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Abstract

We propose a new measure of the correlation between the types of matched workers

and firms and show that this captures sorting in a variety of structural models. We

also propose an estimator of the correlation and prove that the estimator is consistent

when the number of workers and firms grows to infinity even if each worker only

has a small number of jobs and each firm only employs a small number of workers.

Model simulations also confirm that our estimator is accurate in small data sets. Using

administrative data from Austria, we find that the correlation between worker and firm

types lies between 0.4 and 0.6. In contrast, the Abowd, Kramarz, and Margolis (1999)

fixed effects estimator suggests a near-zero correlation in our data set. This reflects a

combination of biases in the AKM correlation estimator and limitations of the AKM

correlation as a measure of sorting.
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1 Introduction

There is sorting everywhere in the economy. Wealthier, more educated, more attractive

men on average marry wealthier, more educated, more attractive women (Becker, 1973).

Higher income households reside in distinct neighborhoods and send their children to different

schools than low income households (Tiebout, 1956). Elite universities enroll the most

qualified undergraduates (Solomon, 1975). The one place where it has been hard to find

evidence of sorting is in the labor market. A fair summary of an extensive literature following

Abowd, Kramarz, and Margolis (1999) (hereafter AKM) is that the correlation between the

fixed characteristics of workers and their employers is close to zero and possibly negative.1

This is often interpreted as saying that there is no evidence that high wage workers work

for high wage firms and is used to justify theoretical models in which there is no sorting

between workers and firms (Postel-Vinay and Robin, 2002; Christensen, Lentz, Mortensen,

Neumann, and Werwatz, 2005).

This paper proposes a new measure of sorting and revisits this conclusion through the

lens of that measure. Our measure of sorting is the correlation between a worker’s type and

her employer’s type. We define a worker’s type to be the expected log wage she receives in

an employment relationship conditional on taking the job. That is, if we could observe a

worker for a long time, her type would be the average log wage she receives. Similarly, we

define a firm’s type to be the expected log wage that it pays to an employee conditional on

hiring the worker, or equivalently the average log wage paid in a long time series.2

Beyond proposing this measure of sorting, our paper makes three main contributions.

First, we develop simple structural models to use as laboratories for measuring sorting. In

particular, we ask whether our measure of the correlation between types captures an empir-

ically infeasible but intuitive notion of sorting in those models. We show that in a particular

statistical model, our measure of the correlation between types is identical to AKM’s measure

of correlation. We then develop a search model with both ex ante heterogeneity and idiosyn-

cratic productivity shocks. We show that the two measures of correlation are quantitatively

similar, although there are limited situations where one performs better than the other. Fi-

1In addition to the original study on French data by AKM, see Abowd, Creecy, and Kramarz (2002) for
Washington State, Iranzo, Schivardi, and Tosetti (2008) for Italy, Gruetter and Lalive (2009) for Austria,
Card, Heining, and Kline (2013) for Germany, Bagger, Sørensen, and Vejlin (2013) and Bagger, Fontaine,
Postel-Vinay, and Robin (2014) for Denmark, and Lopes de Melo, 2018 for Brazil, among others. Recent
papers emphasize bias in the OLS estimates of the AKM model and find a larger correlation; see especially
Kline, Saggio, and Sølvsten (2019) and Bonhomme, Lamadon, and Manresa (2019).

2Our definition of firm type is close to Christensen, Lentz, Mortensen, Neumann, and Werwatz (2005),
who define a firm’s type to be equal to the average wage (in levels rather than logs) it pays. It is worth
noting that both AKM’s and our definition of firm type is consistent with high type firms being either high
or low productivity firms, for the reasons discussed in Eeckhout and Kircher (2011).
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nally, we develop a discrete choice model with an idiosyncratic amenity shock and find that

our measure of the correlation between types captures an intuitive notion of sorting, while

the AKM correlation delivers nonsense. We conclude that the correlation between types is a

promising reduced-form measure of sorting in a variety of standard economic environments.

Our second contribution is to develop an estimator of the correlation between types.

Intuitively, our approach is to directly estimate the variance-covariance matrix of matched

types using moment conditions that do not impose any functional form on the underlying

type distributions. Our estimator is motivated by the properties of real-world data sets that

have a large number of workers and firms but few independent observations for each worker

and firm. Our key identifying assumption is that for each worker, we have two or more

observations of the actual wage received and that these observations are independently and

identically distributed conditional on the worker’s type, and symmetrically for firms. Our

estimated correlation then pertains to the sample of workers and firms for which we have

these two observations. We prove that our estimator is consistent in the limit as the number

of workers and firms goes to infinity, even if we only observe a small number of independent

observations for each worker and firm. We also use model-generated data to evaluate the

behavior of the estimator in small data sets. We find that both the bias and variance of the

estimator are generally small even with only 2,500 workers and 500 firms.

Our third contribution is to estimate the correlation in real-world data. Our primary

data set captures the universe of private sector workers in Austria from 1986 to 2018. We

first measure the correlation between types using annual wage data and find it is about 0.67

for men and 0.62 for women. However, we recognize that annual wage observations might not

be independent conditional on type, particularly for workers who do not switch employers.

This means these estimates may be inconsistent. To construct conditionally independent

observations, we rely on economic theory. First, we average all our wage data to the worker-

firm match level. In simple search models without on-the-job search, such as Shimer and

Smith (2000), wages in any two employment relationships are independent conditional on

the worker’s type. This suggests that we can use match-level data on all workers who have

at least two jobs and all firms that have at least two employees in our data set. Second, in

a more realistic search model with on-the-job search, such as Burdett and Mortensen (1998)

and Postel-Vinay and Robin (2002), the wages in any two jobs that are separated by an

unemployment spell are independent conditional on the worker’s type. We define the time

between registered unemployment spells as an employment spell and further trim the data

to keep only the longest job during each employment spell for each worker. Our numerical

results depend on which data set we use, and our preferred estimates use the last approach,

with one observation per employment spell per worker. Using this data set, we estimate that
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the correlation between worker and firm types is 0.47 for men and 0.43 for women.

We view these as lower bounds on the true correlation because our approach ignores the

fact that workers and firms change over time and firms are collections of heterogeneous jobs.

We illustrate this by incorporate time-varying observable characteristics for both workers

and firms. For example, we let firms have different types when matched with workers with

different education levels. This raises the estimated correlation to 0.52 for men and 0.51 for

women. We get similar results when we allow for variation in both workers’ and firms’ types

depending on whether the job is blue or white collar, and when we allow for variation in

workers’ types depending on the firm’s industry.

Our approach is also amenable to estimation using short time series. In particular, we

can estimate the correlation between worker and firm types using only a single year’s data,

which further mitigates issues of time-varying unobserved heterogeneity. Using only data on

workers who lose a job, become unemployed, and find a new job within a year, we find a

steady increase in sorting among men since 1986 but a decrease in sorting among women,

particularly during the eight years after 2001. At the end of our sample, the correlation

between men’s types and their employer’s types was 0.55, while it was only 0.38 for women.

The last section of our paper explores the difference between our results and estimates

of the AKM correlation. We verify that OLS estimates of the AKM correlation are small

in our data, 0.12 for men and 0.07 for women. There are two possible explanations for this

difference. Either our correlation is much bigger than the true AKM correlation or the true

AKM correlation is much bigger than the OLS estimate of it. Our structural models establish

the first possibility and indicate that in these cases, our correlation is preferred. On the

other hand, recent papers propose bias corrections and alternative estimators of the AKM

correlation (e.g., Andrews, Gill, Schank, and Upward, 2008; Kline, Saggio, and Sølvsten,

2019; Bonhomme, Lamadon, and Manresa, 2019).3 We obtain very different estimates of the

AKM correlation depending on which estimator we use. In some cases, the bias-corrected

AKM estimates are very similar to the OLS estimates, while in other cases they are much

closer to our correlation. In our view, this uncertainty about the true AKM correlation

further supports our measure of correlation and our estimator.

The goal of this paper is to develop and estimate a measure of sorting that is sensible in

a variety of structural models. An alternative approach would be to estimate a structural

model of sorting, as in Lise, Meghir, and Robin (2016), Hagedorn, Law, and Manovskii

(2017), Lopes de Melo (2018), or Bagger and Lentz (forthcoming). There are advantages to

3Jochmans and Weidner (2019) show that the bias depends on the worker-firm network structure and offer
bounds on the bias as a function of the degree of connectivity of the network. Since Andrews, Gill, Schank,
and Upward (2008) and Kline, Saggio, and Sølvsten (2019) offer exact formulas, we use their approach to
the bias correction.
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each approach. On the one hand, the estimates in those papers impose more structure on the

data, which may drive the results. On the other hand, those papers are able to address issues

that go beyond the scope of this paper, where we focus exclusively on measuring sorting.

The remainder of the paper proceeds as follows. Section 2 defines our measure of sorting,

the correlation between worker and firm types. In Section 3, we use several models as

laboratories to study how our measure of sorting compares to the AKM measure of correlation

as well as to an intuitive measure of sorting. We propose an estimator in Section 4 and

implement it on an Austrian data set, which we describe in Section 5. Section 6 gives

our main empirical results, showing that the correlation between worker and firm types lies

between 0.4 and 0.6. Section 7 compares our results to estimates of the AKM correlation

using OLS and other approaches. Section 8 concludes.

2 Measuring Sorting in Theory

2.1 The Economy

We consider the cross-section of an economy with a fixed measure of workers employed by a

fixed measure of firms. Workers and firms are distinguished by their characteristics, x ∈ X
and y ∈ Y , respectively. Let F (x) denote the distribution of workers’ characteristics. Let

Φx(y) denote the distribution of the employer’s characteristics conditional on the worker’s

characteristics. For now, we treat F and Φx as primitives; however, we think of these distri-

butions as being generated by a structural dynamic model such as Burdett and Mortensen

(1998), Shimer and Smith (2000), or Postel-Vinay and Robin (2002). In such a model, dif-

ferences in Φ across x might reflect the fact that different workers find or accept different

jobs with different probabilities or that they have different patterns of job-to-job mobility.

Define G(y) ≡
∫
X

Φx(y)dF (x) to be the unconditional distribution of the characteristics

of jobs in the economy. This is distinct from the distribution of the characteristics of firms

to the extent that firms with different characteristics employ different numbers of workers.

We also define Ψy(x) to be the conditional distribution of the worker’s characteristics given

the firm’s characteristics. By Bayes rule, we have Φx(y)F (x) ≡ Ψy(x)G(y) for all x and y.

A worker with characteristics x matched to a firm with characteristics y earns a wage that

depends on both characteristics and on a shock. Let w(x, y, z) denote the zth quantile of the

log wage distribution in an (x, y) match.4 In competitive environments, the wage depends

only on x, but the presence of search frictions, compensating differentials, or measurement

4This is the distribution of log wages in matches that actually occur. If x and y reject some wage draws
or turnover is higher following some wage draws, that is reflected in the matching distributions Φ and Ψ,
not in the log wage distribution.

4



error in x all imply that the wage may be correlated with y and other features (such as

alternative job opportunities) captured by z.

2.2 A New Measure of Sorting

We are interested in measuring the correlation between matched workers and firms in an em-

ployment relationship. To do this, we need a cardinal, unidimensional measure of workers’

and firms’ types. Workers’ and firms’ characteristics x and y may be vector-valued and in

any case do not have even an ordinal interpretation.5 We therefore propose measuring the

correlation between the expected log wage received by a worker conditional on her charac-

teristics and the expected log wage paid by her employer conditional on its characteristics.

That is, we are interested in understanding whether high wage workers typically work in

high wage firms.

For now we assume that we know the distributions F , Φ, G, and Ψ, as well as the wage

function w, and define our measure of sorting. In Section 3 we use structural models to show

that our proposed measure captures the extent of sorting in model economies. Of course, in

real world data sets we do not observe F , Φ, G, and Ψ or the wage function w, and so we

explain in Section 4 how to estimate the correlation between types using the limited data

that are available. Let

λ(x) ≡
∫
Y

∫ 1

0

w(x, y, z) dz dΦx(y) (1)

and µ(y) ≡
∫
X

∫ 1

0

w(x, y, z) dz dΨy(x) (2)

denote the expected log wage received by a worker with characteristics x and the expected

log wage paid by a firm with characteristics y, respectively. From now on, we identify a

worker by her expected log wage and call λ(x) her type. Symmetrically, we identify a firm

by the expected log wage it pays and call µ(y) its type.

Our object of interest is the correlation between the type of a worker and the type of her

job in the cross-section of matches at a point in time,

ρ ≡ c

σλσµ
, (3)

5Lindenlaub and Postel-Vinay (2017) study a model with multidimensional characteristics and examine
the conditions under which there is positively assortative matching dimension-by-dimension. It is impossible
to measure this stronger notion of sorting using wage data alone.
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where

w̄ ≡
∫
X

∫
Y

∫ 1

0

w(x, y, z) dz dΦx(y) dF (x) =

∫
X

λ(x)dF (x) =

∫
Y

µ(y)dG(y) (4)

is the mean log wage, also equal to both the mean worker type and the mean job type;

σλ ≡
√∫

X

(λ(x)− w̄)2 dF (x) and σµ ≡
√∫

Y

(µ(y)− w̄)2 dG(y) (5)

are the cross-sectional standard deviations of worker types and job types; and

c ≡
∫
X

∫
Y

(λ(x)− w̄)(µ(y)− w̄) dΦx(y) dF (x) (6)

is the covariance between worker and job types in an employment relationship.6 We assume

throughout that all of these first and second moments are finite.

We highlight the special case where Φx(y) = G(y) for all x and y. This means that each

worker is equally likely to work in every job. In this case, we can rewrite the covariance as

c ≡
∫
X

(λ(x)− w̄)

(∫
Y

µ(y) dG(y)− w̄
)
dF (x).

The term in the inner parenthesis is zero by the definition of w̄, hence the covariance is

zero. Since the variance of worker and firm types is still generally positive, the correlation

between types is zero. More generally, the sign of the correlation depends on whether high

wage workers are particularly likely to work at high wage firms.

2.3 The AKM Measure of Sorting

We contrast our measure of sorting with a common alternative due to Abowd, Kramarz, and

Margolis (1999) (hereafter AKM). The authors’ starting point is the assumption that the

log wage in a match between worker i with characteristics xi and firm j with characteristics

yj is linear in the worker’s and firm’s fixed effects,

w(xi, yj, z) = αi + ψj + η (7)

6Lopes de Melo (2018) shows that the correlation between a worker’s wage and the wage of her coworkers
is a useful moment in estimating his structural model. The corresponding covariance is

∫
Y

∫
X

∫
X

(λ(x) −
w̄)(λ(x′)− w̄) dΨy(x′) dΨy(x) dG(y).
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where αi = α(xi) is the worker fixed effect, ψj = ψ(yj) is the firm fixed effect, and z ≡ ζi,j(η)

is an error term where the distribution ζi,j has mean zero for all (i, j) pairs.7 An important

goal in that research agenda is measuring the correlation between αi and ψj among matched

worker-firm pairs (i, j), which we denote ρAKM .

If the linear wage equation (7) is correctly specified and we had infinitely much data for

each pair (x, y), we could recover α(x) and ψ(y) by integrating over the mean zero error

term. This gives us a system of linear equations,∫ 1

0

w(x, y, z)dz = α(x) + ψ(y),

which determine α and ψ up to an additive constant. If equation (7) is misspecified, this

equation cannot hold for all types. Still, we define the fixed effects as the solution to the

following moment conditions,

α(xi) =

∫
Y

∫ 1

0

(w(xi, y, z)− ψ(y)) dz dΦxi(y) (8)

ψ(yj) =

∫
X

∫ 1

0

(w(x, yj, z)− α(x)) dz dΨyj(x), (9)

which is equivalent to running OLS on data containing all matched pairs. As is well known,

these moment conditions uniquely define α and ψ up to an additive constant if (and only

if) there is no way to partition the workers and firms into two nonempty sets A and B such

that workers and firms in set A (B) only match with firms and workers in set A (B).

We then compute the AKM correlation in the matched pairs as

ρAKM =
cAKM

σασψ
(10)

where

ᾱ ≡
∫
X

α(x) dF (x), ψ̄ ≡
∫
Y

ψ(y) dG(y), (11)

σα ≡
√∫

X

(α(x)− ᾱ)2 dF (x), σψ ≡
√∫

Y

(ψ(y)− ψ̄)2 dG(y), (12)

cAKM ≡
∫
X

∫
Y

(α(x)− ᾱ)(ψ(y)− ψ̄) dΦx(y) dF (x). (13)

We do not focus here on how to estimate ρAKM ; there are well-known statistical problem

7Abowd, Kramarz, and Margolis (1999) also allow for time-varying observable worker and firm charac-
teristics. We suppress those for expositional simplicity.
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with the fixed effects estimator, often called “limited mobility bias.” Instead, we assume

that we know the distributions F , Φ, G, and Ψ, as well as the wage function w, and are

interested in how ρAKM behaves in this idealized environment. To explore this, we turn next

to some structural models.

3 Models as Laboratories for Measuring Correlation

This section develops simple economic envirornments to explore how the two proposed mea-

sures of sorting, ρ and ρAKM , behave in structural models where we have a strong sense of

whether there is sorting. We start with a model in which the AKM wage equation is correctly

specified. We then turn to a search model based on Shimer and Smith (2000), extended to

include match productivity shocks (Goussé, Jacquemet, and Robin, 2017) and finally look

at a discrete choice model, as in Card, Cardoso, Heining, and Kline (2018).

