ∗

Does v∗(ω) capture the share of V ⋆ that is attributable to ω?

Not quite! it fails to capture that ω may play a role in the payoff that is
generated by another ω′
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An Alternative Approach data-pricing problem

The information-design problem can be formulated as a linear program

Let x : Ω → ∆(A) be an outcome for G

By Bergemann and Morris (2016), “feasibility” of x is equivalent to a set of
obedience conditions which are linear constraints on x.

Problem P (Bergemann and Morris, 2016, 2019)

max
x

∑
ω,a

v(a, ω0)x(a|ω)µ(ω)

s.t. for all i, ωi, ai, and a′
i∑

ω−i,a−i

(
ui

(
ai, a−i, ω0

)
− ui

(
a′
i, a−i, ω0

))
x
(
ai, a−i|ω

)
µ(ω) ≥ 0



Data-Pricing Problem data-pricing problem

Using same primitives
(
G, v

)
, we can define a data-pricing problem

Designer chooses, for each player i, ai, and ωi(
ℓi(·|ai, ωi), qi(ai, ωi)

)
∈ ∆(Ai)×R++

Problem D (Data-Pricing Problem)

min
ℓ,q

∑
ω

p(ω)µ(ω)

s.t. for all ω,

p(ω) = max
a∈A

{
v(a, ω0) +

∑
i

Tℓi,qi(a, ω)
}

Where:

Tℓi,qi(a, ω) = qi(ai, ωi)
∑

a′
i∈Ai

(
ui(ai, a−i, ω0)− ui(a

′
i, a−i, ω0)

)
ℓi(a

′
i|ai, ωi)



Dual Relationship data-pricing problem

Information-design and data-pricing problems are connected:

Lemma
Problem D is equivalent to the dual of Problem P . By strong duality,∑

ω

v∗(ω)µ(ω) =
∑
ω

p∗(ω)µ(ω)

▶ Price p(ω) in D corresponds to P-constraint∑
a

= 1 ∀ω

▶ Thus, p(ω) captures the shadow price of relaxing µ(ω)

▶ Designer’s WTP for one more ω in the dataset

▶ The D-variables (ℓ, q) correspond to P-obedience constraints
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A Normative Interpretation data-pricing problem

Problem D as a rigorous way of assessing the individual price of each
state, viewed as data input in the information-design problem

A classic interpretation: Dorfman, Samuelson, Solow (1958)

▶ Reminiscent of the operations of a frictionless competitive market

▶ Competition among data intermediaries forces to offer data sources
the full value to which their data give rise

▶ Competition among data sources drives data prices down to the
minimum consistent with this full value

Thus, these prices have a normative interpretation

▶ p∗(ω) takes into account information externalities that ω generates

▶ A possible benchmark to be used in actual markets for data
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A Monopolist’s Problem example

Monopolist’s Profit:

u(a, ω0) a = 1 a = 2

ω0 = 1 1 0

ω0 = 2 1 2

Consumer Surplus:

v(a, ω0) a = 1 a = 2

ω0 = 1 0 0

ω0 = 2 1 0

Information-design problem finds π∗ and direct values are

v∗(ω0) =

{
0 if ω0 = 1

1−µ
µ

if ω0 = 2
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Since µ > 1
2
, solution involves setting q∗(1)ℓ∗(2|1) = 1
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Splitting The Surplus example

Therefore, we obtain prices

p∗(1) = 1 p∗(2) = 0

Whereas, direct values are

v∗(1) = 0 v∗(2) =
1− µ

µ

Discussion:

▶ Designer not willing to pay for additional entry ω0 = 2, despite the
only with positive direct value v∗(2) > 0

▶ Designer willing to pay for additional entry ω0 = 1 into dataset

▶ Why? Buyer ω0 = 1 receives no surplus, yet her data plays key role to
generate surplus for ω0 = 2

▶ This externality cannot be captured by v∗, but it is by p∗
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information externalities



Externalities Between States externalities

Gap between v∗ and p∗ is not a special feature of the example

Direct values from P “misprice” data entries as it fails to incorporate the
possible information externalities that exist between states

