The Economics of Social Data

Dirk Bergemann¹ Alessandro Bonatti² Tan Gan¹

¹Yale University

²MIT Sloan

Pennsylvania State University December 2020

Data and Information

- Markets for data ever more relevant to economic welfare. (IAB: ~\$20b spent to acquire/process consumer data in 2019.)
- Rise of large internet platforms leads to unprecedented collection and commercial use of individual data.
- Amazon, Facebook, Google / JD, Tencent, Alibaba: intermediaries:

selling information \gg providing access to a database;

consumer scores, predictions, ratings, custom audiences.

Individual and Social Data

- Central feature of individual data is its social aspect.
- "Social" dimension of the data ≜ data about an individual consumer is informative about *similar* consumers.
- Social nature of data generates a *data externality* not signed *a priori*.
- Individual data enables both *surplus creation* and *extraction*: product reviews, traffic data, targeted advertising; personalized recommendations, search results, and prices.

Questions

- How does the social dimension of the data impact the terms of trade between consumers, data buyers, and data intermediaries?
- Output How does the social dimension of the data magnify the value of individual data for the intermediaries?
- How do data intermediaries choose the level of aggregation and precision of the information that they provide?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Model

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Model of Intermediation

Application: Google Search (Indirect Sale)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

Application: Supply Chain of Data

Product Market

- A data broker, N consumers, and a producer (firm).
- Consumer *i* has baseline willingness to pay w_i .
- Consumer *i* chooses quantity q_i to maximize

$$u(w_i, q_i) = w_i q_i - \frac{1}{2}q_i^2 - p_i q_i.$$

• Producer chooses prices $p = (p_1, ..., p_N)$ to maximize

$$\pi(p) = \mathbb{E}\sum_{i} (p_i - c) q_i.$$

Data Environment

Joint distribution of consumers' types $w = (w_1, ..., w_N)$:

$$w \sim F_w$$
, with $\mathbb{E}[w_i] = \mu$ and $\operatorname{var}[w_i] = 1$ for all *i*.

Consumer *i* has incomplete information about wtp w_i :

$$s_i \triangleq w_i + \sigma \cdot e_i$$
, with $\sigma > 0$

Joint distribution of consumers' error terms $e = (e_1, ..., e_N)$:

$$e \sim F_e$$
, with $\mathbb{E}[e_i] = 0$ and $var[e_i] = 1$ for all *i*.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Distributions F_w and F_e admit symmetric densities.

Leading Example

• Each consumer has willingness to pay

$$w_i = \theta + \theta_i$$

• Each consumer observes

$$s_i = \theta + \theta_i + \varepsilon + \varepsilon_i.$$

• Social data = common and idiosyncratic components:

$$\left(\begin{array}{c} \theta\\ \theta_i \end{array}\right) \sim N\left(\left(\begin{array}{c} \mu\\ 0 \end{array}\right), \left(\begin{array}{c} \sigma_\theta^2 & 0\\ 0 & \sigma_{\theta_i}^2 \end{array}\right)\right).$$

• Common and idiosyncratic error terms ε and ε_i :

$$\left(\begin{array}{c}\varepsilon\\\varepsilon_i\end{array}\right) \sim N\left(\left(\begin{array}{c}0\\0\end{array}\right), \left(\begin{array}{c}\sigma_{\varepsilon}^2&0\\0&\sigma_{\varepsilon_i}^2\end{array}\right)\right).$$

Key Modeling Choices

- Any information beyond common prior = consumers' signals.
- Data sharing teaches consumers about their preferences: correlation in fundamental and noise terms captures social dimension;
 "common attributes" or "common experience;"

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Social data can be exploited by an adversary.
- Work-in-progress: "data for service."

Complete Data Sharing

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Data Sharing and Product Market

• All individual data $s = (s_1, ..., s_N)$ is shared completely.