3.1 AKM is Correctly Specified

We start with an important special case in which the AKM correlation and our correlation

coincide. Assume the AKM wage equation (7) is correctly specified with αi = xi for all i and

ψj = yj for all j. Also assume that the joint density of (x, y) (and hence (α, ψ)) in matched

worker-firm pairs has linear conditional expectations, that is, Ex(y) is linear in x and Ey(x)

is linear in y.8 Let (
σ2
x cAKM

cAKM σ2
y

)
be its variance-covariance matrix so ρAKM = cAKM

σxσy
. In this case, ρ and ρAKM have the same

magnitude:

Proposition 1 Assume that the joint distribution of α = x and ψ = y is such that the

conditional expected values are linear, that is, Ex(y) is linear in x and Ey(x) is linear in

y. Let ρAKM ∈ (−1, 1) denote the correlation between x and y. Then λ and µ are linear

transformations of x and y with standard deviations σλ = |σx + cAKM/σx| and σµ = |σy +

8If the joint distribution of x and y is elliptical, i.e. the associated density function ξ can be expressed as

ξ(x, y) = ξ̃

(
(x− x̄)2

σ2
x

− 2ρAKM (x− x̄)(y − ȳ)

σxσy
+

(y − ȳ)2

σ2
y

)
,

then conditional expectations are linear. The bivariate normal and bivariate t distributions are elliptical.
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cAKM/σy|. Let ρ denote the correlation and c denote the covariance of λ and µ. Then

min{σ2
x, σ

2
y} R −cAKM ⇒


ρ = ρAKM and min{σ2

λ, σ
2
µ} > c

ρ is undefined

ρ = −ρAKM and min{σ2
λ, σ

2
µ} < c.

The proof in Appendix A.1 shows that with linear conditional expectations, equations (1)

and (7) imply that λ(xi) is a linear transformation of xi

λ(xi) =

∫
Y

(xi + y)dΦxi(y) = κ0 +

(
1 +

cAKM
σ2
x

)
xi,

for some constant κ0. Symmetrically, equations (2) and (7) imply µ(yj) is a linear transfor-

mation of yj,

µ(yj) =

∫
X

(x+ yj)dΨyj(x) = θ0 +

(
1 +

cAKM
σ2
y

)
yj,

for some constant θ0. The magnitude of the correlation coefficient between two random

variables is unaffected by a linear transformation, though it may change sign if one of the

transformations is decreasing, i.e. either cAKM < σ2
x or cAKM < σ2

y. The proof shows that

these conditions are equivalent to c > σ2
λ and c > σ2

µ, respectively.

Since ρAKM = cAKM

σxσy
> −1, whenever we have σx = σy, it is the case that σ2

x = σ2
y >

−cAKM . Proposition 1 then implies ρ = ρAKM . This illustrates how to construct an economy

where ρ takes any value in the interval (−1, 1).

We view this statistical model as an important benchmark case. Our approach defines

a worker’s type λ to be equal to her expected log wage and a firm’s type µ to be equal to

the expected log wage it pays. AKM define the units of types to be that which boosts the

expected log wage by a unit holding fixed the partner’s type. While these two measures are

distinct, Proposition 1 establishes conditions under the correlation between the two measures

are equal. Any structural model with an equilibrium satisfying the above properties would

feature the same magnitude of ρ and ρAKM .

A natural hypothesis is that by perturbing this example, either by changing the wage

function or by changing the distributional assumption on matches, it is possible to construct

examples where ρ ≷ ρAKM . It appears, however, that this is not the case. In the structural

models below, we always find that ρ > ρAKM . More interestingly, extensive numerical

simulations suggests that ρ ≥ ρAKM in any economy,9 although a proof of this conjecture

9The simulations assume there are m types of workers, x = 1, . . . ,m, and n types of jobs, y = 1, . . . , n,
and allow for an arbitrary joint distribution of matched workers and jobs, as well as an arbitrary average
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eludes us. Once we recognize that the two correlation measures are different, the interesting

question is whether either correlation captures an economically reasonable notion of sorting

in realistic environments. In an effort to answer that question, we next use a variety of

structural models as laboratories for evaluating the two measures of sorting.

3.2 Two-Sided Search Model with Match-Specific Shocks

We next examine a search model with two-sided heterogeneity (Shimer and Smith, 2000)

and match-specific heterogeneity (Goussé, Jacquemet, and Robin, 2017). The match-specific

productivity shocks ensure that any worker and firm have a positive probability of matching,

but different matches use a different threshold for the idiosyncratic shock. It also implies

that the wage is not pinned down by the worker and firm characteristics but depends on the

idiosyncratic shock as well.

The model is formulated in continuous time. There is measure 1 of risk-neutral workers

and measure 1 of risk-neutral firms. Everyone discounts the future at rate r. Each worker

has characteristic x, distributed in the population according F̃ (x). Similarly, each firm

has characteristic y, distributed according to G̃(y).10 Workers can be either unmatched or

matched to one firm; likewise, firms can be either unmatched or matched to one worker, so

a firm and a job are identical here.

Search is random and only unmatched firms and workers can search. Let u(x) be the

unemployment rate among workers with characteristic x and v(y) vacancy rate among firms

with characteristic y. A worker meets a vacancy at the rate θ and the firm characteristic

is randomly drawn from the distribution G̃. Since there are equal measures of workers and

firms, this means that a firm meets a worker at the same rate θ and the worker characteristic

is randomly drawn from the distribution F̃ . If the worker or firm is matched, it is as if

the meeting never happened. If both are unmatched, with probability u(x)v(y), the pair

draws a match-specific productivity z ≥ 0 from a cumulative distribution ζ and then decide

whether to match and produce flow zH(x, y). Match-specific productivity is independently

and identically distributed across matches and is fixed for the duration of the match. They

split the surplus according to Nash bargaining, with worker’s bargaining power γ ∈ (0, 1).

Assume H(x, y) is strictly positive for almost all x and y. Matches randomly end at rate δ,

leaving the worker unemployed and the job vacant.

Let U(x) and V (y) denote be the value of being an unemployed worker and a vacant firm,

wage in an (x, y) match. We then use equations (1) and (2) to construct (λ(x), µ(y)) and equations (8)
and (9) to construct (α(x), ψ(y)). We then compute ρ and ρAKM using equations (3) and (10) and compare
their magnitudes.

10In Section 2.1, we use F and G to denote the distribution of characteristics of employed workers and
filled jobs. We use tildes to distinguish the population distributions F̃ and G̃ from these.
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respectively. The surplus of a match between x and y is S(x, y, z) = zH(x, y)−rU(x)−rV (y).

The decision to match is described by a threshold rule: a match is formed if z ≥ z̄(x, y)

where z̄(x, y) is such that S(x, y, z̄(x, y)) = 0. In Appendix A.2, we develop a system of

equations that fully describes the equilibrium, while here we focus on the behavior of wages.

Nash bargaining implies that

w(x, y, z) = γ(zH(x, y)− rU(x)− rV (y)) + rU(x),

and hence the expectation of the log wage in an (x, y) match is

w(x, y) =
1

1− ζ(z̄(x, y))

∫
z≥z̄(x,y)

log
(
γ
(
zH(x, y)− rU(x)− rV (y)

)
+ rU(x)

)
dζ(z).

If the distribution of match-specific productivity is exponential, we prove in Appendix A.2

that the expected log wage in a match (x, y) is monotone in H(x, y) for given x. That is, if

higher y matches are more productive, they also pay higher expected log wages conditional

on matching. We obtain a similar result numerically when the match-specific productivity

distribution is Pareto with a sufficiently high variance. In contrast, in Shimer and Smith

(2000), a given x’s wage is maximized at some value of y, typically an interior point, even if

H is strictly increasing. We find numerically that is also the case for a Pareto match-specific

productivity distribution when the variance is small.

Another difference from Shimer and Smith (2000) is that if match-specific productivity

is unbounded above, almost all matches (x, y) are created with strictly positive probability.

With enough complementarity in the production function, a worker with the lowest charac-

teristic would never match with the highest characteristic firm in Shimer and Smith (2000).

In this model, we observe such a match if the match-specific productivity is high enough.

Still, high draws are rare and therefore we observe sorting based on characteristics.

We solve the model with a discrete number of characteristics n distributed uniformly on

X = Y = {1−0.5
n
, 2−0.5

n
, . . . n−0.5

n
}. We use the CES production function

H(x, y) = (ax
ξ−1
ξ + (1− a)y

ξ−1
ξ )

ξ
ξ−1 ,

where ξ ≥ 0 is the elasticity of substitution and a ∈ [0, 1] is the worker’s share in production.

We assume that the distribution of match productivity shocks is Pareto, with some minimum

value z and variance σ2
z .

11 Our benchmark uses the following parameter values: r = 1, δ = 10,

11We choose Pareto rather than the exponential distribution because it allows us to change the variance
of the shocks. With the exponential distribution, doubling its parameter only doubles value functions but
has no impact on the matching probabilities, unemployment rates and vacancy rates.
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θ = 104, γ = 0.5, a = 0.5, ξ = 1, σ2
z = 0.1, z = 1, and n = 500.

With given model parameters, the model tells us exactly how often each worker matches

with each firm as well as the average log wage in those matches. We can thus compute λ(x)

and µ(y) from equations (1) and (2), as well as α(x) and ψ(y) from equations (8) and (9).

We then find ρ and ρAKM from equations (3) and (10). Since we know the data generating

process, we can and deliberately choose to ignore questions about estimation in this section.

We are interested in exploring how our measures of sorting change as we vary four key

model parameters: the meeting rate θ, the bargaining power γ, the variance of the match-

specific shocks σ2
z , and the elasticity of substitution in the production function ξ. In each

experiment, we compare ρ and ρAKM with the correlation between x and y, ρx,y, an intuitive

measure of the extent of sorting. Note that since x and y are not observable in real-world

data, ρx,y is not something that is generally feasible to compute, but it is possible in the

model. Also note that the units of x and y are only defined through the assumption that

characteristics have a discrete uniform distribution. Without that, we could do a nonlinear

transformation of x and y and offset this through a change in the production function that

would leave the real structure of the economy, and hence ρ and ρAKM unchanged, but change

ρx,y. This degree of freedom implies that the correlation between x and y is instructive but

not necessarily what we should be targeting.

Figure 1 shows results from these experiments. In the top left panel, we vary the meeting

rate θ. When θ is low, it is difficult for workers to meet vacancies and thus they tend

to accept any offer that they receive, conditional on a favorable match-specific shock. As

match acceptance thresholds are low for everyone, we see little sorting. As θ →∞, workers

receive offers very quickly and become selective at which offer to accept. As a result, sorting

increases. The correlation ρx,y (red) is increasing in θ, and ρ (blue) and ρAKM (green) capture

this pattern.12

In the second experiment, we change worker’s bargaining power. As γ converges to 0 or

1, workers (or firms) are paid only their outside option regardless of whom they match with,

hence sorting weakens. The correlation between x and y is hump-shaped (top right panel in

Figure 1) and again ρ and ρAKM properly capture this nonlinear pattern.

In our third comparative static exercise, we change the variance of the match productivity

shocks. As the variance increases, match-specific productivity, rather than worker and firm

characteristics, plays a more important role and sorting becomes weaker. The bottom left

12Interestingly, the correlation does not converge to 1 as θ → ∞. This is because of the match-specific
productivity shocks. With minimal search frictions, the economy resembles a discrete choice model (Sec-
tion 3.3) where workers see multiple offers characterized by (y, z) and choose the one with the highest value.
In this limit, workers match with firms with heterogeneous characteristics and hence the correlation between
x, y is high but less than 1.
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Figure 1: Comparative statics exercise in the two-sided search model extended to include
match-specific productivity. The figures show the correlation between characteristics (ρx,y,
red lines), types (ρ, blue lines), and AKM fixed effects (ρAKM , green lines) in the matched
pairs for different parameter values. In each experiment, we keep all but one parameter at
their benchmark values, r = 1, δ = 10, θ = 104, γ = 0.5, a = 0.5, ξ = 1, σ2

z = 0.1, z = 1,
n = 500, and indicate on the horizontal axis which parameter we are changing.
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panel shows that ρAKM does not produce this pattern. Instead, when the variance is low,

an increase in the variance raises the AKM correlation. This appears to reflect the fact that

when the variance is low, the expected log wage is non-monotonic in characteristics and

hence misspecification of the AKM wage equation is quantitatively serious; see Eeckhout

and Kircher (2011), Lise, Meghir, and Robin (2016), Lopes de Melo (2018), and Bagger and

Lentz (forthcoming). Thus we find a shortcoming of ρAKM when nonlinearities in the wage

equation are important.

Finally, we turn to the elasticity of substitution in the production function. The produc-

tion function is Leontief for ξ = 0 and linear for ξ → ∞ and so sorting is less important

as ξ increases, as shown in the bottom right panel of Figure 1. When ξ is small, there is

positive sorting and all three measures perform well. But when ξ is sufficiently large, ρ

remains positive even though ρx,y and ρAKM are negative. This is because high x workers

tend to work for low y firms, but low y firms actually pay higher wages on average. Hence,

high wage workers work for high wage firms, a pattern which our measure captures. From

wages alone, we are not able to say that the high paying firms are actually those with the low

productivity and hence in fact there is negative sorting (Eeckhout and Kircher, 2011). Nev-

ertheless, Proposition 1 proposes a test to detect the “sign flip”: when min{σ2
λ, σ

2
µ} < c, then

ρ and ρAKM have the opposite sign in the case of linear conditional expectations. The blue

dotted line shows the correlation adjusted for the flip sign, meaning that we plot −ρ when

this condition is satisfied.13 The sign flip test generally picks up the negative correlation

These experiments illustrate that ρ does a good job of measuring sorting in the model

economy, especially with the sign correction. Similarly, ρAKM performs well in situations

where expected log wages are close to linear in worker and firm fixed effects, and hence the

AKM wage equation is well-specified. When the wage equation is seriously misspecified, as

is the case when σ2
z is small, ρAKM can be a misleading measure of the extent of sorting.

Nevertheless, broadly speaking we are impressed by the similarity of ρ and ρAKM in Figure 1.

3.3 Discrete Choice Model

We next examine a discrete choice model, a partial equilibrium version of Card, Cardoso,

Heining, and Kline (2018). There is a fixed number of workers indexed by i and a fixed

number of firms indexed by j. Each worker is characterized by x distributed according

to F (x) and each firm is characterized by y distributed according to G̃(y).14 Each worker

chooses which firm to work at in order to maximize his utility, the sum of the log wage

13This is the only case where we detect a sign flip in the two-sided search model.
14In equilibrium, different firms employ different numbers of workers and so the distribution of jobs G is

distinct from the distribution of firms G̃.
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w(x, y) and an idiosyncratic amenity value ε. The log wage depends deterministically on

the worker’s and firm’s characteristics, while the amenity is independently and identically

distributed across workers and firms.

Worker i sees the amenity value he would get in each firm and chooses to work for

the firm j that maximizes w(xi, yj) + εi,j. Each firm is willing to employ any worker who

wants the job. We assume that the wage function w is bounded from above for each x and

that amenities are drawn from an exponential distribution with mean (and hence standard

deviation) s. This ensures that the workers’ choice of yj has a non-trivial limit when the

number of firms goes to infinity (Malmberg and Hössler, 2014, Theorem 18.4). In the limit,

the probability that a worker with characteristic x chooses a firm with characteristic y is

Φx(y) ∼ exp

(
w(x, y)

s

)
dG̃(y).

Thus workers are more likely to choose high wage jobs, but the wage becomes less important

when the standard deviation of the amenity shock, s, increases.

We again use this model as a laboratory to study performance of our correlation mea-

sure. We assume that the log wage is given by a quadratic function of the worker and firm

characteristics:

w(x, y) = kxx+ kyy − (
√
kxxx−

√
kyyy)2

with kxx and kyy positive. Then the log wage of a worker with characteristic x is maximized

at firm a firm with characteristic

y∗(x) =
ky + 2

√
kxxkyyx

2kyy
.

However, workers with characteristic x will not always choose to work at firms with charac-

teristic y∗(x) since their utility depends on the amenity value as well.

When the characteristics x and y are distributed normally, then the joint distribution

of matched (x, y) pairs is normal and we obtain closed form expressions for types λ(x) and

µ(y), AKM fixed effects α(x) and ψ(y), and the correlations ρ, ρAKM , and ρx,y. We present

the key formulae in Appendix A.3. Here we discuss some numerical results.

For our benchmark, we parameterize the wage function with kx = 1, ky = 0 and kxx =

kyy = 1/a2, which implies is w(x, y) = x − (x − y)2/a and y∗(x) = x for all x. We also

assume that worker characteristics are distributed N(mx, σx) and firm characteristics are

distributed N(my, σy) with mx = my (the common mean is irrelevant) and σx = σy = 1.

Finally, we set the standard deviation of the amenity distribution to s = 1 and set the wage

cost of mismatch to a = 1 as well. We conduct several experiments by varying key model
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parameters, s, a, mx −my, and σx, and measuring how sorting changes.15

Again, with given model parameters, the model tells us the probability that each worker

matches with each firm and so we can compute ρx,y. Then using the wage equation, we

find λ(x) and µ(y) from equations (1) and (2), as well as α(x) and ψ(y) from equations (8)

and (9). We then compute ρ and ρAKM from equations (3) and (10). Again, we ignore

questions about estimation in this section.

The top left panel of Figure 2 shows how the standard deviation of the amenity shock

affects sorting. When the standard deviation is zero, the amenity does not play any role in

workers’ decisions and each worker x chooses a firm with characteristic y∗(x). As a result,

firms with characteristic y∗(x) employ only workers with characteristic x, and the correlation

ρx,y is one. As the standard deviation increases, sorting weakens and ρx,y declines to zero

(red line). Our correlation measure ρ exhibits the same pattern, monotonically declining

from perfect sorting to zero as amenities become more important (blue line), albeit a bit

faster than the decline in correlation ρx,y.