We characterize these externalities:

Proposition
Let x∗ and (ℓ∗, q∗) be optimal solutions for P and D, respectively. Then

p∗(ω)− v∗(ω) = T ∗(ω) ∀ω

where T ∗(ω) =
∑

a

(∑
i Tℓ∗i ,q

∗
i
(a, ω)

)
x∗(a|ω). Moreover,

p∗(ω) > v∗(ω) ⇐⇒ p∗(ω′) < v∗(ω′)



Externalities Between States externalities

To gain intuition, let

Ω∗
− = {ω : v∗(ω) > p∗(ω)} Ω∗

+ = {ω : v∗(ω) < p∗(ω)}

Why transfer of value V ∗ from states in Ω− to states in Ω+?

Proposition
If ω ∈ Ω∗

−, there must exists a such that x∗(x|ω) > 0 and

v(a, ω0) > v̄(ω0) = max
σ∈CE(Gω0 )

∑
a

v(a, ω0)σ(a)

Designer achieves v(a, ω0) > v̄(ω0) by pooling ω ∈ Ω∗
− with other states,

specifically those in Ω∗
+

Converse. If x∗ involves no pooling — it can be implemented by a fully
revealing π — then there is no externality and p∗ = v∗



what drives p∗



The Dual Side of Designing Information price determinants

An interpretation to understand how the prices are determined

Recall that:
min
ℓ,q

∑
ω

p(ω)µ(ω)

s.t. for all ω,

p(ω) = max
a∈A

{
v(a, ω0) +

∑
i

Tℓi,qi(a, ω)
}

The price of ω ultimately determined by (ℓ, q) through:

1. Designer’s payoff v

2. The “transfer” function Tℓi,qi , which depends on player’s i utility ui



The Dual Side of Designing Information price determinants

Fix player i and outcome realization (a, ω):

Tℓi,qi(a, ω) = qi(ai, ωi)
∑

a′
i∈Ai

(
ui(ai, a−i, ω0)− ui(a

′
i, a−i, ω0)

)
ℓi(a

′
i|ai, ωi)

Interpretation of (ℓi, qi) as bets against player i contingent on (ai, ωi):

▶ ℓi(·|ai, ωi) ∈ ∆(Ai) is a lottery offered to the player

▶ Prizes of such lottery given by ui(ai, a−i, ω0)− ui(a
′
i, a−i, ω0)

▶ Designer puts stake qi(ai, ωi) > 0 into such lottery

Player wins if Tℓi,qi(a, ω) > 0 and loses if Tℓi,qi(a, ω) < 0

− If loses, she would have been better off playing some a′
i ̸= ai given

(a−i, ω0) (ex post mistake)



The Dual Side of Designing Information price determinants

What drives the choice of these bets? Recall, min
ℓ,q

∑
p(ω)µ(ω)

▶ Designer’s overall goal is to win against players as much as possible

However, designer faces two kinds of constraints

1. Links Between States

▶ Bets for i can be tailored to (ai, ωi), but not (a−i, ω−i)

▶ This creates trade-offs across states, as the best bet for (ωi, ω−i) may
not be the same as the best bet for (ωi, ω

′
−i)

▶ Thus, pricing formulas are linked across states, yet they still pin down
prices state-by-state

▶ This structure is constraining because bets are chosen ex ante with
commitment, just like x in problem P
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The Dual Side of Designing Information price determinants

What drives the choice of these bets? Recall, min
l,q

∑
p(ω)µ(ω)

▶ Designer’s overall goal is to win against players as much as possible

However, designer faces several constraints

2. Player’s Incentives

▶ Result: If designers wins at (a, ω), she must lose at some other (a′, ω′)

▶ Represents counterpart in D of Bayesian rationality in P (Nau ’92)
− Intuitively, if i accepts a losing bet at some (a, ω), she must
receive a winning bet at some other (a′, ω′)