• Predicted willingness to pay of *i* given *s*

 $\hat{w}_i(s) \triangleq \mathbb{E}\left[w_i \mid s\right].$

• Realized demand function of consumer *i* is

$$q_i(s,p) = \hat{w}_i(s) - p.$$

• Producer charges optimal personalized price $p_i^*(s)$

$$p_i^*\left(s\right) = \frac{\hat{w}_i\left(s\right) + c}{2}$$

Data and Welfare

• Ex ante payoffs (consumer's information, firms' information):

$$U_{i}(S,S) \triangleq \mathbb{E}\left[u_{i}(w_{i},q_{i}^{*}(s),p_{i}^{*}(s))|S\right] = \frac{1}{8}\mathbb{E}\left[\left(\hat{w}_{i}(s)-c\right)^{2}|S\right],\\ \Pi_{i}(S,S) \triangleq \mathbb{E}\left[\pi_{i}(q_{i}^{*}(s),p_{i}^{*}(s))|S\right] = \frac{1}{4}\mathbb{E}\left[\left(\hat{w}_{i}(s)-c\right)^{2}|S\right].$$

- Linear strategies: $1^*, 11^*$ independent of S.
- Ex ante surplus depends on the variance of the posterior mean only.
- "Quantity" of information ($\sim R^2$) under structure S:

 $G(S) \triangleq \operatorname{var}\left[\hat{w}_{i}\left(s\right) \mid S\right].$

• Under no data sharing, consumer *i* has information $G(S_i) > 0$.

Proposition (Value of Data Sharing)

The value of complete data sharing for the producer is:

$$\Pi_i(S,S) - \Pi_i(S_i,\varnothing) = \frac{1}{4}G(S).$$

2 The value of complete data sharing for consumer *i* is:

$$U_i(S,S) - U_i(S_i, \emptyset) = \frac{1}{2} (G(S) - G(S_i)) - \frac{3}{8}G(S).$$

The social value of complete data sharing is:

$$W_i(S,S) - W_i(S_i, \emptyset) = \frac{1}{2} (G(S) - G(S_i)) - \frac{1}{8}G(S).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Value of Data Sharing: Basic Properties

- Consumers' and social welfare increase with consumers' information gains, and decrease with the firms' information gains.
- 2 If consumers know their types ($\sigma = 0$), data sharing is socially harmful.
- If consumers' types (w_i, w_j) and error terms (e_i, e_j) are independent, data sharing is socially harmful.
- If consumers' don't learn anything from others' signals, data sharing is socially harmful.
- If individual consumers are uninformed (but the complete dataset is informative), data sharing benefits consumers.

Polar Cases

() Common type, independent errors, $s_i = w + \sigma \cdot e_i$

2 Independent types, common error term, $s_i = w_i + \sigma \cdot e$

Data Externality

Surplus of consumer *i* when others share their signals:

$$U_i(S, S_{-i}) \triangleq \mathbb{E} [u_i(w_i, q_i^*(s), p_i^*(s_{-i})) \mid S].$$

Definition (Data Externality)

Data externality imposed by consumers -i on consumer i,

$$DE_i \triangleq U_i(S, S_{-i}) - U_i(S_i, \emptyset)$$

Proposition (Data Externality)

The data externality DE_i is given by

$$DE_{i} = \frac{1}{2} \left(G(S) - G(S_{i}) \right) - \frac{3}{8} G(S_{-i}).$$

▲□▶▲圖▶▲圖▶▲圖▶ ▲国 のへの

Data Externality: Properties

- If consumers know their types ($\sigma = 0$), then $DE_i < 0$.
- If types (w_i, w_j) are independent, DE_i ≥ 0.
 But if σ is small, then DE_i > 0 > ΔU_i.
- $DE_i > \Delta U_i$ (the only difference is the firm observing s_i .)

・ロト・日本 キョン・ヨン ヨー シック

• But it is possible that $\Delta W_i > 0 > DE_i$.