The AKM correlation ρAKM follows a very different pattern. In the limit as s converges

to zero, AKM attributes all the wage variation to the worker fixed effects, generating a

zero correlation between worker and firm effects. More generally, we prove that the sign of

lims→0 ρAKM is the same as the sign of mx−my, even though there is always perfect sorting

between x and y (and between λ and µ) in this limit. As the standard deviation increases,

ρAKM becomes negative but remains close to zero. It then flips signs at s > 2. In short,

ρAKM does not capture the extent sorting in the underlying economy.

Interestingly, the “sign flip” test from Proposition 1 picks up the incorrect sign of ρAKM

when s < 2. In this region (and only in this region), we find that both σ2
λ > c > σ2

µ

and σ2
α > −cAKM > σ2

ψ. If the assumptions of Proposition 1 were satisfied, this would be

consistent with ρ = −ρAKM . The assumptions are not satisfied, but the conclusion that the

two correlations have different signs still holds. We stress that it is not the sign of ρ that is

misleading in this example, but instead the sign of ρAKM .

The results are similar when we change the wage function by varying a. As a → 0, the

penalty from not taking the right job goes to infinity and hence we get perfect sorting with

workers of type x choosing y∗(x). Both ρ and ρx,y are equal to 1. As a increases, workers’

wages are less sensitive to their employer and so sorting weakens and eventually disappears

as a→∞. Interestingly, the difference between ρ and ρx,y is negligible for all values of a.

Once again, ρAKM fails to capture sorting, especially in the region where it is nearly

perfect. The correlation ρAKM is again negative for a < 2, at which point it jumps up to

15Other changes in the wage function, i.e. in the parameters kx, ky, kxx, and kyy, are isomorphic to changes
in the distribution of workers’ and firms’ characteristics, and so we omit that from our analysis.
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Figure 2: Comparative statics exercise in the discrete choice model. The figures show the
correlation between characteristics (ρx,y, red lines), types (ρ, blue lines), and AKM fixed
effects (ρAKM , green lines) in the matched pairs for different parameter values. In each
experiment, we keep all but one parameter at their benchmark values, a = 1, s = 1, mx = 0,
my = 0, σx = 1, and σy = 1, and depict on the horizontal axis which parameter we are
changing.
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a positive number and then declines to zero. We can again prove that σ2
λ > c > σ2

µ and

σ2
α > −cAKM > σ2

ψ if and only if a < 2, and so the “sign flip” test indicates that ρ and ρAKM

have opposite signs in this region. And again, it is the sign of ρAKM that is misleading.

In the next experiment, we vary the difference in means mx −my. The extent of sorting

as measured by ρx,y does not change. This is because increasing the mean of y relative to

x induces workers to choose higher y firms, but this change is the same for all x, leaving

the correlation unaffected. The correlation ρ does depend on the difference in means but

the variation is quantitatively negligible. On the other hand, ρAKM varies significantly with

mx −my and hence fails as a measure of sorting.

In the last experiment, we increase the variance of firm types while keeping the variance

of worker types unchanged. In the extreme case of σ2
y = 0, all firms have the same type

and so workers only pay attention to amenities; there is no sorting in the limit without firm

variance. As the variance increases, workers pay more attention to firm characteristics and so

sorting increases. However, increasing the variance too much beyond the variance of worker

types will not bring any additional improvement of sorting since few workers choose extreme

firm types. We indeed see that ρx,y starts at zero when σ2
y = 0, and then increases steeply

until around σ2
y = 1, after which it flattens. The correlation ρ follows the same pattern,

while ρAKM again fails to capture changes in sorting.

To summarize, in the discrete choice model, ρ properly captures sorting patterns and

ρAKM does not. The most striking finding is that ρAKM is zero when there are almost

no amenities (s → 0) and is negative when firms are critical for wages (a → 0), even

though sorting is almost perfect in each of these limits. Intuitively, nonmonotonicities in the

structural wage equation mean that the linear AKM wage equation (7) is misspecified. Even

thought it can potentially be a useful first order approximation, our calculations reveal that

in this case ρAKM is a poor measure of sorting.

4 An Estimator of the Measure of Sorting

Consider a data generating process, for example a structural model, which determines who

matches with whom as well as the wage and duration of each match. If we observed many

conditionally independent matches for each worker and firm, we could accurately measure λ

and µ for everyone and hence directly measure ρ. Unfortunately, in practice we have very

few observations for most workers and firms. This section proposes a strategy for estimating

ρ in realistic data sets. We start by defining a statistical model which encompasses the

structural models in Section 3. We then propose an estimator and prove it is consistent

in the statistical model. Finally we examine small sample properties of the estimator by
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looking at artificial data sets generated by our structural models.

4.1 A Dynamic Statistical Model

Our starting point is to imagine a dynamic economy which embeds the snapshot we described

in Section 2.1. To start, we suppose there is a finite set of possible characteristic X of workers

and Y of firms and one or more workers and firms with each characteristic. Let Ix denote

the number of workers with characteristic x and I ≡ ∑x∈X Ix denote the total number of

workers. Similarly, let Jy denote the number of firms with characteristic y and J ≡∑y∈Y Jy

the total number of firms. To establish consistency of our estimator, we later replicate this

economy so there are τIx workers with characteristic x and τJy firms with characteristic y

for some positive integer τ . We are interested in constructing an estimator of the variance-

covariance matrix of matched pairs that is consistent in the limit as τ goes to infinity.

A worker’s or firm’s characteristic determines the probability of matching with every

other firm and worker, the wage in each match, how long each match lasts, and how long

we observe the worker or firm in the data set. More precisely, a typical worker i with

characteristic xi has Mi ∈ {M, . . . , M̄} matches indexed by m = 1, . . . ,Mi. Let wwi,m denote

the average log wage in i’s mth match, twi,m denote the duration of the match, and yi,m denote

the firm characteristic for that match. We assume that the worker’s characteristic determines

the distribution of Mi as well as the joint distribution of {wwi,m, twi,m, yi,m}Mi
m=1. When a worker

matches with a firm with characteristic y, there is some unspecified probability of matching

with each such firm. For example, a worker may draw randomly with or without recall. We

let ji,m denote the identity of the employer. It will be convenient to define Twi ≡
∑Mi

m=1 t
w
i,m,

the total time that we observe worker i employed, and denote its expected value conditional

on the worker’s characteristic by T̄wxi . We assume throughout that Twi has a finite upper

bound and M̄ , the maximum number of matches a worker can have, is also finite.

Symmetrically, a typical firm j with characteristic yj has Nj ∈ {N, . . . , N̄} matches

indexed by n = 1, . . . , Nj. Let wfj,n denote the average log wage in j’s nth match, tfj,n
denote the duration of the match, and xj,n denote the worker characteristic for that match.

Again, the firm’s characteristic determines the distribution of Nj and the joint distribution

of {wfj,n, tfj,n, xj,n}
Nj
n=1. Let ij,n denote the identity of the worker in j’s nth match. Again, we

define T fj ≡
∑Nj

n=1 t
f
j,n, the total time that firm j employs workers, and denote its expected

value conditional on the firm’s characteristic as T̄ fyj . We again assume T fj has a finite upper

bound and N̄ is finite.

Worker and firm observations are necessarily linked. Suppose firm j employs worker i

in her mth match, i.e. j = ji,m. We let ni,m denote the firm’s corresponding match number.
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Symmetrically, mj,n is the match number for worker ij,n corresponding for firm j’s nth match.

This implies wwi,m = wfji,m,ni,m , wfj,n = wwij,n,mj,n
, twi,m = tfji,m,ni,m , and tfj,n = twij,n,mj,n

. With this

notation, we can equivalently think about the observations from the perspective of either

the worker or the firm.

Building on this notation and using the definition of types in equations (1) and (2), the

average log wage that worker i with characteristic xi earns during his lifetime and the average

log wage that firm j with characteristic yj pays are

λ(xi) =
Exi
∑Mi

m=1 t
w
i,mw

w
i,m

T̄wxi
and µ(yj) =

Eyj
∑Nj

n=1 t
f
j,nw

f
j,n

T̄ fyj
. (14)

Here the expectations operators Exi and Eyj indicate probabilities taken with respect to the

joint distribution of wages, durations, and numbers of matches conditional on characteristic

xi and yj. Weighting by spell duration defines the types to be the expected earnings at a

typical point in time.

We can also compute the population mean of λ and µ, as in equation (4):

w̄ ≡
∑

x∈X IxT̄
w
x λ(x)∑

x∈X IxT̄
w
x

=

∑
y∈Y JyT̄

f
y µ(y)∑

y∈Y JyT̄
f
y

. (15)

Worker types are weighted by the population frequency Ix and the amount of time they are

employed T̄wx to capture the likelihood the worker is employed in any given cross-section.

Similarly firm types are weighted by the amount of time they employ a worker. It is straight-

forward to prove the second equality in equation (15), that the average wage that the average

worker receives is equal to the average wage that the average firm pays. The variances,

corresponding to equation (5), are

σ2
λ ≡

∑
x∈X IxT̄

w
x (λ(x)− w̄)2∑

x∈X IxT̄
w
x

and σ2
µ ≡

∑
y∈Y JyT̄

f
y (µ(y)− w̄)2∑

y∈Y JyT̄
f
y

. (16)

Again we weight observations by their likelihood in the cross-section.

Next, following equation (6) we can compute the covariance between λ and µ in matched

pairs:

c ≡
∑

x∈X IxEx
∑Mi

m=1 t
w
i,m(λ(x)− w̄)(µ(yi,m)− w̄)∑
x∈X IxT̄

w
x

=

∑
x∈X IxEx

∑Mi

m=1 t
w
i,mλ(x)µ(yi,m)∑

x∈X IxT̄
w
x

− w̄2. (17)
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For a characteristic x worker, we compute the expected value of the weighted average product

of the deviations of the worker’s type from the population mean and her employer’s type

from the population mean. The weight attached to each match is the duration of the match,

and hence the total weight attached to each characteristic x worker is T̄wx . Equivalently, we

can look at this from the perspective of firms and write this as

c =

∑
y∈Y JyEy

∑Nj
n=1 t

f
j,nλ(xj,n)µ(y)∑

y∈Y JyT̄
f
y

− w̄2.

This shows that the weight attached to each characteristic y firm is T̄ fy . Finally, the corre-

lation ρ is defined as usual in equation (3).

4.2 Auxiliary Assumptions and an Estimator

This section proposes estimators of c, σ2
λ, and σ2

µ that are consistent under some reasonable

assumptions in the limit as τ → ∞. The key assumption is that we have at least two

independent observations for each worker and firm. Most obviously, we impose that the

minimum number of observations for workers and firms are M ≥ 2 and N ≥ 2. Additionally,

we impose four auxiliary assumptions which ensure that these observations are suitably

independent:

1. For worker i with characteristic xi, w
w
i,m = w̄wxi + εwi,m and εwi,m is independently and

identically distributed across m = {1, . . . ,Mi} with mean zero and a finite standard

deviation σwxi . Moreover, twi,m and εwi,m′ are independent for all (m,m′) ∈ {1, . . . ,Mi}2.

2. For firm j with characteristic yj, w
f
j,n = w̄fyj + εfj,n and εfj,n is independently and

identically distributed across n = {1, . . . , Nj} with mean zero and a finite standard

deviation σfyj . Moreover, tfj,n and εfj,n′ are independent for all (n, n′) ∈ {1, . . . , Nj}2.

3. For any worker i with characteristic xi and all m ∈ {1, . . . ,Mi}, w̄wxi and εwi,m′ are

independent of εfji,m,n′ for all m′ 6= m and all n′ 6= ni,m. Moreover, for any firm j with

characteristic yj and all n ∈ {1, . . . , Nj}, w̄fyj is independent of εwij,n,m′ for all m′ 6= mj,n.

4. For all i 6= i′, m, and m′, εwi,m and εwi′,m′ are independent, as are twi,m and twi′,m′ . For all

j 6= j′, n, and n′, εfj,n and εfj′,n′ are independent, as are tfj,n and tfj′,n′ .

The two-sided matching model considered in Section 3.2 satisfies these assumptions. So does

a repeated version of the discrete choice model discussed in Section 3.3, if the amenity shock

is independently drawn in each period.
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Auxiliary Assumption 1 consists of two pieces. First, worker i’s wage is independently

and identically distributed across matches with a characteristic-specific mean w̄wxi and stan-

dard deviation σwxi . Second, wages are independent of durations both in the same match and

in other matches conditional on the worker’s characteristic. We recognize that this assump-

tion is strong without other restrictions and so in our empirical analysis in Section 5.2, we

construct different real-world data sets designed to ensure that this assumption is satisfied.

For example, we focus only on wages in jobs that are separated by an unemployment spell.

Auxiliary Assumption 2 imposes the analogous assumptions on firms.

Auxiliary Assumption 3 imposes that if a worker and a firm are matched at some point in

time, the error terms in their other matches are independent of each other. It also imposes

that the error in the worker’s wage equation in one match is independent of the employer

type in other matches and symmetrically that the error in the firm’s wage equation in one

match is independent of the employee type in other matches. We stress that this assumption

allows the error terms to be correlated with each other and with the partner’s mean wage

within a match, and indeed this will typically be the case.16

The first three auxiliary assumptions are useful for finding individual-level unbiased esti-

mators of worker and firm types and the covariance between them. Auxiliary Assumption 4

rules out the possibility of correlated shocks. This gives us a law of large numbers, ensuring

that the average of these unbiased estimators is consistent as the economy grows large. In

the data, we handle aggregate shocks by deflating wages by the economy-wide average wage,

but other correlations, e.g. within region or industry, may matter in practice.

Armed with these assumptions, we relate the worker and firm type to the means in the

auxiliary wage equations:

Proposition 2 A worker with characteristic x has type λ(x) = w̄wx . A firm with character-

istic y has type µ(y) = w̄fy .

We relegate the proof of this and all other propositions in this section to Appendix B.1.

Next we construct consistent estimators of the variance-covariance matrix of λ and µ

in matched pairs, i.e. of σ2
λ, σ

2
µ, and c defined in equations (16) and (17). Start with the

variance of worker types. Define

λ̂i ≡
∑Mi

m=1w
w
i,m

Mi

and λ̂2
i ≡

∑Mi

m=1

∑
m′ 6=mw

w
i,mw

w
i,m′

Mi(Mi − 1)
, (18)

16One situation where the third auxiliary assumption would be problematic is if a worker and firm are
matched together multiple times, since in this case, the errors would naturally be correlated within all
matches. In our model, we can avoid this possibility if M̄ ≤ miny∈Y Jy and N̄ ≤ minx∈X Ix by assuming
that workers and firms sample partners without recall. In the data, we treat multiple spells with the same
employer as a single match.
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and use that to find an estimator of σ2
λ:

Proposition 3 In the limit as τ →∞, a consistent estimator of the mean wage w̄ is

ˆ̄w ≡
∑τI

i=1 T
w
i λ̂i∑τI

i=1 T
w
i

; (19)

and a consistent estimator of the variance of worker types σ2
λ is

σ̂2
λ ≡

∑τI
i=1 T

w
i λ̂

2
i∑τI

i=1 T
w
i

− ˆ̄w2. (20)

We show in the proof of Proposition 3 that λ̂i and λ̂2
i defined in equation (18) are unbiased

estimators of λ(xi) and λ(xi)
2. The proof of consistency of ˆ̄w and σ̂2

λ is a standard law of

large numbers argument.

The logic for firms is identical. Define

µ̂j ≡
∑Nj

n=1w
f
j,n

Nj

and µ̂2
j ≡

∑Nj
n=1

∑
n′ 6=nw

f
j,nw

f
j,n′

Nj(Nj − 1)
, (21)

unbiased estimators of µ(yj) and µ(yj)
2. Note that

ˆ̄w =

∑τJ
j=1 T

f
j µ̂j∑τJ

j=1 T
f
j

,

since this just averages wages from the firm’s instead of the worker’s perspective. Then

Proposition 4 In the limit as τ →∞, a consistent estimator of the variance of firm types

σ2
µ is

σ̂2
µ ≡

∑τJ
j=1 T

f
j µ̂

2
j∑τJ

j=1 T
f
j

− ˆ̄w2. (22)

We omit the proof, since it is isomorphic to the proof of Proposition 3.

Finally, we turn to an estimator of the product of worker and firm types. Let

ĉi,m ≡
∑

m′ 6=mw
w
i,m′

Mi − 1

∑
n′ 6=ni,m

wfji,m,n′

Nji,m − 1
. (23)

Each of the Mi−1 other wages wwi,m′ is an unbiased estimator of λ(xi). Each of the Nji,m other

wages wfji,m,n′ is an unbiased estimator of µ(yji,m). Moreover, the third auxiliary assumption

implies the two estimators are independent and hence the product is an unbiased estimator

of λ(xi)µ(yyi,m). We leverage this insight to get a consistent estimator of the covariance:
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Proposition 5 In the limit as τ → ∞, a consistent estimator of the covariance between

worker and firm types c is

ĉ ≡
∑τI

i=1

∑Mi

m=1 t
w
i,mĉi,m∑τI

i=1 T
w
i

− ˆ̄w2. (24)

Armed with consistent estimators of the covariance and two variances, it is straightforward

to construct an estimator of the correlation as

ρ̂ ≡ ĉ√
σ̂2
λσ̂

2
µ

. (25)

This estimator is consistent as τ →∞ if σλ and σµ are both positive.