▶ Result: Optimal bets must induce player’s indifference

− Generically, Tℓi,qi(a, ω) ̸= 0 if and only if i is indifferent in P
conditional on (ai, ωi), between ai and the lottery



example II



A Simple Cournot Game example

To illustrate, we consider a data-pricing problem with strategic
interactions and private information

Two firms, each sets a production quantity ai ∈ {0, 1}

Profits are given by ui(ai, a−i, ω0) =
(
ω0 −

∑
i ai

)
ai

Demand is uncertain: Ω0 = {ω0, ω̄0}, µ(ω0) = µ(ω̄0) =
1
2

Designer maximizes total production, v(a, ω0) =
∑

i ai



A Simple Cournot Game example

Firms are privately informed about demand ω0: Ωi = {ωi, ω̄i}

ω0 ω2 ω̄2

ω1 γ2 γ(1− γ)

ω̄1 γ(1− γ) (1− γ)2

ω̄0 ω2 ω̄2

ω1 (1− η)2 η(1− η)

ω̄1 η(1− η) η2

where 1/2 < γ, η < 1

The data-pricing problem finds p(ω) = p(ω0, ω1, ω2), for all ω

Duality as a solution method to analytically find optimal p∗ and x∗

Today, show results for γ = η and ω0 ∈ {0, 3}



Optimal Prices p∗ example

ω1, ω2 ω1, ω̄2 ω̄1, ω2 ω̄1, ω̄2 ωI

1

2

3

4p∗(ω̄0, ·)

p∗(ω0, ·)

Case 1: Suppose players’ private information is poor, η = γ < ϕ

▶ Prices are independent of (ω1, ω2)

▶ State ω̄0 is more valuable than ω0

− Bets: q∗i (1, ωi)ℓ
∗
i (0|1, ωi) = q∗i (1, ω̄i)ℓ

∗
i (0|1, ω̄i) > 0, for all i

− ⇒ T ∗(ω0, ωI) < 0 and T ∗(ω̄0, ωI) > 0



Optimal Prices p∗ example

ω1, ω2 ω1, ω̄2 ω̄1, ω2 ω̄1, ω̄2 ωI

1

2

3

4p∗(ω̄0, ·)

p∗(ω0, ·)

Case 2: High informativeness, η = γ > ϕ̄

▶ If firms are pessimistic, pooling becomes harder, larger externality
p∗(ω0, ω1, ω2) < v∗(ω0, ω1, ω2) < v∗(ω̄0, ω1, ω2) < p∗(ω̄0, ω1, ω2)

▶ If optimistic firms always produce. No externalities

p∗(ω0, ω̄1, ω̄2) = v∗(ω0, ω̄1, ω̄2) = v∗(ω̄0, ω̄1, ω̄2) = p∗(ω̄0, ω̄1, ω̄2)

▶ Bets: q∗i (1, ωi)ℓ
∗
i (0|1, ωi) > 0 = q∗i (1, ω̄i)ℓ

∗
i (0|1, ω̄i), for all i
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Interdependencies Between Dimensions discussion

The example illustrates another property of p∗,

▶ While each state can be priced individually, p∗ is not in general
additively separable

▶ That is, there is no p̂0 and p̂i for all i, , s.t.

p∗(ω0, ω1, . . . , ωn) = p̂0(ω0) +
∑
i

p̂i(ωi)

Why? v may not be separable in ai and players interact strategically

Summary

▶ Price of one entry depends on other entries: p∗(ω) ̸= v∗(ω)

▶ Price captures dependencies between dimensions of each data entry



prices under privacy



Privacy Protection privacy

Suppose designer has to incentivize players to disclose their private data

Incentives come directly from how designer commits to use the data

▶ No monetary transfers (very important, yet distinct issue)
▶ Role of commitment

Formally, the incentive-compatible use of data means considering as the
primal P an information-design problem with elicitation

Question:

▶ How are prices affected by the need to elicit the data?