Data Intermediation

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Data Market

Data broker buys data from each consumer and sells to producer:

data contract with consumer i specifies an inflow data policy

$$X_i: S_i \to \Delta\left(\mathbb{R}\right),$$

and a fee $m_i \in \mathbb{R}$ paid to the consumer;

2 data contract with the producer specifies an outflow data policy

$$Y_0: X \to \Delta\left(\mathbb{R}^N\right),$$

a data sharing policy with consumers

$$Y_i: X \to \Delta\left(\mathbb{R}^N\right),$$

and a fee $m_0 \in \mathbb{R}$ paid by the producer.

Data Market: Timing

- Data broker offers ex ante payment to consumer for data.
- 2 Data broker offers sells available (ex ante) data to merchant.
- Oata broker transmits data from consumers to merchant.
- Merchant charges unit price p_i ; consumer *i* buys q_i .

Complete Data Sharing and Participation

The broker collects and shares all data with every agent $Y_0 = Y_i = X = S$.

Producer's participation constraint

$$m_0/N \leq \Pi_i(S,S) - \Pi_i(S,\emptyset) = \Pi_i(S,S) - \Pi_i(S_i,\emptyset).$$

• Consumer *i*'s participation constraint

$$m_i \ge U_i \left(S, S_{-i} \right) - U_i \left(S, S \right) \ge 0$$

Social nature of data: externality from information sale:

- \rightarrow if sharing s_i is harmful to consumer *i*, consumer *i* is compensated;
- \rightarrow if sharing s_i helps predict $w_{j\neq i}$, consumer *i* is not compensated;
- \rightarrow if sharing s_i is harmful to $j \neq i$, consumer j is not compensated.

Data Sharing and Compensation

Total payment from producer:

$$m_0^* = N\left(\Pi_i\left(S,S\right) - \Pi_i\left(S_i,\varnothing\right)\right).$$

Represent consumer i's compensation as

$$m_{i}^{*} = U_{i}(S, S_{-i}) - U_{i}(S, S)$$

$$= \underbrace{U_{i}(S, S_{-i}) - U_{i}(S_{i}, \varnothing)}_{DE_{i}(S)} - \underbrace{(U_{i}(S, S) - U_{i}(S_{i}, \varnothing))}_{\Delta U_{i}(S)}.$$

• The intermediary's profit is then

$$R(S) = m_0^* - \sum_{i=1}^{N} m_i^* = \Delta W_i(S) - \sum_{i=1}^{N} DE_i(S)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Equilibrium with Complete Data Sharing

Proposition (Complete Data Sharing)

Complete data intermediation is profitable if and only if

 $3G\left(S_{-i}\right) \ge G\left(S\right).$

Recall complete data sharing is efficient iff $G(S) > (4/3)G(S_i)$.

Broker profits do not depend on consumer *i*'s initial information.

Intuitively, profits depend on signal substitutability.

Uninformative individual signals: profitable and efficient data sharing.

Market Failures

1 Type-I error: correlated fundamentals & precise individual signals.

2 Type-II error: independent fundamentals & noisy individual signals.

Gaussian Data Structures

Common and idiosyncratic terms:

$$s_i = \theta + \theta_i + \varepsilon + \varepsilon_i.$$

• Correlation coefficients for two consumers' fundamentals and errors:

$$\alpha \triangleq \frac{\sigma_{\theta}^2}{\sigma_{\theta}^2 + \sigma_{\theta_i}^2}, \qquad \beta \triangleq \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_{\varepsilon_i}^2}$$

• Refer to pair $(\alpha, \beta) \in [0, 1]^2$ as *data structure*.

• Data structure (α, β) captures social dimension of individual data.