We recognize that some auxiliary assumptions are restrictive, in particular the assumption

that duration of a job twi,m is independent of the error in the wage equation for that job εwi,m.

This assumption is violated in many models of on-the-job search, where high wage jobs last

longer than low wage jobs (Burdett and Mortensen, 1998). It may also be violated in a model

where jobs differ in their layoff risk, in which case a high wage may serve as a compensating

differential for an unstable job (Jarosch, 2015). In Appendix C, we propose an alternative

estimator that is consistent under a different set of assumptions. In particular, we relax the

assumption that twi,m and εwi,m are independent and replace it with a new assumption, that

the mean and variance of duration twi,m are independent of w̄wxi . We derive an alternative

estimator that is consistent under these assumptions. We also show in Appendix C that our

results using Austrian data are insensitive to which estimator we use.

Formulae (18)–(25) are readily implemented in a real-world data set by setting τ = 1.

Note that in finite data sets, the estimator of σ2
λ in equation (20) can be negative. In

this case, we say that the estimator σ̂2
λ is zero and the estimator of the correlation ρ̂ has

magnitude 1 and the same sign as the estimator of the covariance ĉ in equation (24). We

make analogous definitions if the estimator of σ2
µ in equation (22) is negative.17 We use these

formulae throughout the rest of the paper.

4.3 Small Sample Properties of the Estimators

We next examine small sample properties of our estimator ρ̂. We create different-sized finite

artificial data sets from the two-sided search and discrete choice models introduced in Sec-

tion 3. Importantly, in each data set we keep number of observations per worker deliberately

small, 3.8 on average. For each choice of the number of workers I ∈ {2500, 104, 105}, we

17In practice, we only encounter these issues using simulated data, and only then when the true variance
is very small.
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set the number of jobs at J = I/5, which guarantees that the number of observations per

firm is also small, as in real world data.18 We explain details of the sample construction in

Appendix B.2.

For each model and each choice of I, we create B = 500 artificial samples. The actual

number of firms and workers in each sample may be smaller because we drop firms and

workers with fewer than two observations. For each sample b ∈ {1, . . . , B}, we first compute

the types λ and µ from the economy with infinitely many workers and firms (Sections 3.2

and 3.3). We then use the match durations and matching network realized in sample b to

recover the variance-covariance matrix (equations 16 and 17) and hence the true correlation

ρb for that sample. Alternatively, we use log wages, match durations and the matching

network in sample b to find the variance-covariance matrix using formulae (20), (22), and

(24), and hence recover the feasible estimate ρ̂b. We are interested in how these two measures

of correlation compare.

We parameterize the two-sided search model using the benchmark in Section 3.2. The

realized correlation ρb varies across samples, reflecting randomness in the matching process.

It is smaller in economies with fewer workers and firms because the scarcity of matches

creates randomness in who matches with whom (fifth column in Table 1). We observe that

our estimator performs well even with I ≤ 2500 workers and J = 500 firms, orders of

magnitude smaller sample than a typical real world data set. As the number of workers and

firms increases, the error becomes smaller.

The bottom panel of Table 1 summarizes the results for the discrete choice model. Again,

we parameterize it with the benchmark values in Section 3.3. We treat this as a repeated

static model and assume that all matches last one period before new amenity shocks are

drawn independently. This means most workers switch jobs each period. As in the previous

model, the correlation in each particular sample is different and typically bigger in a larger

economy. We again observe that the error in the estimator is very small, even in the sample

with I ≤ 2500 workers and J = 500 firms.

Figures 4 and 5 in Appendix B.3 show that we get similar results with other parameter

values. Even in samples that are orders of magnitude smaller than a typical real world data

set, the errors in the correlation estimates are typically in the third decimal place, except

when the variance of firm types is nearly equal to zero.

18We use the distribution of observations per worker in the Austrian data in the sample for men corre-
sponding to column (3) of Table 2.
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sample means distribution of ρ̂b − ρb
workers firms matches

worker
matches

firm
ρb 5% mean 95%

Two-sided Search
2,412 500 3.9 18.7 0.757 -0.007 -0.001 0.005
9,660 2,000 3.9 18.8 0.771 -0.003 0.000 0.003

96,618 20,000 3.9 18.8 0.775 -0.001 0.000 0.001
Discrete Choice

2,496 500 4.3 21.6 0.744 -0.008 -0.001 0.006
9,996 2,000 4.4 21.8 0.748 -0.004 0.000 0.003

99,997 20,000 4.4 21.9 0.749 -0.001 0.000 0.001

Table 1: Monte Carlo simulations in the two-sided search model with match-specific produc-
tivity shocks and discrete choice model. For each choice of I, J , we create B = 500 artificial
data sets as described in the main text. The first five columns show several descriptive
statistics computed as means across samples – number of workers I, number of firms J ,
number of matches per worker, number of matches per firm and true sample correlation ρb.
The last three columns show the mean, the 5th and 95th quartile of the error distribution,
ρ̂b − ρb. We parameterize the two-sided search model using the benchmark in Section 3.2.
We parameterize the discrete choice model using the benchmark in Section 3.3.

5 Data

5.1 Data Description

We measure the correlation between worker and firm types using two panel data sets from

the Austrian social security registry (Zweimuller, Winter-Ebmer, Lalive, Kuhn, Wuellrich,

Ruf, and Buchi, 2009), the Austrian Social Security Database (ASSD) and the Arbeitsmark-

tdatenbank (AMDB, Labor Market Database). The ASSD covers the universe of workers in

the private sector from 1972 to 2007, the AMDB from 1986 to 2018.19 For each worker, each

data set contains information about every job they hold. More precisely, in every calendar

year and for every worker-firm pair,20 we observe annual earnings and days worked during

the year. In the AMDB, we see two sources of earnings, regular wage payments and bonus

payments, which we combine together to compute annual earnings. Earnings are top-coded

at the maximum social security contribution level, which rises over time.21

19The two data sets cover the same set of workers but we are not allowed to merge them, and therefore
we will treat them as two separate data sets.

20A firm is identified by its employer identification number (EIN). Some firms may have multiple EINs.
21For example, in 2018, the cap for monthly wage earnings is e5,130 and the cap for annual bonus payment

is e10,260. The fraction of male worker-firm observations affected by top-coding fell from a peak of 15.2
percent in 1990 to 10.3 percent in 2018. Top-coding affects far fewer female worker-firm observations, varying
from 1.7 to 4.8 percent during our sample period. We discuss the importance of top-coding for our results
in Appendix D.
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Each data set has its advantages. The AMDB covers later years while the ASSD provides

more demographic information on workers. In particular, both data sets have some limited

information on workers and firms, including workers’ birth year and sex, and region and

industry for firms. We observe registered unemployment spells in the AMDB and, after 1986,

in the ASSD. In the ASSD, we additionally observe whether the position is blue or white

collar, as well as the education of most workers who experience registered unemployment.

Following Card, Heining, and Kline (2013), we focus on workers age 20–60. We look

separately at men and women, but recognize that selection into employment may be a more

serious issue for women. We drop marginal jobs (less than 10 hours per week) and data

that include an apprenticeship. We note that the data sets do not have an indicator of part-

time jobs. While this might not be a serious concern for men, part-time work is prevalent

among women. Between 1994 and 2007, on average 4.7 percent of employed men and 34.0

of employed women worked part-time.22 Thus, caution is required when interpreting the

results for women.

For each worker-firm-year, we first construct a measure of the log daily wage by taking

the difference between log annual earnings, which is the sum of wages and bonus, and log

days worked. We then regress this on a full set of dummies for the calendar year and age.

The first set of dummies captures the effects of aggregate nominal wage growth, while the

second removes a standard age-earnings profile. Our analysis focuses on these wage residuals.

In most of our analysis we use AMDB data. We supplement this with ASSD data in order

to examine impact of observable characteristics.

5.2 Independence Assumptions

Auxiliary Assumption 1 states that the error terms in the wage equation εwi,m are independent

and identically distributed across matches m for a given worker i. Auxiliary Assumption 2 is

an analogous condition on the firm side. We recognize that this might not be always satisfied

in the data. We approach this in several ways, always motivated by economic theories such

as Burdett and Mortensen (1998), Shimer and Smith (2000), and Postel-Vinay and Robin

(2002). These theories tell us that this condition is easily satisfied for firms but not always for

workers. In this section we explain how we select a sample of workers where the conditional

independence assumption is likely to be satisfied.

We start by selecting all workers for whom we have at least two wage observations during

the 33 years of data. This includes workers who are employed in at least two years, as well

as workers who work for two different employers in the same calendar year. We treat the

22These statistics come from the Statistical office of Austria, https://www.statistik.at.
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annual residual wage observations as independent and measure the correlation accordingly.

We call this independence assumption I.

The advantage to measuring the correlation using independence assumption I is that we

minimize sample selection issues, since we only drop workers with a single employer in a

single year. The disadvantage is that a worker’s wage at a single employer is likely to be

serially correlated, a violation of the conditional independence assumption. We therefore

take a weighted average of the residual wage at the level of the worker-firm match, weighting

by days worked, and treat this match-level wage as a single observation.23 We then select

all workers who are employed by at least two employers and measure the correlation. We

call this independence assumption II: wages are independent across matches.

We recognize that, due to job-to-job movements, residual wages might be correlated

across employment relationships. To understand the problem, consider the job ladder model

from Burdett and Mortensen (1998). There, an employed worker accepts a job offer from

another firm if and only if it pays a higher wage. This means that the wage in jobs held before

and after the job-to-job transition are correlated. According to this model, an unemployment

spell breaks this correlation and so wages in two employment relationships separated by an

unemployment spell are independent. Guided by these insights, we select all workers with

at least two employment spells separated by a spell of registered unemployment and take

the match-level wage in the longest job during each employment spell. This is independence

assumption III: wages are independent across employment spells.

According to Burdett and Mortensen (1998) and Postel-Vinay and Robin (2002), the wage

in any two jobs during different employment spells are conditionally independent; however,

they are not necessarily identically distributed. For example, the first accepted wage out

of unemployment comes from a lower distribution than subsequent wages. To address this

concern, we select only workers with at least two uncensored employmenet spells (that is,

workers with UEUEU transitions, where E represents an employment spell and U a registered

unemployment spell). For these workers, we consider three different wage measures. First,

during any employment spell that starts and ends with an unemployment spell, we measure

the average wage in the longest job. Second, for any employment spell that starts out of

unemployment, we measure the average wage in the first job out of unemployment. Third,

for any employment spell that ends with unemployment, we measure the average wage in

the last job before unemployment. In many models with on-the-job search, any such wage

observations are independently and identically distributed. We call all of these independence

assumption IV.

23Recalls are common in the Austrian labor market (Pichelmann and Riedel, 1992). We treat all instances
where a worker is employed by a firm as a single observation.
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We comment on how we handle multiple matches between the same worker and firm.

This happens if a match between a worker and a firm lasts more than one year or if a

worker is employed by the same firm at two different times of his career. We treat both

these situations in the same way. Under independence assumption I, we treat each annual

wage observation for a worker-firm pair as a different match and hence by construction,

workers have multiple matches with the same employer. As noted, this is unlikely to be

consistent with our auxiliary assumptions. Under independence assumptions II, III, and

IV, we combine all wage observations of a single worker-firm match into one observation by

constructing the average wage. If the wage observations are separated by an unemployment

spell, we drop that unemployment spell from our analysis. Thus we are left with at most

one match between a worker and firm.

Our approach requires at least two observations for each worker and each firm. After

making the inial selection of workers, as described above, we trim our data set by first

dropping any firm that only employs a single worker in the data set. If this leaves any of the

workers with a single wage observation, we drop them from the data as well. We repeat. This

process necessarily stops in a finite number of steps, either with an empty data set or with

a data set containing the largest set of workers with multiple employers and employers with

multiple workers in that data set. In our case the resulting data set is always non-empty.

There is a tradeoff when we impose stricter independence assumptions, i.e. go from as-

sumption I to assumption IV. On the one hand, our auxiliary assumptions are more plausible

when we impose stricter assumptions. On the other hand, the sample becomes more selected.

The concern is that the distribution of worker characteristics F (x), the conditional distribu-

tion of jobs given worker characteristics Φx(y), and the wage equation w(x, y, z) change as

we restrict the sample. Since our definition of the correlation ρ depends on these objects, one

would expect the correlation to differ across samples, even if our auxiliary assumptions were

satisfied in all these samples. We address these selection issues explicitly when we discuss

our results, which we turn to next.

6 Estimated Correlation between Types

6.1 Main Results

Table 2 shows the main results for men and women. We estimate the correlation and

covariance between matched worker and firm types, as well as the variance of types. Different

columns correspond to different independence assumptions.

Column (1) of Table 2 uses independence assumption I to construct the correlation.
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Estimated Correlation and Variances

(1) (2) (3) (4) (5) (6)
Men

correlation of matched types ρ̂ 0.669 0.555 0.473 0.488 0.463 0.469
covariance of matched types ĉ 0.065 0.042 0.027 0.027 0.026 0.028

variance of worker types σ̂2
λ 0.107 0.075 0.051 0.051 0.051 0.054

variance of job types σ̂2
µ 0.090 0.075 0.062 0.059 0.063 0.066

number of workers (thousands) 3,884 2,916 1,646 971 971 970
number of firms (thousands) 705 532 343 272 273 276
number of observations (thousands) 64,359 16,401 7,211 4,883 4,881 4,880
share of observations top-coded 0.112 0.074 0.047 0.020 0.009 0.012

Women
correlation of matched types ρ̂ 0.615 0.440 0.423 0.459 0.432 0.443
covariance of matched types ĉ 0.090 0.042 0.031 0.033 0.030 0.033

variance of worker types σ̂2
λ 0.168 0.094 0.063 0.066 0.060 0.066

variance of job types σ̂2
µ 0.127 0.097 0.085 0.080 0.080 0.082

number of workers (thousands) 3,340 2,532 1,494 798 798 797
number of firms (thousands) 758 530 345 249 248 250
number of observations (thousands) 52,128 12,451 5,582 3,294 3,294 3,291
share of observations top-coded 0.035 0.031 0.021 0.009 0.004 0.005

independence assumption I II III IV IV IV
observations included all all longest longest first last

Table 2: Estimates of correlations, covariances, and variances between matched workers’
and firms’ types using AMDB 1986–2018. All columns use residual log wages, obtained by
regressing log wages on year and age dummies. Columns (2)–(6) aggregate residual wages
to the worker-firm match level by taking a weighted average of wages within the match
across years. Before applying our method, we iteratively drop firms and workers with a
single wage observation. Each column uses a different sample to estimate the correlation.
Independence assumption I includes workers with at least two firm-year wage observations
and treats each year as an independent observation. Independence assumption II includes
workers with at least two distinct employers and treats each employer as an independent
observation. Independence assumption III includes workers with at least two employment
spells and treats the longest jobs during each employment spell as independent observations.
Independence assumption IV includes workers with at least two uncensored employment
spells and treats either the longest (4), first (5), or last (6) job during each employment spell
as independent observations.
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This treats any two firm-year observations for a given worker as independent. We see that

the correlation ρ̂ is high, above 0.6 for both men and women. It seems unlikely, however,

that this data set satisfies our auxiliary assumptions. First, the error term is likely to be

serially correlated within a worker-firm match, violating auxiliary assumptions 1 and 2.

Second, the worker and firm errors are likely correlated within a match. If a match lasts

for multiple periods, this correlation lasts across multiple observations, violating the third

auxiliary assumption. We therefore do not find these numbers credible.

Column (2) uses the more plausible independence assumption II to construct the correla-

tion, aggregating wage observations to the level of the worker-firm match. Each component

of the correlation drops, and so does the correlation. There are two potential explanations

for this drop. On the one hand, we expect that independence assumption I is incorrect and

so the resulting correlation in column (2) is biased. On the other hand, we lose some workers

going from column (1) to column (2) and so the drop can reflect the changing sample. To

evaluate importance of these two explanations, we take the firms and workers from column

(2) and impose independence assumption I. That is, we treat any two firm-year observations

for a given worker as independent. The estimated correlation is 0.644 for men and 0.585

for women, only slightly smaller than the numbers in column (1). This suggests that the

difference between columns (1) and (2) is driven primarily by a violation of our auxiliary

assumptions in column (1), with a bias reduction in column (2).

We next turn to independence assumption III, which treats wage observations from differ-

ent employment spells as independent, as in standard theories of on-the-job search. Column

(3) shows a drop in the estimated correlation both for men and women, even though the

change for women is small. To evaluate the importance of selection and bias, we take the

sample of workers and firms from (3) and impose independence assumption II. That is, we

use all matches of these workers. The estimated correlation is 0.502 for men and 0.415 for

women. In this case, selection plays a significant role for both men and women, although

there is also some bias for men. Nevertheless, we view the estimates in column (3) as a

reasonable baseline.

Finally, we look at independence assumption IV, which recognizes that wage observations

at different points during different employment spells are independent but not identically

distributed. Columns (4), (5), and (6) look at the longest, first, and last job during multiple

employment spells. These estimates are remarkably similar to the correlation in column (3),

both for men and women.

In summary, dropping the biased estimates in column (1), the estimated correlation

between types ranges from 0.463 to 0.555 for men, and from 0.423 to 0.459 for women. The

exact number depends on the independence assumption. As we move from the independence
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assumption I to IV, the auxiliary assumptions are more likely to be satisfied. The downside

is that each concept imposes additional restrictions on the sample. We choose to focus on

the results in column (3) because we believe those are likely to satisfy the independence

assumption while minimizing the sample selection issues in the last three columns.

