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Social-Learning Dynamics in Different Networks

• Social learning: info about unknown state dispersed among
society of agents, agents act based on private signals and
observations of social neighbors
• How does social network affect efficiency of info aggregation?
• Esp. relevant today as communication technology reshapes
networks: Facebook, Twitter, ...
• Existing work focuses on complete network
• Open question: impact of network on how well signals are
aggregated — and hence how quickly rational agents learn

Golub and Sadler (2016): “A significant gap in our
knowledge concerns short-run dynamics and rates of learn-
ing in these models. [...] The complexity of Bayesian up-
dating in a network makes this difficult, but even limited
results would offer a valuable contribution to the litera-
ture.”
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Environment and Key Results
Introduce tractable model of rational sequential learning that
lets us compare learning dynamics across different networks
• rich signals, rich actions: Gaussian private signal, infer
neighbors’ beliefs perfectly from their actions
• strips away other sources of learning-rate inefficiency
• unique equilibrium of social-learning game has log-linear form

Highlight network-based informational confounds
• suppose 2 and 3 see 1, but 4 sees only 2 and 3
• 1’s action confounds the info content of 2 and 3’s behavior
• show how rational agents solve this signal-extraction problem

Generations network – observe subset of agents in previous gen
• express learning rate as simple function of network parameters
• extent of info loss: under a symmetry condition, learning
aggregates no more than 2 signals per gen asymptotically
• applications to org structure: (1) value of mentorship in
organizations; (2) benefits and costs of information silos 2



Related Literature
Sequential social learning
• Banerjee (1992), Bikhchandani, Hirshleifer, Welch (1992)
• Correct learning under mild conditions: Acemoglu, Dahleh, Lobel,

Ozdaglar (2011), Lobel and Sadler (2015). This paper: speed.
Obstructions to the efficient learning rate in sequential social learning
• Coarse action space: Harel, Mossel, Strack, Tamuz (2020), Rosenberg

and Vieille (2019), Hann-Caruthers, Martynov, Tamuz (2018)
I HMST’s “rational groupthink”: trapped in wrong consensus for a

long time as small belief changes are not reflected in actions
I Rate of learning efficient if actions were rich

• Endogenous info: Burguet and Vives (2000), Mueller-Frank and Pai
(2016), Ali (2018), Lomys (2019), Liang and Mu (2020).
• This paper: network-based obstructions to fast learning.

Lobel, Acemoglu, Dahleh, Ozdaglar (2009): compare two specific
network structures with nbhd size 1. This paper: arbitrary fixed networks.
Info confounding only appears in networks with nbhd size > 1.
Speed of learning under non-rational heuristics: Ellison and Fudenberg
(1993), Golub and Jackson (2012), Molavi, Tahbaz-Salehi, Jadbabaie
(2018). This paper: rational learning. 3
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Model and Notations

• Two equally likely states ω ∈ {0, 1}
• Agents i = 1, 2, 3, ... move in order, each acting once
I i observes private signal si ∈ R and actions of neighbors,

N(i) ⊆ {1, ...i − 1}
I picks action ai ∈ [0, 1] to maximize expectation of −(ai − ω)2

• Signals are Gaussian and conditionally i.i.d. given state,
si ∼ N (1, σ2) when ω = 1 and si ∼ N (−1, σ2) when ω = 0
• Neighborhoods define an observation network M, with
Mi ,j = 1 if j ∈ N(i), Mi ,j = 0 else. M is common knowledge.
• A strategy for i specifies i ’s play as a function of:

1. observed actions from neighbors N(i), and
2. private signal si .