Equilibrium vs Efficient Data Sharing

• Socially efficient data structures (blue) and profitable data structures (green) for $\sigma_e = 2, \sigma_w = 1, N = 10$

Equilibrium vs Efficient Data Sharing

• Socially efficient data structures (blue), profitable data structures (green), and data externality (orange) for $\sigma_e = 2$, $\sigma_w = 1$, N = 10

Optimal Data Sharing

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ▲□▶

Optimal Data Sharing

Design data intermediation policy along three key dimensions:

- allow intermediary *not* to release all of the data, i.e., to introduce incomplete and possibly asymmetric information;
- allow intermediary to choose between collecting *anonymized* or *matched* signals;
- allow intermediary to introduce further (possibly correlated) noise terms in any (anonymized or matched) signals it collects.

Optimal Data Intermediation: Outflow

Wlog, a data inflow policy X consists of signals

 $x_i \triangleq s_i + \xi_i$

for each consumer i = 1, ..., N who accepts the intermediary's offer.

Proposition (Optimal Outflow)

Given any realized data inflow X, the complete data outflow policy $Y^*(X) = X$ maximizes the gross revenue of the producer among all feasible outflow data policies.

- No withholding information from the producer: sell everything.
- No superior information to the producer: she does not benefit from signaling ex ante.

Optimal Data Intermediation: Inflow

Theorem (Data Anonymization)

For any data inflow *X*, the intermediary obtains strictly greater profits by collecting anonymized rather than matched signals.

Proof Sketch

Recall the intermediary's profits:

$$R(S) = \Delta W_i(S) - \sum_{i=1}^{N} DE_i(S).$$

- Suppose broker collects matched signals, consider data externality.
- By symmetry, if consumer *i* does not participate, $p_i^*(s_{-i})$ is independent of other consumers' identities.
- Data externality unchanged under anonymization.
- If consumer *i* participates, her inference problem does not depend on the identities of *j* ≠ *i*.
- Firm's inference problem is now harder, which improves total surplus.

Anonymized data sharing is profitable iff $3G(S_{-i}) \ge \tilde{G}(S)$.

If types are independent, still no profitable intermediation.

If matched sharing is profitable AND efficient, so is anonymized sharing.

Intuition (linear estimators): anonymized signals are closer substitutes.

Large Markets

- "Digital privacy paradox:" negligible compensation for individual data.
- Compensation decreases with size of consumer base.

Theorem (Large Markets (Gaussian Case))

- As $N \to \infty$, the individual consumer's compensation goes to zero, and the total compensation converges to a finite number.
- *For sufficiently correlated fundamentals the total compensation is asymptotically decreasing in N.*
- **3** As $N \to \infty$, the intermediary's revenue and profit grow linearly in N.

Large Markets

Total Consumer Compensation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Limits to Anonymization

Proposition (General Anonymization)

Suppose consumers are ex ante homogeneous. The data broker collects anonymized data if and only if information reduces social welfare.

- With multiple consumer segments, the intermediary reveals (at most) each consumer's *group* identity.
- Profitability of group vs. uniform price depends on *N*, degree of within-group and across-group correlation.

Gaussian Case: Multiple Segments

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Recommender Systems

Consumer i's utility function is given by

$$u_i(w_i, q_i, p_i, y_i, t_i) = (w_i - (y_i - t_i)^2 - p_i) q_i - q_i^2/2,$$

- w_i is willingness to pay, t_i is consumer's ideal location.
- y_i is the product's characteristic.
- Location $t_i \in \mathbb{R}$ of each consumer i is

$$t_i \triangleq \tau + \tau_i.$$

Proposition (Optimal Recommendation)

The intermediary's optimal policy collects anonymized data on the vertical component w_i and matched data on the horizontal component t_i .

Concluding Thoughts

Optimal data sharing vs complete data sharing:

- uniform price rather than personalized prices;
- personalized recommendations.

Far from socially efficient allocation of data:

- consumers compensated for individual harm, but not for social harm;
- socially efficient anonymization, not intermediation decisions;
- cost of acquiring information vanishes, gains persist as market grows.