We note that in each column of Table 2, min{σ̂2
λ, σ̂

2
µ} > ĉ. Viewed through the lens

of Proposition 1, this suggests we are not in the case where we need to worry about our

correlation giving the opposite sign as the AKM correlation.

6.2 Top Coding

In our baseline results in Table 2 column (3), top-coding affects 4.7 percent of men’s obser-

vations and 2.1 percent of women.24 To assess the importance of top-coding, we propose

making the top-coding more severe in each year.25 Figure 6 in Appendix D shows that for

men, the estimated correlation is nearly independent of the share of top-coded observations.

For women, the estimated correlation is a decreasing function of the share observations that

are top-coded. Extrapolating to a lower share of top-coded observations suggests that in the

absence of top-coding, the estimated correlation for women might be slightly higher.

6.3 Confidence Intervals

We construct confidence intervals using a bootstrap procedure. Our main approach to the

bootstrap involves constructing artificial data sets that generate the moments reported in

Table 2, including the variances of worker and firm types, the covariance of matched workers’

and firms’ types, as well as the variance of log wages, the distribution of the number of

matches per worker and firm, and the joint distribution across matches of the durations of

workers’ jobs. The artificial data sets also target the number of workers and firms but do

not hit this exactly. They do not target who matches with whom, i.e. the structure of the

network of matches, or the wage paid in each match. Appendix E describes how we construct

these artificial data sets.

We construct B = 500 artificial data sets. For each data set b = 1, . . . , B, we know the

data generating process and hence we know each worker’s and firm’s type λ and µ. We then

24We consider the log wage for a worker-firm pair to be top-coded if at least one annual wage or bonus
observation for that worker-firm pair is top-coded, and report the share of such worker-firm pair observations.
The share of top-coded observations increases to 6.7 percent for men and remains unchaged at 2.1 percent
for women if we look at calculate share of the annual worker-firm observations which are top-coded.

25The usual approach involves imputing values to the top-coded observations (see for example, Card,
Heining, and Kline, 2013). Interpreting either approach requires an assumption that the behavior of top-
coded observations is similar to the behavior of other high wages. We believe our approach is more transparent
and easier to implement.
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compare the actual correlation between types, ρb, with the correlation estimated using our

approach, ρ̂b. We construct confidence intervals using the difference ρb − ρ̂b as described

in Appendix F. We find that this difference is typically small and is centered around zero,

as one would expect for a consistent and unbiased estimator. For example, in column (3)

of Table 2, the estimated correlation for men is ρ̂ = 0.4732 and the 95 percent confidence

interval is [0.4719, 0.4746]. For women, the estimated correlation is ρ̂ = 0.4231 and the 95

percent confidence interval is [0.4214, 0.4249]. The results in the other columns are similar.

A drawback of our artificial data sets is that the network structure in the artificial and

real-world data differ in some important dimensions. For example, in the real-world data,

about 3 percent of a typical worker’s coworkers at one employer are also coworkers at another

one of her employers. In our artificial data, this happens about 0.1 percent of the time. We

propose an alternative procedure to address this concern. We hold fixed the set of matches

in real-world data and draw random types for each worker and firm. We then draw wages

for each match in a manner that is consistent with the definition of types. Unfortunately,

generating types that are consistent with the real world correlation structure requires drawing

a correlated random vector of dimension I+J , which is computationally infeasible. Instead,

we ask what we would measure if the correlation between types were zero. If the true value of

ρ were zero, 95 percent of the time our approach using the matching network in column (3)

would have generated estimates of ρ̂ between −0.0040 and 0.0034 for men between −0.0055

and 0.0050 for women. It is vanishingly unlikely that the Austrian data could have been

generated from an economy without sorting.

6.4 Other Observable Characteristics

We now examine how controlling for fixed observable characteristics of workers and firms

affects the estimated correlation. We use ASSD data set in this section because it provides

more observable characteristics than AMDB data. This data has registered unemployment

spells over a shorter time period, from 1986 to 2007, and so we first replicate column (3) of

Table 2 on this shorter sample. Column (1) in Table 3 shows that the correlation is slightly

lower in this earlier sample.

We now relax the assumption that a firm has the same type (expected wage) for all its

employees. Effectively we break a firm into different types for employees with different skill

levels and estimate the correlation between types on this adjusted data set. To start, treat

a firm j as a cross between a firm identifier and a worker’s education level. We use five

different education categories: no completed education, middle school, technical secondary

school, academic secondary school, and college. We start with the same data set as in column
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Impact of Observables

(1) (2) (3) (4)
men

correlation of matched types ρ̂ 0.439 0.521 0.525 0.580
covariance of matched types ĉ 0.019 0.023 0.024 0.028

variance of worker types σ̂2
λ 0.039 0.039 0.041 0.049

variance of job types σ̂2
µ 0.049 0.052 0.052 0.047

number of workers (thousands) 1,101 949 1,045 917
number of firms (thousands) 234 337 247 181
number of observations (thousands) 4,376 3,895 3,975 2,706
share of observations top-coded 0.078 0.071 0.074 0.070

women
correlation of matched types ρ̂ 0.418 0.505 0.523 0.527
covariance of matched types ĉ 0.028 0.036 0.040 0.038

variance of worker types σ̂2
λ 0.061 0.061 0.066 0.072

variance of job types σ̂2
µ 0.075 0.083 0.088 0.072

number of workers (thousands) 951 786 895 646
number of firms (thousands) 238 315 241 163
number of observations (thousands) 3,190 2,660 2,757 1,787
share of observations top-coded 0.054 0.024 0.028 0.022

independence assumption III III III III
education no yes no no
white/blue collar no no yes no
industry no no no yes

Table 3: Results controlling for education, job classification, and industry using ASSD 1986–
2007. All columns use residual log wages, aggregated to the worker-firm match level by taking
a weighted average of wages within the match across years. All columns use independence
assumption III, treating the longest jobs during each employment spell as independent ob-
servations. Column (1) shows results without controlling for any observables. In column (2),
we treat each firm × education category as a separate firm. In column (3), we treat each
worker × job position and firm × job position as different workers and firms. In column (4),
we treat each worker × industry as different workers. We adjust the counts of workers and
firms accordingly.
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(1) of Table 3, but lose about ten percent of workers because they are missing education

data.26 We then drop firm × education observations that only appear once in the data set.

This in turn forces us to drop some workers, etc. Finally, we measure the correlation between

the remaining worker and firm × education types. Table 3 column (2) shows that allowing

firm types to differ by educational category raises the correlation between matched types

from 0.439 to 0.521 for men and from 0.418 to 0.505 for women. This is consistent with

the view that firms are a collection of heterogeneous jobs and so ignoring that heterogeneity

causes us to underestimate the true correlation.

We proceed in a similar way with the type of position, treating a firm identifier as distinct

for white and blue collar jobs. Even though the type of position is a permanent characteristic

for the majority of workers, some do hold both blue and white collar jobs, and thus we treat

a worker at different positions as a different worker type as well. This again substantially

raises the estimated correlation to 0.525 for men and 0.523 for women, see Table 3 column

(3). Again, we interpret this as evidence that firms are collections of heterogeneous jobs and

sorting occurs both across firms and across job categories within firms.

Finally, we investigate the role of industry. We use ten one-digit SIC industry categories.

These are fixed at the firm level but workers switch industries, in which case we treat them

as if they were different individuals. Even though we start from the same set of workers and

firms, we lose observations when the worker does not hold two jobs in the same industry,

about 38 percent of the observations for men and 37 percent for women. The correlation

between the remaining matched workers and jobs is the highest yet, 0.580 for men and 0.527

for women, reported in Table 3 column (4). In summary, the headline numbers in Table 2

significantly understate the amount of sorting in the economy because they ignore the fact

that firms are collections of heterogeneous jobs and workers’ type changes over time. It seems

plausible that if we could account for unobserved time-varying heterogeneity, the measured

correlation would increase further.

6.5 Time Series

Our approach is amenable to time series analysis. To see this, we redo all of our analysis

using only a single year’s data at a time. That is, we measure the average log wage for a

worker-firm pair using only wage information from the considered year, even if the match

exists in other years. We focus throughout on independence assumption III, selecting the

26Missing education data is not random, even conditional on unemployment. Those men (women) without
education data earn a residual log wage that is 0.19 (0.16) standard deviations higher than the average
residual log wage of workers with recorded education. Furthermore, workers with missing education have
fewer employment spells on average, 2.4 compared to 4.1 for men, and 2.3 compared to 3.4 for women.
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Figure 3: Year-by-year correlation between worker and firm types under independence as-
sumption III, using AMDB 1986–2018. Thick solid lines are computed year-by-year and
shaded areas are bootstrapped 95 percent confidence intervals. For each year, the sample
considers all workers who switched employers after an unemployment spell within that year,
and includes one job for each employment spell of these workers. The sample only includes
the wage observations for that year, even if the match continued in other years. The thin
horizontal lines are correlations computed in samples constructed by pooling all year-by-year
samples together.

last job before the unemployment spell and the first job after the unemployment spell.

Using only those workers who switch employers after an unemployment spell within a

year reduces our sample size from 1.6 million workers to an average of 62,000 workers per

year for men, and from 1.5 million to 36,000 for women. This is still sufficiently large to

estimate the annual correlation between worker and firm types. Figure 3 shows that the

correlation between worker and firm types increased slightly for men, from an initial 0.427

in 1986 to around 0.489 in 1997, where it stayed until 2007. We see another increase in

the correlation in the last ten years, reaching 0.551 in year 2018. The figure also shows a

general downward trend in the correlation for women. In both cases, the bootstrapped 95

percent confidence intervals are small in every year. The stability of these estimates from

year-to-year provides additional support for our methodology.

The annual correlations average 0.493 for men and 0.425 for women, very similar to the

correlations of 0.473 and 0.423 reported in column (3) of Table 2 using the full sample. This
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reflects a combination of two different forces. First, the sample of workers is different, since

for the time series analysis we use workers who have multiple employment spells within a

year, while some workers may have multiple spells, but only in different years. To assess the

importance of this, we pool the samples from the time series analysis and estimate a single

correlation, 0.454 for men and 0.376 for women.27 Since these are smaller than the numbers

reported in column (3) of Table 2, we conclude that sample selection reduces the measured

correlation.

Second, in the time series analysis, workers and firms are not linked across years and

hence a worker in one year is treated independently of the same worker in a different year. If

types change over time in ways that are not captured by age dummies in a wage regression,

the correlation in the pooled sample will understate the correlation at any point in time since

the time-average types λi and µj are noisy measures of the time-varying types λi,t and µj,t.

In Appendix G, we establish this formally when conditional expectations are linear. This

suggests yet another reason why the estimates in Table 2 understate the amount of sorting

between workers and firms.

One possible concern with our results in this section is that we focus on the last job in

one employment spell and the first job in the next spell. Although the wages in these jobs

may be independent, theory tells us that they are not drawn from the same distribution.

Indeed, in our data there are level differences in wages within a spell: the mean log wage

in the first job after unemployment is lower than the mean log wage in the second job,

which is lower than in the third job, etc.. There are two reasons why we believe that this is

not a major issue. First, the estimated correlation using only first jobs or only last jobs in

each employment spell is very similar; see columns (5) and (6) in Table 2. Second, we have

regressed log wages on the job’s order within a spell, in addition to age and year dummies,

before constructing wage residuals. This additional control has little quantitative impact on

the correlations in Figure 3.

7 Comparison with the AKM Correlation

The standard method of measuring whether high wage workers take high wage jobs is due to

Abowd, Kramarz, and Margolis (1999). The authors propose running a linear regression of

log wages against a worker fixed effect α and a firm fixed effect ψ, as in equation (7). This

gives them estimates of each fixed effect, α̂i for all i and ψ̂j for all j. They then compute the

27In this pooled sample, we aggregate all worker-firm-year residual wages back to the worker-firm level by
computing an average log wage over years. We then keep only the longest match in each employment spell.
The sample contains 949,508 men and 688,427 women.
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Comparison with AKM Correlation

(1) (2) (3) (4) (5) (6)
Men
ρ̂ 0.662 0.555 0.473 0.488 0.463 0.468
ρ̂AKM 0.086 0.202 0.122 0.053 0.018 0.029

number of workers (thousands) 3,862 2,915 1,646 971 971 970
number of firms (thousands) 682 532 343 272 273 276
number of observations (thousands) 64,193 16,400 7,211 4,883 4,881 4,880
share of observations top-coded 0.112 0.074 0.047 0.020 0.009 0.012

Women
ρ̂ 0.606 0.440 0.423 0.459 0.432 0.443
ρ̂AKM 0.026 0.093 0.067 0.061 0.047 0.057

number of workers (thousands) 3,305 2,532 1,494 798 798 797
number of firms (thousands) 720 530 345 249 248 250
number of observations (thousands) 51,813 12,450 5,582 3,294 3,294 3,291
share of observations top-coded 0.035 0.031 0.021 0.009 0.004 0.005

independence assumption I II III IV IV IV
observations included all all longest longest first last

Table 4: Comparison of our estimates of correlation and AKM fixed effects estimates using
AMDB 1986–2018. Both ρ and ρAKM are estimated on the largest connected set. Otherwise
the data construction is identical to Table 2. See the notes to that table for details.

correlation between α̂i and ψ̂j in matched pairs. As we mentioned in the introduction, a fair

summary of the extensive literature that follows that paper is that the estimated correlation

is close to zero and sometimes negative.

Table 4 verifies that this is true with our approach to the data. We use the same approach

as in Table 2, with one difference: the AKM correlation is only identified on the largest

connected set of workers and firms and so we work with this set. Comparing Tables 2 and

4, we see that very few workers and firms are not part of the largest connected set and so

unsurprisingly this has little effect on our estimate ρ̂. We then estimate the AKM correlation.

The exact formulae for the duration-weighted estimator ρ̂AKM are in Appendix H.1. Our

estimates lie between 0.018 and 0.202 for men and 0.026 and 0.093 for women. Across the six

columns, the fixed effects correlation is on average 0.433 below our estimate of the correlation

for men and 0.409 below our estimate of the correlation for women.

Why is the estimated correlation between the AKM fixed effects so much smaller than

the estimated correlation between our measure of types? There are two possible reasons.

First, Section 3 shows that ρ is typically, possibly always, larger than ρAKM , and in struc-

tural models the differences may be substantial. We also argued that our correlation better

38



captures the extent of sorting in the real economy when these two measures are different.

Second, a number of authors have noted that the estimator of the AKM correlation using

an OLS regression, ρ̂AKM , does not generally converge to ρAKM in a large data set (Postel-

Vinay and Robin, 2006; Barth and Dale-Olsen, 2003; Abowd, Kramarz, Lengermann, and

Pérez-Duarte, 2004). Instead, consistency requires that the number of independent obser-

vations per worker and firm goes to infinity holding fixed the number of workers and firms.

This is not a natural feature of real-world data sets. For example, even using 33 years of

Austrian data, the median worker has two employers and the median firm has three em-

ployees. The literature has called this incidental parameters problem “limited mobility bias”

and proved that it leads to an underestimate of the AKM covariance and an overestimate of

the standard deviation of worker and firm fixed effects. Together these imply ρAKM > ρ̂AKM

when the former is positive.

The literature has offered some solutions to the limited mobility bias problem; see Ap-

pendix H.2 for details. We find that the bias corrections proposed in Andrews, Gill, Schank,

and Upward (2008) and Kline, Saggio, and Sølvsten (2019) give us estimates of ρAKM that

are much smaller than our estimate of ρ. For example, under independence assumption III,

our estimate of the ρ is 0.46 for men and 0.39 for women, while the OLS estimate of ρAKM is

−0.02 for men and −0.05 for women.28 The Andrews, Gill, Schank, and Upward (2008) bias

correction turns the estimate of ρAKM positive but still small, 0.10 for both men and women.

The correction in Kline, Saggio, and Sølvsten (2019) increases this a bit more, to 0.11 for

men and 0.10 for women. On the other hand, the approach in Bonhomme, Lamadon, and

Manresa (2019) has a much bigger effect on the results, increasing the correlation to 0.30 for

men and 0.29 for women, although this is still one-third smaller than our estimates of the

correlation.