• Sequential nature of game ⇒ there is a unique
perfect-Bayesian equilibrium strategy profile
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An Example of Informational Confound

Agent
    1

s1 = 0.50
a1 = 0.73

Agent
    2

s2 = 1.00
a2 = 0.88

Agent
    3

s3 = - 0.2
a3 = 0.40

Agent 4  s4 = 0.80
    

• 4 perfectly infers 2 and
3’s signals from their
actions
• 4’s accuracy = 3 signals,
fully incorporates info in
s2, s3, and s4

Agent
    1

s1 = 0.50
a1 = 0.73

Agent
    2

s2 = 1.00
a2 = 0.95

Agent
    3

s3 = - 0.2
a3 = 0.65

Agent 4  s4 = 0.80
    

• a1 influences both a2 and a3,
but is unobserved by 4
• 4 cannot fully incorporate s2

and s3 without over-counting s1

• optimal signal extraction: 4
puts “2/3 as much weight” on
a2 and a3 as in other network

• 4’s accuracy = “3.67 signals”
I (to be formalized soon)
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Log-Linearity of the Equilibrium
WLOG apply log-transformations and work with log-variables

• log-signal, s̃i := ln
(
P[ω=1|si ]
P[ω=0|si ]

)
, log-actions, ãi := ln

(
ai

1−ai

)
• these changes are 1-to-1, so there is a (unique) map from i ’s
neighbors’ log-actions and i ’s log-signal to i ’s eqm log-action
• next proposition says this map is linear

Proposition 1
For each agent i with N(i) = {j(1), ..., j(d)}, there exist constants
(βi ,j(k))d

k=1 s.t.

ã∗i = s̃i +
d∑

k=1
βi ,j(k)ã∗j(k).

The vector of coefficients ~βi ,· is given by

~βi ,· = 2E[(ã∗j(1), ..., ã
∗
j(d)) | ω = 1] ·Cov[ã∗j(1), ..., ã

∗
j(d) | ω = 1]−1.
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Discussion of Proposition 1

Proposition 1
For each agent i with N(i) = {j(1), ..., j(d)}, there exist constants
(βi ,j(k))d

k=1 s.t. ã∗i = s̃i +
∑d

k=1 βi ,j(k)ã∗j(k).The vector of
coefficients ~βi ,· is given by

~βi ,· = 2E[(ã∗j(1), ..., ã
∗
j(d)) | ω = 1] ·Cov[ã∗j(1), ..., ã

∗
j(d) | ω = 1]−1.

• For general private signal distributions, Bayesian updating in
networks intractable as Golub and Sadler (2016) point out
• Gaussian info structure leads to log-linear eqm and
closed-form expression of linear weights that solve
signal-extraction problem: downweight neighbors’ log-actions
if they have higher equilibrium correlation conditional on ω
• ~βi ,· depends on network M, but not on signal precision 1/σ2
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Signal-Counting Interpretation of Eqm Accuracy
If i ’s only info is n ∈ N+ indep signals, ãi ∼ N

(
±n · 2

σ2 , n · 4
σ2

)
.

Definition
Social learning aggregates r ∈ R+ signals by agent i if the
equilibrium log-action ã∗i ∼ N

(
±r · 2

σ2 , r · 4
σ2

)
in the two states.

• When agents use arbitrary strategy profile (even if log-linear),
need not have ãi ∼ N

(
±r · 2

σ2 , r · 4
σ2

)
for any r ∈ R

• But, equilibrium log-actions always admit this kind of
signal-counting interpretation, suff. stat for rational accuracy

Proposition 2
There exist (ri )i≥1 so that social learning aggregates ri signals by
agent i . These (ri )i≥1 depend on the network M, but not on σ2.

• Can help solve for eqm strategy profile in some cases
• limi→∞(ri/i) ∈ [0, 1] called aggregative efficiency of M
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Condition for Long-Run Learning
Say society learns completely in the long run if equilibrium
actions (a∗i ) converge to ω in probability.

Proposition 3
Society learns completely in the long run if and only if

lim
i→∞

[
max

j∈N(i)
j
]

=∞.