Information-Design Problem with Elicitation privacy

Adding elicitation does not alter the mathematical structure of the
problem

Problem P (Bergemann and Morris, 2019)

max
x

∑
ω,a

v(a, ω0)x(a|ω)µ(ω)

s.t. for all i, ωi, and δi : Ai → Ai∑
ai,a−i,ω−i

ui

(
ai, a−i, ω0

)
x
(
ai, a−i|ωi, ω−i

)
µ(ωi, ω−i) ≥

∑
ai,a−i,ω−i

ui

(
δi(ai), a−i, ω0

)
x
(
ai, a−i|ωi, ω−i

)
µ(ωi, ω−i)



Information-Design Problem with Elicitation privacy

Adding elicitation does not alter the mathematical structure of the
problem

Problem P (Bergemann and Morris, 2019)

max
x

∑
ω,a

v(a, ω0)x(a|ω)µ(ω)

s.t. for all i, ωi, ω′
i, and δi : Ai → Ai∑

ai,a−i,ω−i

ui

(
ai, a−i, ω0

)
x
(
ai, a−i|ωi, ω−i

)
µ(ωi, ω−i) ≥

∑
ai,a−i,ω−i

ui

(
δi(ai), a−i, ω0

)
x
(
ai, a−i|ω′

i, ω−i

)
µ(ωi, ω−i)



Data-Pricing Problem with Elicitation privacy

Designer chooses, for each player i and ωi, a pair:(
ℓ̂i(·|ωi), q̂i(ωi)

)
∈ ∆(Ωi ×Di)×R++

and solves:

Problem D (Data-Pricing Problem)

min
ℓ̂,q̂

∑
ω

p(ω)µ(ω)

s.t. for all ω,

p(ω) = max
a∈A

{
v(a, ω0) +

∑
i

Tℓ̂i,q̂i
(a, ω)

}

Where transfer function Tℓ̂i,q̂i
is now a richer object



Data-Pricing Problem with Elicitation privacy

Data-Pricing problem with vs without elicitation:

▶ Identical objective and similar pricing formulas with richer set of bets
(ℓ̂, q̂) against players

▶ Designer can win against player when:

1. Deviating from obedience is ex-post beneficial (as in before)
2. Deviating from truth telling is ex-post beneficial (new)
3. Both (new)

Directions:

▶ The price of a state must incorporate difficulty to truthfully eliciting it:
new externalities

▶ Comparing prices under omniscient and under elicitation offers
insights into effects of IC on value of data:

E.g. how price of data is affected by privacy protection



back to example



Cournot: Prices p∗ with Elicitation example

Revisit oligopoly example with elicitation: Fix some η = γ > ϕ̄

Clearly, value of data V ∗ decreases with elicitation. What about prices?

ω1, ω2 ω1, ω̄2 ω̄1, ω2 ω̄1, ω̄2 ωI

1

2

3

4p∗(ω̄0, ·)

p∗(ω0, ·)

1. The need for elicitation induces qualitative change in p(ω̄0, ωI)

− ω̄i has incentive to mimic ωi to receive better information
− If state induces temptation to lie, it suffers a negative externality
− Recommendation x∗ distorted to make mimicking less attractive
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Cournot: Prices p∗ with Elicitation example

Revisit oligopoly example with elicitation: Fix some η = γ > ϕ̄

Clearly, value of data V ∗ decreases with elicitation. What about prices?

ω1, ω2 ω1, ω̄2 ω̄1, ω2 ω̄1, ω̄2 ωI

1

2

3

4p∗(ω̄0, ·)

p∗(ω0, ·)

2. Despite V ∗ is lower, some prices increase: p∗(ω̄0, ω̄1, ω̄2)

− Information rent for (ω̄0, ω̄1, ω̄2) which is paid by other states



conclusion



Summary conclusion

A theory of how to price entries of a dataset to reflect their values

▶ Basic insight: leverage duality with information design, how to
optimally use the data

Our preliminary analysis of the properties of the price of data reveals:

▶ Prices account for externalities across states

▶ ...and between dimensions of each data entry

▶ Privacy protection significantly affects prices and can even increase
the price of some data entries