Table 5 shows that the results are qualitatively similar in other samples, with our mea-

sure of correlation always somewhat larger than the estimate of the AKM correlation from

Bonhomme, Lamadon, and Manresa (2019), which in turn is bigger than the bias-corrected

estimates in 2008 and Kline, Saggio, and Sølvsten (2019), which are again bigger than the

OLS estimates of the AKM correlation. Our reading of the literature is that there is no

agreement yet about which (if any) of these methods reliably estimates ρAKM in finite sam-

ples. For this reason, we do not know whether the difference between our estimates of ρ and

existing estimates of ρAKM reflect conceptual differences between the two concepts or biases

in estimating ρAKM . In the former case, we argued in Section 3 that there are theoretical

28These are different than the numbers in Table 4 because the bias corrections impose some restrictions
on how we look at the data. The two most important ones are that we use exactly two matches for each
worker and that we cannot weight any of the estimates by duration. Again, see Appendix H.2 for details.
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Comparison with Bias-Corrected Estimates of AKM Correlation

(1) (2) (3) (4) (5) (6)
Men
ρ̂ 0.679 0.582 0.460 0.436 0.426 0.433
ρ̂AKM , OLS -0.098 0.042 -0.020 -0.056 -0.080 -0.080
ρ̂AKM , AGSU -0.043 0.152 0.098 0.069 0.061 0.074
ρ̂AKM , KSS 0.048 0.165 0.106 0.082 0.073 0.088
ρ̂AKM , BLM 0.259 0.350 0.300 0.309 0.267 0.291

number of workers (thousands) 3,459 2,800 1,577 908 907 906
number of firms (thousands) 186 302 229 166 166 169
number of observations (thousands) 6,918 5,601 3,154 1,816 1,815 1,811
share of observations top-coded 0.0550 0.086 0.068 0.027 0.010 0.014

Women
ρ̂ 0.595 0.378 0.386 0.434 0.426 0.438
ρ̂AKM , OLS -0.149 -0.053 -0.055 -0.048 -0.074 -0.070
ρ̂AKM , AGSU -0.104 0.046 0.101 0.162 0.153 0.172
ρ̂AKM , KSS -0.022 0.048 0.103 0.173 0.165 0.187
ρ̂AKM , BLM 0.122 0.254 0.292 0.364 0.362 0.341

number of workers (thousands) 2,816 2,409 1,425 738 738 736
number of firms (thousands) 172 311 241 158 157 159
number of observations (thousands) 5,631 4,818 2,849 1,476 1,476 1,473
share of observations top-coded 0.015 0.030 0.025 0.010 0.004 0.005

independence assumption I II III IV IV IV
observations included all all longest longest first last

Table 5: Estimates of the correlation ρ and the AKM correlation using different methods,
using AMDB 1986–2018. The initial data construction is identical to Table 2 but we further
restrict the sample to the largest leave-one-out connected set where every worker has exactly
two distinct employers, and every firm employs at least two workers. The estimates are not
weighted by duration. ρ̂ is our measure of sorting. ρ̂AKM , OLS is the OLS estimate of the
AKM correlation. ρ̂AKM , AGSU uses the Andrews, Gill, Schank, and Upward (2008) bias
correction. ρ̂AKM , KSS uses the Kline, Saggio, and Sølvsten (2019) correction. ρ̂AKM , BLM
uses the mixture model in Bonhomme, Lamadon, and Manresa (2019).
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reasons to prefer ρ to ρAKM . In the latter case, there are pragmatic reasons for estimating

ρ, since we know how to do it.

8 Conclusion

This paper proposes a new measure of sorting, the correlation between a worker’s average

wage and her employer’s average wage. We find that this measure performs at least as well as

the AKM correlation in a variety of structural models. We then propose an estimator of the

correlation that is consistent in data sets with many workers and firms but few observations

for each worker and firm. Using Austrian data, we find strong evidence for sorting between

high wage workers and high wage firms. The correlation between a worker’s type and her

employer’s type exceeds 0.4 and has been growing over time for men but shrinking for

women. This contrasts with the previous literature, which has used the AKM approach and

concluded that there is little sorting of high wage workers into high wage jobs. Whether this

reflects theoretical limitations of the AKM measure of sorting or biases in estimating the

AKM measure of sorting remains an open question.

We have focused in this paper on measuring sorting between workers and firms, but our

empirical approach may be useful in a variety of other settings. For example, our approach

can measure sorting between firms and banks in the corporate loan market. It can measure

sorting of innovators into teams, as well as sorting between innovators and innovating firms.

Our approach can detect whether schools assign better students to better teachers. In short,

our methodology applies to any setting where we know the identity of both parties in a

match and can observe an outcome for the pair.

Is our measured correlation large? This is a quantitative question that goes beyond the

scope of this paper. Still, there are reasons to think that our approach understates the true

extent of sorting. We have already mentioned three such reasons: we focus only on workers

who experience unemployment, while those who are continuously employed appear to have

a higher correlation; workers’ types change over time, arguably more dramatically during a

spell of registered unemployment (Ljungqvist and Sargent, 1998); and firms are collections

of heterogeneous jobs at a point in time and so there is not really a single firm type that

is applicable to all workers. Even in a frictionless environment, one would not expect to

see many firms that only hire high wage workers, since real-world production processes and

hierarchies utilize a mix of skills (Garicano, 2000).

In closing, we mention one more reason why we may be understating the extent of sorting:

our approach focuses only on vertical sorting as captured through wages. Horizontal sorting

of similarly-paid workers with different skills is likely also important (Lindenlaub, 2017;
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Lindenlaub and Postel-Vinay, 2017). Our estimated correlations therefore suggest that the

labor market effectively gets the highest wage workers together at the highest wage firms.
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Appendix

A Details of Structural Models

A.1 A Statistical Model

We provide the proof of Proposition 1 omitted from the main text.

Proof of Proposition 1. First recall that one can obtain the best linear prediction of the

expected value of y conditional on x by running a least square regression of y on x,

Ex(y) = ȳ +
cAKM
σ2
x

(x− x̄),

where x̄ and ȳ denote the expected values of x and y. Since by assumption the expectation

of x conditional on y is linear in y, this relationship is exact. We can then use the definition

of λ in equation (1) directly to write

λi = Exiw(xi, y) = xi + Exi(y) = ȳ − cAKM
σ2
x

x̄+

(
1 +

cAKM
σ2
x

)
xi, (26)

and so λi is an affine function of xi. A symmetric argument establishes that Ey(x) =

x̄+ cAKM
σ2
y

(y − ȳ) and

µj = x̄− cAKM
σ2
y

ȳ +

(
1 +

cAKM
σ2
y

)
yj. (27)

This verifies that µj is an affine function of yj.

Next, assume that min{σ2
x, σ

2
y} > −cAKM . Equations (26) and (27) imply λi is an in-

creasing function of xi and µj is an increasing function of yj. Therefore the correlation

between λ and µ is the same as the correlation between x and y, ρ = ρAKM . Moreover,

equations (26) and (27) imply that the standard deviations of λ and y are σλ = σx+ρAKMσy

and σµ = σy + ρAKMσx, both positive by the assumption at the start of this paragraph.

Using this and ρ = ρAKM gives us σ2
λ − c = σ2

λ(1 − ρσµ/σλ) = σxσλ(1 − ρ2
AKM ) > 0, and

symmetrically σ2
µ − c = σyσµ(1− ρ2

AKM ) > 0. Hence min{σ2
λ, σ

2
µ} > c.

Alternatively, suppose that σ2
x > −cAKM > σ2

y . Then λi is an increasing function of xi

and µj is a decreasing function of yj. Therefore ρ = −ρAKM . Equations (26) and (27) imply

that the standard deviations of λ and µ are σλ = σx + ρAKMσy and σµ = −(σy + ρAKMσx).

Using this and ρ = −ρAKM gives us σ2
λ − c = σ2

λ(1 − ρσµ/σλ) = σxσλ(1 − ρ2
AKM ) > 0 and

σ2
µ− c = −σyσµ(1− ρ2

AKM ) < 0. Hence min{σ2
λ, σ

2
µ} < c. The case with σ2

y > −cAKM > σ2
x is

analogous. It cannot be the case that −cAKM > max{σ2
x, σ

2
y}. Thus whenever min{σ2

x, σ
2
y} <
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−cAKM , min{σ2
λ, σ

2
µ} < c.

Finally, if σ2
x + cAKM = 0, equations (26) and (27) imply σλ = 0. If σ2

y + cAKM = 0, then

σµ = 0. In these cases, the correlation between λ and µ is undefined.

A.2 Two-Sided Search Model with Match-Specific Shocks

We formulate equations for the value functions U(x) and V (y) and steady state conditions

for u(x) and v(y). It will be useful to define the conditional expected value ω and survivor

function p as

ω(k) =

∫∞
k
zdζ(z)

1− ζ(k)
if ζ(k) < 1, ω(k) = k otherwise

p(k) = 1− ζ(k).

The value of being unemployed is then

rU(x) = θ

∫
Y

(∫
z≥z̄(x,y)

γ

r + δ

(
zH(x, y)− rU(x)− rV (y)

)
dζ(z)

)
v(y)dG̃(y)

=
θγ

r + δ

∫
Y

p(z̄(x, y))
(
ω(z̄(x, y))H(x, y)− rU(x)− rV (y)

)
v(y)dG̃(y). (28)

Similarly, the value of a vacant firm is

rV (y) =
θ(1− γ)

r + δ

∫
X

p(z̄(x, y))
(
ω(z̄(x, y))H(x, y)− rU(x)− rV (y)

)
u(x)dF̃ (x). (29)

Finally, the steady state conditions for unemployment and vacancy rates are

δ(1− u(x)) = θu(x)

∫
Y

p(z̄(x, y))v(y)dG̃(y), (30)

δ(1− v(y)) = θv(y)

∫
X

p(z̄(x, y))u(x)dF̃ (x). (31)

Using this, we can find the conditional distribution of jobs for each worker:

Φx(y) =
p(z̄(x, y))v(y)dG̃(y)∫

Y
p(z̄(x, y′))v(y′)dG̃(y′)

. (32)

The log wage in an (x, y) match with productivity shock z is

w(x, y, z) = log
(
γ
(
zH(x, y)− rU(x)− rV (y)

)
+ rU(x)

)
, (33)
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and hence its expectation is

we(x, y) ≡ Ew(x, y, z) =

∫
z≥z̄(x,y)

w(x, y, z)dζ(z)/p(z̄(x, y)). (34)

This is enough information to compute ρ and ρAKM from the model.

Finally, note that if ζ has an exponential distribution, the expected log wage is

we(x, y) = e
rU(x)

γsH(x,y)

∫ ∞
rU(x)

γsH(x,y)

1

tet
dt+ log(rU(x)),

which is increasing in H(x, y). Thus if the production technology is monotonic in y, the

expected log wage is also monotonic in y for fixed x.29

A.3 Discrete Choice Model

We have closed-form formulas for all objects of interest when the distributions of worker and

firm characteristics are normal, x ∼ N(mx, σ
2
x) and y ∼ N(my, σ

2
y). In the interest of space,

we show formulae for the standard normal case, mx = my = 0 and σx = σy = 1.

Theorem 18.4 in Malmberg and Hössler (2014) implies that the distribution of firm types

y conditional on worker’s type x is

Φx(y) =
exp

(
w(x,y)
s

)
dG̃(y)∫∞

−∞ exp
(
w(x,y′)

s

)
dG̃(y′)

. (35)

Under the assumption that y has a standard normal distribution and w(x, y) = x−(x−y)2/a,

we get that Φx(y) is also normal with mean 2x
2+as

and variance as
2+as

. The distribution of x

and the distribution of y conditional on x allow us to compute the joint distribution of x

and y. Importantly, the correlation is 2√
4+2as+a2s2

.

Next, understanding the wage and the joint distribution of x and y, we can compute the

types from equations (1) and (2):

λ(x) = − as2x2

(2 + as)2
+ x− s

2 + as
, (36)

µ(y) = − a3s4y2

(4 + 2as+ a2s2)2
+

2(2 + as)y

4 + 2as+ a2s2
− s(2 + as)

4 + 2as+ a2s2
, (37)

29The same is true for the expected wage.
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as well as the AKM fixed effects from equations (8) and (9):

α(x) = − s(4 + a2s2)x2

(2 + as)(8 + 2as+ a2s2)
+ x+ α0, (38)

ψ(y) = − s(2− as)y2

8 + 2as+ a2s2
− 4s

8 + 2as+ a2s2
− α0. (39)

Note that λ, µ, and α are all concave quadratic functions of the characteristic, while ψ is a

concave quadratic if as < 2, a convex quadratic if as > 2, and a constant if as = 2.

In the last step, we can use the covariance matrix of x and y as well as these functional

forms to find the covariance matrix of λ and µ as well as α and ψ. The exact formulae are

messy even in the standard normal case and so we omit them.

B Properties of Estimator

B.1 Consistency Proofs

Proof of Proposition 2. Take worker i with characteristics xi:

λ(xi) =
Exi
∑Mi

m=1 t
w
i,mw

w
i,m

T̄wx
= w̄wxi +

Ex
∑Mi

m=1 t
w
i,mε

w
i,m

ExiTwi
= w̄wxi .

The first equation is the definition of λ as the expected daily log earnings, equation (14).

The second uses the auxiliary assumption that wwi,m = w̄wxi+ε
w
i,m. The third uses the auxiliary

assumption that the expected value of twi,mε
w
i,m is zero. The proof for firms is identical.

Proof of Proposition 3. We start by proving that 1
τI

∑τI
i=1 T

w
i λ̂i is a consistent estimator

of 1
I

∑
x∈X IxT̄

w
x λ(x), i.e. the product of worker type and time spent matched. We do this in

two steps. First, for any given worker i with characteristic xi,

Twi λ̂i =
Twi
∑Mi

m=1 w
w
i,m

Mi

= Twi w̄
w
xi

+

∑Mi

m=1

∑Mi

m′=1 t
w
i,m′ε

w
i,m

Mi

= Twi λ(xi) + υ1,i

where υ1,i ≡ 1
Mi

∑Mi

m=1

∑Mi

m′=1 t
w
i,m′ε

w
i,m. The first equation uses the definition of λ̂i from

equation (18). The second uses the auxiliary assumption that wwi,m = w̄wxi + εwi,m and also

writes Twi =
∑Mi

m′=1 t
w
i,m′ . The third uses λ(xi) = w̄wxi (Proposition 2) and defines the error

term υ1,i. Since twi,m and εwi,m′ are independent for all m and m′ and εi,m′ has mean zero,

υ1,i also has mean zero for each i. It also has a finite characteristic-dependent variance, say

σ2
υ1,xi

<∞, since σwxi is finite and durations are bounded.
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Summing these up implies that the expected value of 1
τI

∑τI
i=1 T

w
i λ̂i is 1

I

∑
x∈X IxT̄

w
x λ(x).

Next, the fourth auxiliary assumption implies that the error terms υ1,i are independent.

Thus the variance of 1
τI

∑τI
i=1 T

w
i λ̂i is 1

τI2

∑
x∈X Ixσ

2
υ,x. This converges to zero when τ goes

to infinity and so consistency follows from Chebyshev’s inequality, a law of large numbers.

A similar argument implies that 1
τI

∑τI
i=1 T

w
i is a consistent estimator of 1

I

∑
x∈X IxT̄

w
x

since Twi is an unbiased estimator of T̄wx with a finite variance and durations are independent

across workers conditional on type. Since the ratio of two consistent estimators is consistent,

it follows that ˆ̄w =
∑τI
i=1 T

w
i λ̂i∑τI

i=1 T
w
i

is a consistent estimator of w̄ =
∑
x∈X IxT̄wx λ(x)∑
x∈X IxT̄wx

.

Turn next to the second moment. As above, for worker i with characteristic xi,

Twi λ̂
2
i =

Twi
∑Mi

m=1

∑
m′ 6=mw

w
i,mw

w
i,m′

Mi(Mi − 1)

= Twi (w̄wxi)
2 +

2w̄wxi
∑Mi

m=1

∑Mi

m′=1 t
w
i,m′ε

w
i,m

Mi

+

∑Mi

m=1

∑
m′ 6=m

∑Mi

m′′=1 t
w
i,m′′ε

w
i,mε

w
i,m′

Mi(Mi − 1)

= Twi λ(xi)
2 + υ2,i

where υ2,i is the sum of the last two terms on the previous line. The logic is very similar to

the first moment. The first equation uses the definition of λ̂2
i in equation (18), the second

uses the auxiliary assumption that wwi,m = w̄wxi + εwi,m and also writes Twi =
∑Mi

m′=1 t
w
i,m′ . The

third uses λ(xi) = w̄wxi and defines another error term for each worker. For each worker, the

expected value of υ2,i is zero because of the same assumptions as for the first moment, as well

as the assumption that εwi,m and εwi,m′ are independent for m 6= m′. Moreover, the variance

of the error term is characteristic dependent but finite, σ2
υ2,xi

< ∞, since σwxi is finite and

durations are bounded.

We can then sum up these objects, getting that the expected value of 1
τI

∑τI
i=1 T

w
i λ̂

2
i is

1
I

∑
x∈X IxT̄

w
x λ(x)2. Consistency again follows from the fourth auxiliary assumption, since

this ensures that the error terms υ2,i are independent across workers. Again, since the ratio of

two consistent estimators is consistent,
∑τI
i=1 T

w
i λ̂

2
i∑τI

i=1 T
w
i

is a consistent estimator of
∑
x∈X IxT̄wx λ(x)2∑

x∈X IxT̄wx
,

the second moment of λ.

Finally, the difference between a consistent estimator of the second moment and the

square of a consistent estimator of the first moment is a consistent estimator of the variance

σ2
λ, defined in equation (16).

Proof of Proposition 5. We start by expanding the definition (23) of ĉi,m using wwi,m′ =
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w̄wxi + εwi,m′ and wfj,n′ = w̄fyj + εfj,n′ with j = ji,m:

ĉi,m = w̄wxiw̄
f
yi,m

+ w̄fyi,m

∑
m′ 6=m ε

w
i,m′

Mi − 1
+ w̄wxi

∑
n′ 6=ni,m

εfji,m,n′

Nji,m − 1
+

∑
m′ 6=m ε

w
i,m′

Mi − 1

∑
n′ 6=ni,m

εfji,m,n′

Nji,m − 1
.