• If we consider the most recent neighbor of each agent, then
this sequence of most-recent-neighbors tends to ∞
• Analog of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011)’s
expanding observations property for deterministic network
• Mild and clearly necessary: else for some C <∞, infinitely
many i cannot access the signal of any j > C except their own
• Long-run learning not a useful way to compare networks
I Instead, compare (ri )i≥1 and aggregative efficiency
I May have ri →∞ yet aggregative efficiency far below 1
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The Maximal Generations Network

• K ≥ 1 agents per
generation
• Agents in gen t observe
all agents in gen t − 1

1 2 3

4 5 6

7 8 9

Proposition 4
In the maximal generations
network:
• Society learns completely in
the long run with any K.
• limi→∞(ri/i) = (2K−1)

K2 .

• In the long run, social
learning aggregates...
I fewer signals per agent

with larger K
I fewer than 2 signals per

generation with any K
• For any K and any i , i ′ in
generations t and t − 1
with t ≥ 3, ri ≤ ri ′ + 3.
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Bounds on Signals Aggregated Per Generation
• Agents in generation t have observation paths of length t − 1
• Can show in any network, this implies ri ≥ t
• Social learning must aggregate at least 1 signal per gen
• This lower-bound not too far from the actual learning rate:

ri /di/Ke︸ ︷︷ ︸
gen of i

= (2K − 1)
K︸ ︷︷ ︸
<2

+ o(1)

(No more than 2 signals per gen in long-run, for any K )

ri − ri ′ ≤ 3, for i , i ′ in gen t, t − 1 where t ≥ 3

(No more than 3 signals per gen starting with gen 3, for any K )

• For K large, individuals only manage to aggregate an
unboundedly small fraction of their private signals in eqm
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Slower Per-Agent Rate of Learning with Larger Gens
• If K = 1, every agent perfectly incorporates all past private

signals ⇒ fastest possible speed of social learning
• Prop 4 says aggregative efficiency strictly decreases in K
• Worse learning with larger K holds numerically starting from

agent i = 16 when comparing among K ∈ {2, 3, 4, 5}
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Application 1: Value of Mentorship in Organizations
• Many organizations with overlapping cohorts (e.g., colleges,
professional firms, etc.) have mentorship programs, pairing
each newcomer with someone from the previous cohort

Corollary 1
In the maximal generations network, if each agent additionally
observes the private signal of one agent from the previous
generation (their “mentor”), then ri ≥ i − K for every i and
aggregative efficiency is 1.

• Incumbents behave based on individual private info and
shared org knowledge (e.g., key internal events in company’s
recent past)
• Newcomer is unaware of org knowledge, so becomes confused
about incumbents’ behavior
• De-confounding role of mentors: personal details of just one
individual’s experience can help interpret everyone’s behavior
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Application 1: Value of Mentorship in Organizations

Management literature discusses a related “socializing” benefit of
mentors.

Chao (2007) in The Handbook of Mentoring at Work: Theory,
Research, and Practice:

“Mentors can be powerful socializing agents as an
individual adjusts to a new job or organization. As protégés
learn about their roles within the organization, mentors can
help them correctly interpret their experiences within
the organization’s expectations and culture.”

In our setting, it is this “interpretive” value of mentorship that
helps build a more effective learning organization.

• If mentors generate new signals instead of sharing past signal
realizations, social learning does not speed up very much
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Application 2: Information Silos in Organizations

Information silos: In management, describes info fragmented
among subgroups that do not communicate with each other

• Gillian Tett’s 2015 book The Silo Effect documents prevalence
of silos in government bureaucracies, technology firms, banks
• E.g. departments in the same municipal government, product
divisions in a company, ...
• Causes: pay structure discourages collaboration across silos,
technical barrier prevents flow of ideas across specialties, ...
• Silos persist for decades, as cohorts of new workers join the
organization and bring in new info
• Tett (2015) joins a consensus in management consulting
today in advocating breaking down silos
• We use a generations network to argue org can actually
benefit from silos compared with fully transparent data sharing
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Application 2: Information Silos in Organizations