Now compute the average of this across all matches:

1

τI

τI∑
i=1

Mi∑
m=1

twi,mĉi,m =
1

τI

τI∑
i=1

(
w̄wxi

Mi∑
m=1

twi,mw̄
f
yi,m

+

Mi∑
m=1

twi,mw̄
f
yi,m

∑
m′ 6=m ε

w
i,m′

Mi − 1

+

Mi∑
m=1

twi,mw̄
w
xi

∑
n′ 6=ni,m

εfji,m,n′

Nji,m − 1
+

Mi∑
m=1

twi,m

∑
m′ 6=m ε

w
i,m′

Mi − 1

∑
n′ 6=ni,m

εfji,m,n′

Nji,m − 1

)

=
1

τI

(
τI∑
i=1

w̄wxi

Mi∑
m=1

twi,mw̄
f
yi,m

+
τI∑
i=1

Mi∑
m=1

εwi,m

∑
m′ 6=m t

w
i,m′w̄

f
yi,m′

Mi − 1

+
τJ∑
j=1

Nj∑
n=1

εfj,n

∑
n′ 6=ni,m

tfj,n′w̄
w
xj,n′

Nj − 1
+

τI∑
i=1

Mi∑
m=1

twi,m

∑
m′ 6=m ε

w
i,m′

Mi − 1

∑
n′ 6=ni,m

εfj,n′

Nji,m − 1

)

The first equation uses the definition above of ĉi,m, while the second regroups terms. In par-

ticular, in the second term, we switch the order of summation, while in the third term we first

view objects from the perspective of the firm and then switch the order of the summations.

The first three auxiliary assumptions imply that the last three terms all have zero expected

value and so the expected value of this expression is 1
I

∑
x∈X IxEx

∑Mi

i=1 t
w
i,mλ(x)µ(yi,m).

To compute the variance of the estimator, we leverage the fourth auxiliary assumption,

which implies that when we square the last three terms, the only parts with a non-zero

expected value are the direct squares within each term and within each worker or firm. That

is, the variance of 1
τI

∑τI
i=1

∑Mi

m=1 t
w
i,mĉi,m is

1

τI2

∑
x∈X

IxEx

( Mi∑
m=1

εwi,m

∑
m′ 6=m t

w
i,m′w̄

f
yi,m′

Mi − 1

)2

+

(
Mi∑
m=1

twi,m

∑
m′ 6=m ε

w
i,m′

Mi − 1

∑
n′ 6=ni,m

εfj,n′

Nji,m − 1

)2


+
∑
y∈Y

JyEy

 Nj∑
n=1

εfj,n

∑
n′ 6=ni,m

tfj,n′w̄
w
xj,n′

Nj − 1

2
This is inversely proportional to τ and so the variance of the estimator converges to zero

when τ goes to infinity, i.e. the estimator is consistent.

To finish the proof, we use the fact that 1
τI

∑τI
i=1 T

w
i is a consistent estimator of 1

I

∑
x∈X IxT̄

w
x

(see the proof of Proposition 3) and take ratios to prove that
∑τI
i=1

∑Mi
m=1 t

w
i,mĉi,m∑τI

i=1 T
w
i

is a consis-
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tent estimator of
∑
x∈X IxEx

∑Mi
m=1 t

w
i,mλ(x)µ(yi,m)∑

x∈X IxT̄wx
. Finally, we have already shown in the proof of

Proposition 3 that
∑τI
i=1 T

w
i λ̂i∑τI

i=1 T
w
i

is a consistent estimator of w̄, the common mean of λ and µ.

The difference between a consistent estimator of
∑
x∈X IxEx

∑Mi
m=1 t

w
i,mλ(x)µ(yi,m)∑

x∈X IxT̄wx
and the square

of a consistent estimator of w̄ is a consistent estimator of the covariance.

B.2 Construction of Artificial Data

We generate artificial data sets from two structural models, the two-sided search model with

match-specific shocks and the discrete choice model.

In the search model, we proceed as follows. For given parameter values, we solve for the

steady state of the economy with a continuum of workers and firms and compute the steady

state decision rules, value functions, and unemployment and vacancy rates for each worker

and firm characteristic x and y. This determines λ(x) and µ(y) for all x and y.30 To create

the sample, we choose the number of workers and firms, I and J , and assign each worker

and firm its characteristic x and y according to the distributions F̃ (x) and G̃(y).31

We start the search economy with some workers employed and some unemployed, respect-

ing their characteristic-specific unemployment rates u(x). For a worker i with type xi we

construct an employment history, consisting of alternating spells of employment and unem-

ployment. An unemployment spell is characterized only by its duration, which we determine

by a draw from an exponential distribution with parameter 1/
(
θ
∫
Y
p(z̄(x, y))v(y)dG̃(y)

)
, the

reciprocal of the job finding rate of worker i. An employment spell is characterized by four

objects: the firm’s characteristic y, its identity j, the log wage w, and the match duration τ .

We draw the firm’s characteristic y from the equilibrium distribution of matches conditional

on the worker type Φxi(y), equation (32). Next, we draw the firm’s identity at random from

the set of firms with that characteristic y. We then draw the match-specific shock z from the

distribution dζ(z) conditional on z ≥ z̄(xi, y), which guarantees that a worker with xi and a

firm with y indeed want to form a match. Finally, we construct the log wage w(xi, y, z) us-

ing equation (33). The duration of the match is determined by a draw from the exponential

distribution with parameter 1/δ. We assume that we observe each worker for T̄ periods and

keep creating spells of employment and unemployment until the sum of all spell durations

30We use λ and µ from an economy with a continuum of workers and firms. This is because we do not
know how to solve a two-sided matching model with a finite number of workers and firms. In particular, the
state variable in the finite econmy is the distribution of all matches and the finite economy does not have a
steady state.

31We choose I and J to be multiples of 500, which is the number of characteristics in our numerical
solution of the model. We assign equal number of firms and workers to each characteristic. Thus, we do not
have randomness at this stage.
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reaches T̄ . We choose T̄ such that the median worker holds 4.9 jobs. If a worker has multiple

jobs with the same firm, we keep one at random. We drop all workers and firms with only

one observation.

We proceed similarly in the discrete choice model. For given parameter values, we first

compute λ(x) and µ(y) under the assumption that there is a continuum of workers and

firms. That is, we use a generalization of equation (36) which relaxes the assumptions that

mx = my = 0 and σx = σy = 1. To create the sample, we choose the number of workers and

firms, I and J , and draw characteristics for each from the distributions F (x) and G̃(y). For

worker i with characteristic xi, we draw the number of jobs Mi using the actual distribution

of jobs per worker, corresponding to column (3) for men in Table 2. For each job, we assume

that the matching probabilities solve a version of equation (35).32 In the last step, we assign

each match the log wage w(xi, yj) and a duration of 1 period. Again, if a worker has multiple

jobs with the same firm, we keep one at random. We drop all workers and firms with only

one observation.

B.3 Monte Carlo Confidence Intervals

We construct B data samples for each model and set of parameters. For each sample

b ∈ {1, . . . , B}, we first use the types λ and µ and the match durations and matching

network realized in sample b to recover the variance-covariance matrix (equations 16 and 17)

and hence the true correlation ρb for that sample. Alternatively, we use log wages, match

durations and the matching network in sample b to find the variance-covariance matrix using

formulae (20), (22), and (24), and hence recover the feasible estimate ρ̂b. Let eb = ρ̂b − ρb
be the estimation error in sample b. We find values e and ē such that

P (eb ≤ e) = 0.025 and P (eb > ē) = 0.025.

The 95 percent confidence interval for ρ is [ρ + e, ρ + ē], where ρ is the correlation in an

infinite sample. Note that the interval does not have to be centered.

In addition to the numerical results in Table 1, here we show results with other parameter

values. Throughout we assume there are I = 10, 000 workers and J = 2, 000 firms, although

the number of workers and firms in the final sample is lower because we only keep workers

and firms with at least two observations. This is a rather conservative choice of the sample

size, orders of magnitude lower than a typical real-world data. Figure 4 shows the confidence

32In contrast to the search model, we can solve the discrete choice model with a finite number of workers
and firms. There is no analytical solution for the matching probabilities, but we can find them using Monte
Carlo. In practice, this makes little quantitative difference for our results. For example, the correlation
between the continuous version of λ and its finite counterpart typically exceeds 0.999.
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intervals in the search model with match-specific productivity shocks. We see that intervals

are very tight across the entire range of parameter values we consider. The only exception is

the case when sorting between x and y characteristics in the model changes from positive to

negative (ξ is close to 2.8). In this case, all firms pay similar wages and hence the variance

of firm types is very small, σ2
µ/(σ

2
λ + σ2

µ) ≈ 10−3. In some bootstrap samples, the estimate

of the variance of firm types and the covariance are both negative and hence we record a

correlation of ρ̂b = −1.

Figure 5 shows the confidence intervals in the discrete choice model. The confidence

intervals are again very tight in most cases. The exception is the bottom left panel when the

difference in means mx −my exceeds 1.5. The reason is a combination of a smaller sample

size and selection of firms. Even though we start off simulations with I = 10, 000 workers

and J = 2, 000 firms, the types of workers and firms are so different that many firms end

up with zero or one worker, and many workers hold all their jobs at the same firm. To

satisfy the sample restrictions for our estimator, we drop these firms and workers from the

sample and as a result, we end up with a smaller sample. Moreover, firms which remain in

the sample tend to be those with high value of y, hence they are selected and do not reflect

properly the distribution of jobs.

C Alternative Identifying Assumptions and Estimator

One of our identifying assumptions states that, conditional on characteristics, the error in

the wage equation and the duration of the match are independent. Several structural models

of sorting would suggest that this assumption is violated since jobs which pay higher wages

tend to last longer. We can relax this assumption but only if we impose an additional

assumption that the average duration of the match t̄wx is independent of worker’s type λ(x),

and symmetrically, average duration of a job t̄fy is independent of firm’s type µ(y). This

means that higher-wage jobs can last longer but on average the expected duration of a

job does not depend on worker’s type. We construct a consistent estimator under these

assumptions and report results in Table 6. We note that the assumption that type and

average duration are independent cannot be tested.

We first introduce auxiliary assumptions and then propose an estimator. The assump-

tions are similar to those in Section 4.2 but are modified to reflect the changes discussed

above. It will be useful to introduce the following notation: let t̄wx and t̄w,2x denote the first

and second moment of match duration of a worker with characteristic x, and symmetrically,

t̄fy and t̄f,2y the first and second moment of match duration for a firm with characteristic y.

1′. For worker i with characteristic xi, w
w
i,m = w̄wxi + εwi,m and εwi,m is independently and
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Figure 4: Confidence intervals in the two-sided search model with match-specific shocks.
We plot the correlation ρ (blue line) and the bootstrapped confidence intervals (dashed red
lines). In each panel, we keep all but one parameter at their benchmark values, r = 1, δ = 10,
θ = 104, γ = 0.5, a = 0.5, ξ = 1, σ2

z = 0.1, z = 1, n = 500, and depict on the horizontal axis
which parameter we are changing. For the given set of parameter values, we create B = 100
artificial samples starting with I = 10, 000 workers and J = 2, 000 firms. We drop all workers
and firms with only one observation. In each sample we compute the estimation error as the
difference between the estimated correlation and the sample correlation, and use the 2.5%
and 97.5% quartile of the error distribution to construct the 5%-confidence interval.
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Figure 5: Confidence intervals in the discrete choice model. We plot the correlation ρ in an
infinite sample (blue line) and the bootstrapped confidence intervals. In each panel, we keep
all but one parameter at their benchmark values, a = 1, s = 1, mx = 0, my = 0, σx = 1, and
σy = 1, and depict on the horizontal axis which parameter we are changing. For the given set
of parameter values, we create B = 100 artificial samples starting with I = 10, 000 workers
and J = 2, 000 firms. We drop all workers and firms with only one observation. In each
sample we compute the estimation error as the difference between the estimated correlation
and the sample correlation, and use the 2.5% and 97.5% quartile of the error distribution to
construct the 5%-confidence interval.
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identically distributed across m = {1, . . . ,Mi} with a finite standard deviation σwxi . Ad-

ditionally, t̄wxi and t̄w,2xi
are finite and independent of w̄wxi . Moreover, twi,m is independent

of εwi,m′ and twi,m′ for all m 6= m′, but twi,m and εwi,m can be correlated.

2′. For firm j with characteristic yj, w
f
j,n = w̄fyj + εfj,n and εfj,n is independently and

identically distributed across n = {1, . . . , Nj} with a finite standard deviation σfyj . Ad-

ditionally, t̄fyj and t̄f,2yj are finite and independent of w̄fyj . Moreover, tfj,n is independent

of εfj,n′ and tfj,n′ for all n 6= n′, but tfj,n and εfj,n can be correlated.

3′. For any worker i with characteristic xi and all m ∈ {1, . . . ,Mi}, w̄wxi and εwi,m′ are

independent of εfji,m,n′ for all m′ 6= m and all n′ 6= ni,m. Moreover, for any firm j with

characteristic yj and all n ∈ {1, . . . , Nj}, w̄fyj is independent of εwij,n,m′ for all m′ 6= mj,n.

4′. For all i 6= i′, m, and m′, εwi,m and εwi′,m′ are independent, as are twi,m and twi′,m′ . For all

j 6= j′, n, and n′, εfj,n and εfj,n′ are independent, as are tfj,n and tfj,n′

The first set of assumptions has been modified to relax the assumption that εwi,m and

twi,m are independent, but we introduce a new assumption that first two moments of match

duration are independent of worker’s mean wage. The second set of assumptions introduces

a symmetric change on the firm’s side. The third and fourth set of assumptions remain

unchanged.

Note that we do not assume that εwi,m and εfj,n have mean zero. A convenient normalization

is to impose that Exi(εwi,mtwi,m) = Eyj(ε
f
j,nt

f
j,n) = 0, leaving the mean of the error terms to

pick up the correlation between duration and wages. With this normalization, a worker with

characteristic x has type λ(x) = w̄wx , and a firm with characteristic y has type µ(y) = w̄fy .

However, since errors in the wage equation εwi,m and εfj,n are not mean zero, λ̂i, µ̂j are no

longer unbiased estimators of λ(xi) and µ(yj). We therefore proceed differently, and define

the following estimators:

̂̄twi λi ≡ 1

Mi

Mi∑
m=1

twi,mw
w
i,m,

̂̄tw,2i λ2
i ≡

1

Mi(Mi − 1)

Mi∑
m=1

∑
m′ 6=m

(twi,mw
w
i,m)(twi,m′w

w
i,m′),

̂̄twi ≡ 1

Mi

Mi∑
m=1

twi,m,
̂̄tw,2i ≡ 1

Mi(Mi − 1)

Mi∑
m=1

∑
m′ 6=m

twi,mt
w
i,m′ , (40)

56



and similarly for firms,

̂̄
tfjµj ≡

1

Nj

Nj∑
n=1

tfj,nw
f
j,n,

̂̄tf,2j µ2
j ≡

1

Nj(Nj − 1)

Nj∑
n=1

∑
n′ 6=n

(tfj,nw
f
j,n)(tfj,n′w

f
j,n′),

̂̄
tfj ≡

1

Nj

Nj∑
n=1

tfj,n,
̂̄
tf,2j ≡

1

Nj(Nj − 1)

Nj∑
n=1

∑
n′ 6=n

tfj,nt
f
j,n′ . (41)

It is straightforward to show that under auxiliary assumptions 1′ and 2′, these are unbiased

estimators of the corresponding moments:

Exi ̂̄twi λi = t̄wxiw̄
w
xi

Exi ̂̄twi = t̄wxi

Exi
̂̄tw,2i λ2

i = t̄w,2xi

(
w̄wxi
)2 Exi

̂̄tw,2i = t̄w,2xi
.

A symmetric argument holds on the firm side.

We use cross-sectional averages of the above estimators to estimate the variance of worker

types, weighted again by workers’ total employment duration Twi :

σ̂2
λ

alt
=

∑τI
i=1 T

w
i
̂̄tw,2i λ2

i∑τI
i=1 T

w
i
̂̄tw,2i

−
(∑τI

i=1 T
w
i
̂̄twi λi∑τI

i=1 T
w
i
̂̄twi
)2

. (42)

The assumption that w̄wxi and t̄wxi are independent, as are t̄w,2xi
and

(
w̄wxi
)2

, is important here.

If it is violated, then σ̂2
λ

alt
is inconsistent due to omitted covariance terms cov(t̄wxi , w

w
xi

) and

cov(t̄w,2xi
, (wwxi)

2). Symmetrically, an estimator of the variance of firm types is

σ̂2
µ

alt
=

∑τJ
j=1 T

f
j
̂̄tf,2j µ2

j∑τJ
j=1 T

f
j
̂̄
tf,2j

−

∑τJ
j=1 T

f
j
̂̄
tfjµj∑τJ

j=1 T
f
j
̂̄
tfj

2

. (43)

Finally, an estimator of the product of the firm and worker type is

̂ti,mci,m ≡
∑

m′ 6=m t
w
i,m′w

w
i,m′

Mi − 1

∑
n′ 6=ni,m

tfji,m,n′w
f
ji,m,n′

Nji,m,n′ − 1
,

t̂i,m ≡
∑

m′ 6=m t
w
i,m′

Mi − 1

∑
n′ 6=ni,m

tfji,m,n′

Nji,m,n′ − 1
, (44)
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and its cross-sectional mean is the estimator of the covariance,

ĉalt ≡
∑τI

i=1

∑Mi

m=1 t
w
i,m

̂ti,mci,m∑τI
i=1

∑Mi

m=1 t
w
i,mt̂i,m

−
(∑τI

i=1 T
w
i
̂̄twi λi∑τI

i=1 T
w
i
̂̄twi
)∑τJ

j=1 T
f
j
̂̄
tfjµj∑τJ

j=1 T
f
j
̂̄
tfj

 . (45)

It follows that, under assumptions 1′–4′, the estimators σ̂2
λ

alt
, σ̂2

µ

alt
, ĉalt are consistent estima-

tors of σ2
λ, σ

2
µ, c as τ →∞. Thus,

ρ̂alt =
ĉalt√

σ̂2
λ

alt
σ̂2
µ

alt
. (46)

is a consistent estimator of ρ. The proof is analogous to the proof in Appendix B.1 and so

we omit it.