5 6 7

9 10 11

13 14 15

 1  2  3

8

12

16

4

Executives Silo #1 Silo #2

Corollary 2
Suppose org consists of N
silos with s1, ..., sN agents
per generation, plus 1
executive per generation.
In the long run, silo n
aggregates 2sn−1

sn
< 2K−1

K
signals per gen, while the
executives aggregate∑N

n=1
2sn−1

sn
signals per

gen.
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Application 2: Information Silos in Organizations

• Sacrifice rate of learning within silos to provide less
confounded info to executives
• With full data sharing, workers in silos would learn better
I Newcomers learn from predecessors across the org, instead of

only predecessors from the same department
• But full data sharing slows down executives’ learning
I Actions from different silos conditionally independent

• Does breaking down silos help the org? It depends:
I NO if org success closely identified with executives’ actions
I YES if everyone’s action contributes to org’s welfare
I Negative case studies cited by Tett (2015) and management

consultants involve workers in silos who take actions that
severely harm the company
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Which Network Leads to Faster Learning?
Network A

1 2 3

4 5 6

7 8 9

Network B

1 2 3

4 5 6

7 8 9

• Network A is the maximal generations network with K = 3
• Network B puts agents in each gen into 3 slots, k ∈ {1, 2, 3}.
k = 1 sees 1 and 2, k = 2 sees 2 and 3, k = 3 sees 3 and 1.
Less info confounding, but also fewer social observations.
• Need: aggregative efficiency on more general networks. 19



Generations Network with Partial Observations

• Generations network with K agents per gen
• Ψk ⊆ {1, ...,K}, observation set, define which gen t − 1

slots are observed by a gen t agent in slot k
• Maximal generations network is the case of Ψk = {1, ...,K}

1 2 3

4 5 6

7 8 9

Ψ1 = {1, 2},
Ψ2 = {2, 3},
Ψ3 = {1, 3}.
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Generations Network with Partial Observations

Definition
The observation sets are symmetric if all agents observe d ≥ 1
neighbors and all pairs of distinct agents in the same generation
share c common neighbors. That is, for all i1 6= i2 in same
generation t ≥ 2, |N(i1)| = d and |N(i1) ∩ N(i2)| = c.

For example, “Network B” is symmetric with d = 2, c = 1.

More generally, for every c ≥ 1 and d = mc + 1 where m is a
positive integer, there exists a symmetric (Ψk)k with parameters
d , c.
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Speed of Learning with Partial Observations
Theorem 1
Suppose (Ψk)k are symmetric. Then

lim
i→∞

(ri/i) =
(
1 + d2 − d

d2 − d + c

)
1
K .

• Exact expression of aggregative efficiency for a broader class
of generations networks
• Term in parenthesis increases in d and decreases in c — more
obs speeds up rate of learning per gen but more confounding
slows it down, all else equal
• Maximal gen network has the worst rate of learning, among all
symmetric gen networks with same d
I Because actions very confounded in maximal gen network

• But Theorem 1 shows asymptotic bound of 2 signals per gen
applies to all such networks, strengthening Proposition 4
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Which Network Leads to Faster Learning?
Network A

1 2 3

4 5 6

7 8 9

Network B

1 2 3

4 5 6

7 8 9

• Applying Theorem 1, aggregative efficiency is the same in
Network A (d = 3, c = 3) and Network B (d = 2, c = 1)!
• Extra social obs exactly cancel out reduced info content of
each obs
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Social Planner’s Benchmark

Definition
(Ψk)k are strongly connected if for every 1 ≤ k1 ≤ k2 ≤ K , there
exist t1, t2 so that t1K + k1 is connected to t2K + k2 in M.

Proposition 5
Suppose (Ψk)k are strongly connected and symmetric with c ≥ 1.
There is a log-linear strategy profile such that, for every K0 < K ,
eventually agents’ actions are are more accurate1than aggregating
K0 signals per generation.

• A social planner can aggregate close to all signals
• Slow learning of Thm 1 not intrinsic limitation of gen networks

I Conclusion

1i ’s action more accurate than r signals if it is more likely to lean towards
the correct state than the action of someone who observes r indep signals. 24



Aggregative Efficiency and Welfare Comparisons

Aggregative efficiency leads to two kinds of welfare comparisons

• Let vi be expected eqm welfare of i (depends on M and 1/σ2)
• We always have −0.25 < vi < 0 for every i
• Social learning strongly attains v by agent I if I is the

smallest integer s.t. vi ≥ v for all i ≥ I
• Social learning weakly attains v by agent i if i is the smallest

integer s.t. vi ≥ v (but later agents may do worse)

Proposition 6
Suppose aggregative efficiency is strictly positive in M and M ′ , and
strictly higher in M. For every v ∈ (−0.25, 0), there exists π > 0
so that if 0 < 1/σ2 ≤ π, then social learning strongly attains v in
M by agent I and weakly attains v by agent i in M ′

, with I < i .
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Aggregative Efficiency and Welfare Comparisons
Now fix 1/σ2. Social planner could evaluate utility profiles
v = (vi )i≥1 using a social welfare function

Λ(v) =
∞∑

i=1
λivi + λ∞

(
lim

i→∞
vi

)

• λ1, λ2, ..., λ∞ ≥ 0 summable sequence of welfare weights
• λ∞ weight on “end of time”

“Infinitely patient” planner: Λ∞ with λi = 0 for i ∈ N+, λ∞ = 1
“Very patient” planner: ΛT with λi = 0 for i < T , λi > 0 for
i ≥ T , where T ∈ N+ is large

Proposition 7
Suppose society learns completely in the long run in both M and
M ′
, but aggregative efficiency is strictly higher in M. There exists

T so that if T ≥ T , then ΛT is strictly higher on M than on M ′ ,
though Λ∞ is indifferent between M and M ′

.
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Simulation: Observing Multiple Past Generations
Each agent observes all predecessors from past τ ≥ 1 generations
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• Limited improvement in aggregative efficiency: removes some
confounds but creates new ones 27



Simulation: General Signal Structures
• Each signal is finitely supported

1 signal per agent, generation 1

log−action

D
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0

• Each agent has not 1, but n conditionally i.i.d. signals
• Think of agents who gather info over a period of time
• Increase n and scale down informativeness of each signal,
fixing mean and SD of private log-belief (based on all n
private signals) to match the Gaussian case
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Simulation: General Signal Structures
• 2 agents per generation, maximal generations network
• Behavior very close to normal even with small n > 1

1 signal per agent, generation 4
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Simulation: General Signal Structures
• As n grows, mean and SD of gen 4 log-action approach their
analogs when each agent has 1 Gaussian signal

each agent has... mean SD
1 signal 1.315 1.629
10 signals 1.201 1.543
100 signals 1.207 1.550
1000 signals 1.224 1.575

1 Gaussian signal 1.232 1.570

• Even if n = 1, log-actions in later gens resemble Gaussian
I Sample of 1000 signals  Shapiro-Wilk normality test rejects

at p < 0.05 level with prob close to 1
I Sample of 1000 gen 10 log-actions  Shapiro-Wilk rejects at

p < 0.05 level with prob 6%
I Social learning aggregates i.i.d. signals from different agents

• Results and technique for Gaussian case may approximate
behavior under general signal structures, at least for later gens 30



Summary

• A tractable model of rational sequential learning that focuses
on how the social network affects aggregative efficiency
• Exact aggregative efficiency in all generations networks with
symmetric observation sets
• Significant info loss due to confounding: in any such network,
each generation eventually aggregates no more than 2 signals
• Analytic expression for aggregative efficiency permits
comparative statics and applications about org structure:
mentorship, information silos

Thank you!
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