Table 6 shows results using alternative estimators. To compute these, we use formulas

(42), (43), (45) and (46) where we set τ = 1. We see that results are remarkably similarly to

those reported in Table 2 for all six columns; the maximum absolute difference between the

estimated correlations reported in these two tables is 0.066 for men and 0.053 for women.

D Impact of Top-Coding on Estimated Correlation

We study the impact of top-coding on our estimates by varying the share of top-coded wages

in the data set. We start from the wage cap in the data and then gradually decrease it by as

much as fifty percent. We then censor wages at the new wage cap. Reducing the wage cap

by fifty percent raises the share of top-coded observations from 4.7 percent to 46.5 percent

for men and from 2.1 to 21.5 percent for women.

In Figure 6 we show the results, plotting the estimated correlation ρ̂ for data sets with

different top-coding on the vertical axis and the share of top-coded observations on the

horizontal axis. For men, the estimated correlation varies very mildly, staying around 0.476

even when almost half of observations are top-coded. Top-coding matters more for women.

A tighter wage cap reduces the correlation from 0.423 to 0.385 when more 20 percent of

women have a top coded observation.

Our intuition is that the impact of top-coding on the estimated correlation depends on

the correlation in the group affected by top-coding relative to the correlation among the

rest. If the correlation is similar to the rest of the sample, then top-coding does not have

a significant impact. However, if the correlation in the top-coded group is stronger, the

correlation decreases after top-coding the data. It is useful to think about the components
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Estimated Correlation and Variances Using Alternative Estimator

(1) (2) (3) (4) (5) (6)
Men

correlation of matched types ρ̂ 0.680 0.583 0.407 0.434 0.400 0.415
covariance of matched types ĉ 0.063 0.037 0.019 0.021 0.023 0.025

variance of worker types σ̂2
λ 0.104 0.063 0.039 0.043 0.050 0.054

variance of job types σ̂2
µ 0.081 0.065 0.054 0.053 0.066 0.067

number of workers (thousands) 3,884 2,916 1,646 971 971 970
number of firms (thousands) 705 532 343 272 273 276
number of observations (thousands) 64,359 16,401 7,211 4,883 4,881 4,880
share of observations top-coded 0.112 0.074 0.047 0.020 0.009 0.012

Women
correlation of matched types ρ̂ 0.630 0.493 0.411 0.471 0.397 0.421
covariance of matched types ĉ 0.101 0.059 0.033 0.040 0.031 0.036

variance of worker types σ̂2
λ 0.190 0.131 0.070 0.077 0.067 0.077

variance of job types σ̂2
µ 0.136 0.111 0.091 0.092 0.091 0.094

number of workers (thousands) 3,340 2,532 1,494 937 798 797
number of firms (thousands) 758 530 345 303 248 250
number of observations (thousands) 52,128 12,451 5,582 4,435 3,294 3,291
share of observations top-coded 0.035 0.031 0.021 0.015 0.004 0.005

independence assumption I II III IV IV IV
observations included all all longest longest first last

Table 6: Estimates of correlations, covariances, and variances between matched workers’ and
firms’ types using AMDB 1986–2018, using alternative estimator. The data construction is
identical to Table 2. See the notes to that table for details.
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Figure 6: Impact of top-coding on the estimated correlation for men and women. Each dot
corresponds to a sample where we decrease the top-code by 0, 2, 4, . . . 50 percent every year
and truncate all wages at this new top-code. The sample of workers and firms is chosen
according to independence assumption III, so the numbers are comparable to column (3)
of Table 2. We plot the results as a function of the share of top-coded observations in the
sample. An observation is considered top-coded if at least one wage observation of the job
is top-coded.

of the correlation separately since top-coding affects the covariance as well as variances. As

stricter top-coding makes wages more similar, the variance of the worker and firm types

declines. The covariance can increase or decrease, as suggested earlier. We find that the

covariance (not plotted) decreases with top coding from an initial 0.027 to 0.010 for men

and from 0.031 to 0.018 for women when the top code is 50 percent of the top coded wage in

Austria. This suggests that the covariance is larger among high-wage workers. The decline in

covariance is almost exactly offset by the decline in the variances and the resulting correlation

for men is barely affected. For women, the decline in covariance is stronger and hence the

correlation drops modestly.

E Construction of Correlated Matching Networks

This section explains how to construct a data set that approximates a number of desired

targets: the correlation between matched worker and firm types ρ, the standard deviation

of worker and firm types σλ and σµ, the standard deviation of log wages σ, the number of

workers and firms I and J , the distribution of the number of matches per worker Mi and

per firm Nj, and the distribution of match durations.
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1. We set the number of workers equal to the targets I and J .

2. For each worker i ∈ {1, . . . , I} we draw Mi and twi,1, . . . t
w
i,Mi

, the number firms a worker

works for and durations of each of his matches directly from the data. For each

j ∈ {1, . . . , J}, we draw the number of employees Nj. We use the distribution of Nj

from the data. The model imposes the restriction that
∑

iMi =
∑

j Nj. We add

workers (if
∑

iMi <
∑

j Nj) or firms (if
∑

iMi >
∑

j Nj) until we achieve balance. We

end up with Ĩ ≥ I workers and J̃ ≥ J firms.

3. For each worker i, we choose a random λi from a normal distribution with mean 0 and

standard deviation σλ.

4. For each firm j, we choose a random µj from a normal distribution with mean 0 and

standard deviation σµ. We order the firms so that µ1 < µ2 < · · · < µJ .

5. For each worker i, we choose Mi values χi,m distributed normally with mean λiρσµ/σλ

and variance σ2
µ(1 − ρ2). We order these values across all i and m. The N1 lowest

values are assigned to firm 1. The next N2 values are assigned to firm 2, etc. This

gives us our matched pairs. We do not use the χi,m after this step.

6. If there are duplicate matches between i and j, we keep one at random. If this leaves

us with any workers or firms with a single match, we iteratively drop those as well.

7. We measure variances, covariance and hence the correlation ρb using the true types λ

and µ and the job durations tw according to formulae (16), (17), and (3).

8. We construct a log wage that is consistent with worker and firm types as well as the total

variance of wages. For worker i’s mth job, the log wage is wwi,m = aλi + bµji,m + vi,m,

where vi,m is an i.i.d. normal shock with mean 0 and standard deviation σv. The

constants a and b satisfy

a =
σλ − ρσµ
σλ(1− ρ2)

and b =
σµ − ρσλ
σµ(1− ρ2)

, (47)

and the variance of the log wage shock satisfies

σ2
v = σ2 − σ2

λ + σ2
µ − 2ρσλσµ

1− ρ2
, (48)

where σ2 is the total variance of wages.

9. We use wage and duration data to estimate ρ̂b using our estimator (25).

61



We claim that the data set constructed this way has the desired properties. That is, if we

had an infinitely large data set, then the worker’s type is indeed λ, the firm’s type is µ, and

the correlation between them is ρ.

To prove this, first notice that because distribution of χi,m conditional on λi is normal,

and the distribution of λ is normal, the unconditional distribution of χi,m is also normal.

The unconditional mean of χi,m is 0 by the law of iterated expectations. The expected

value of χ2
i,m conditional on λi is the conditional variance plus the square of the mean,

σ2
µ(1− ρ2) +

λ2i ρ
2σ2
µ

σ2
λ

. Thus the unconditional expectation of χ2
i,m is

σ2
µ(1− ρ2) + ρ2σ2

µ = σ2
µ.

In short, the (unconditional) distribution of χi,m is normal with mean 0 and variance σ2
µ.

Recall that distribution of µ is normal with mean 0 and variance σ2
µ, and therefore (in an

infinitely large data set) χi,m = µji,m , the type of the firm that employs i in her mth match.

We next show that the λ is indeed worker’s type, that is, the expected log wage of a

worker with λi is λi:

Eλi(wwi,m) = Eλi(aλi + bµji,m + vi,m) = aλi + Eλi(bµji,m)

= aλi + b
λiρσµ
σλ

=
σλ − ρσµ
σλ(1− ρ2)

λi +
σµ − ρσλ
σµ(1− ρ2)

λiρσµ
σλ

= λi.

A similar proof establishes that µ is indeed a firm type. First prove that the distribution of

λ conditional on µ is normal with mean µρσλ/σµ, and then the steps are symmetric to the

steps in the argument that λ is worker’s type.

Finally, we prove that the correlation in the matched pairs is indeed ρ. The expected

value of λµ conditional on λ is λ2ρσµ/σλ, and thus the unconditional expected value is ρσµσλ.

This is the covariance between λ and µ. It then follows that the correlation is ρ. Thus our

data set has all the desired properties.

F Confidence Intervals

We use a bootstrap procedure to construct standard errors. In each iteration of the bootstrap

b ∈ {1, . . . , B}, we follow the procedure in Appendix E to construct artificial data sets that

match key moments of the real-world data: the estimated correlation between matched

worker and firm types ρ̂, the estimated variance of worker and firm types σ̂2
λ and σ̂2

µ, as well

as the variance of log wages, the number of workers and firms, the distribution of the number

of matches per worker Mi and per firm Nj, and the distribution of match durations. We take
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these moments from our estimates, e.g. column (3) in Table 2, and we take the distributions

of the number of matches per firm and per worker and the distribution of match duration

from directly from the data.

In each data set, we calculate ρb and ρ̂b as in Appendix B.3. Again let eb = ρ̂b − ρb be

the estimation error in sample b. We find values e and ē such that

P (eb ≤ e) = 0.025 and P (eb > ē) = 0.025.

The 95 percent confidence interval for ρ is [ρ̂+ e, ρ̂+ ē], not necessarily centered around ρ̂.

Our procedure for constructing artificial data sets assumes that wages are homoscedastic

conditional on worker and firm types, but it is straightforward to relax this assumption.

This does not affect our confidence intervals. We have also constructed artificial data sets

where types are correlated with the number of observations. In particular, we assumed that

the worker types λi are distributed normally with a mean and variance that depends on Mi,

and that the firm types µj are distributed normally with a mean and variance that depends

on Nj. We constructed conditional distributions directly from the data by looking at the

relationship between λ̂i and Mi, and µ̂j and Nj. Our estimated confidence interval for ρ̂ is

robust to this change.

G Time-Varying Types

Consider the following model of time-varying types. Time is discrete and denoted by t ∈
{1, 2, . . .}. There are a continuum of workers i ∈ [0, 1] and a continuum of firms j ∈ [0, 1].

For simplicity, each firm hires one worker in each period. A worker i has a permanent

characteristic λ̄i, distributed in the population with mean zero and variance σ̄2
λ > 0. A firm

j has a permanent characteristic µ̄j, again distributed with mean zero and variance σ̄2
µ > 0.

Types are changing over time but follow an ergodic distribution with mean λ̄i for each

worker i. At time t, worker i has a type (expected wage) λi,t with cross-sectional mean zero

and cross-sectional variance σ2
λ > σ̄2

λ, the cross-sectional variance of λ̄i. Assume that the

covariance of λi,t and λ̄i is σ̄2
λ and the conditional mean of λi,t is linear in λ̄i and vice versa.

This implies that the expected value of λi,t given λ̄i is λ̄i, so λ̄i is a reasonable measure of

the time-averaged type. Conversely, the expected value of λ̄i given λi,t is (σ̄2
λ/σ

2
λ)λi,t.

Symmetrically, at time t firm j has a type (expected wage) µj,t which has an ergodic

distribution with mean µ̄j. In the cross section, the mean of µj,t is zero and the variance is

σ2
µ > σ̄2

µ. The covariance of µj,t and µ̄j is σ̄2
µ and the expected value of µj,t given µ̄j is µ̄j (so

µ̄j is the time-averaged type), while the expected value of µ̄j given µj,t is (σ̄2
µ/σ

2
µ)µj,t.
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Next, we assume that at any time t, the correlation between matched types λi,t and µj,t

is ρ. Moreover, the expected value of λi,t given µj,t is ρσλ
σµ
µj,t and the expected value of µj,t

given λi,t is ρσµ
σλ
λi,t, i.e. conditional expectations are again linear.

Finally, we assume that only the time-varying type determines who matches with whom.

This implies two moment conditions. First, the distribution of µj,t conditional on λi,t and

λ̄i does not depend on λ̄i. In particular, the difference between µj,t and its expected value

conditional on λi,t is orthogonal to λ̄i:

E
((

µj,t −
ρσµ
σλ

λi,t

)
λ̄i

)
= 0⇒ E(µj,tλ̄i) =

ρσµ
σλ

E(λi,tλ̄i) =
ρσµ
σλ

σ̄2
λ. (49)

The last equation uses the fact that the covariance between λi,t and λ̄i is σ̄2
λ.

Second, think of a set of workers with the same value of λi,t matched to a set of workers

with the same value of µj,t. These workers may differ in their permanent type, but we do

not allow sorting on that basis. Formally, we impose that the distribution of µ̄j conditional

on the time-varying type µj,t and the partner’s permanent type λ̄i does not depend on λ̄i. In

particular, the difference between µ̄j and its expected value conditional on µj,t is orthogonal

to λ̄i:

E
((

µ̄j −
σ̄2
µ

σ2
µ

µj,t

)
λ̄i

)
⇒ E(µ̄jλ̄i) =

σ̄2
µ

σ2
µ

E(µj,tλ̄i) =
ρσ̄2

λσ̄
2
µ

σλσµ
.

The last equation uses equation (49) to eliminate E(λi,tλ̄i).

The correlation between the time-averaged types is the covariance E(µ̄jλ̄i) divided by the

product of the standard deviations, ρσ̄λσ̄µ
σλσµ

. Since the standard deviations of the time-averaged

types are smaller than the standard deviations of the time-varying types, σ̄λσ̄µ < σλσµ, this

is smaller than ρ, proving the result.

H Methods for Estimation of AKM Correlation

H.1 OLS Estimation of the AKM Correlation

The OLS estimates of the AKM fixed effects solve the moment conditions

α̂i =

∑Mi

m=1(wwi,m − ψ̂ji,m)

Mi

and ψ̂j =

∑Nj
n=1(wfj,n − α̂ij,n)

Nj

.

We approximate the solution to these using a zig-zag algorithm (Guimaraes and Portugal,

2010) with a single normalization, say α̂1 = 0. Next we compute duration-weighted average
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fixed effects,

ˆ̄α ≡
∑

i T
w
i α̂i∑

i T
w
i

and ˆ̄ψ ≡
∑

j T
f
j ψ̂j∑

j T
f
j

.

We then use these to find duration-weighted variances and covariances:

σ̂2
α ≡

∑
i T

w
i (α̂i − ˆ̄α)2∑

i T
w
i

, σ̂2
ψ ≡

∑
j T

f
j (ψ̂j − ˆ̄ψ)2∑
j T

f
j

,

and ĉAKM ≡
∑

i

∑Mi

m=1 t
w
i,m(α̂i − ˆ̄α)(ψ̂j − ˆ̄ψ)∑

i T
w
i

.

Our OLS estimate of the duration-weighted AKM correlation is then ρ̂AKM = ĉAKM/
√
σ̂2
ασ̂

2
ψ.

H.2 Bias Correction Methods for the AKM Correlation

σ̂2
α and σ̂2

ψ are known to be biased up and ĉAKM is known to be biased down, creating a bias in

the correlation. We apply bias correction methods proposed by Andrews, Gill, Schank, and

Upward (2008) and Kline, Saggio, and Sølvsten (2019) and compute the AKM correlation

following Bonhomme, Lamadon, and Manresa (2019). We refer to these estimators as AGSU,

KSS and BLM, respectively.

Andrews, Gill, Schank, and Upward (2008) and Kline, Saggio, and Sølvsten (2019) both

derive a bias correction for the variance of the worker and firm fixed effects and their covari-

ance but under different assumptions. Andrews, Gill, Schank, and Upward (2008) assume

that errors in the wage equation are homoskedastic, while Kline, Saggio, and Sølvsten (2019)

allow for heteroscedasticity. Both methods then use the bias-corrected moments to compute

the AKM correlation. We note that the correlation computed this way is not unbiased, but

Andrews, Gill, Schank, and Upward (2008) use simulations to show that in practice this bias

is negligible.

Both Andrews, Gill, Schank, and Upward (2008) and Kline, Saggio, and Sølvsten (2019)

offer exact formulae for the bias correction. However, these formulae require calculating the

inverse of an (I+J)×(I+J) matrix where I is the number of workers and J is the number of

firms. When I + J is in the order of millions, as in our data sets, the exact formulae are not

tractable. Kline, Saggio, and Sølvsten (2019) show how to use the Johnson-Lindenstrauss

approximation to compute bias corrections in large data sets. The same approximation can

be applied to the AGSU methodology.

Bonhomme, Lamadon, and Manresa (2019) propose a two-step procedure to estimating

the correlation between the AKM fixed effects. In the first step, they use k-means clustering
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to classify firms into a given number of classes (ten in our case) based on their wage distri-

butions. We follow them in using ten firm classes. In the second step, they estimate their

model using maximum likelihood. Given the firm classification and a specified number of

worker types, five in our specification, they assume that the log wage paid by a given firm

type to a given worker type is log normal with unknown mean and standard deviation. They

then project this non-linear wage equation onto a linear function of worker and firm types

to obtain the AKM correlation.

In this section we estimate our correlation and the AKM correlation using different meth-

ods. Different estimators put different restrictions on the sample and so we create a sample

which satisfies all these restrictions at the same time. Methods proposed by Kline, Saggio,

and Sølvsten (2019) and Bonhomme, Lamadon, and Manresa (2019) are designed for short

panels. In their main applications, they have exactly two wage observations per worker.

AKM is identified on a connected set of firms and workers. Kline, Saggio, and Sølvsten

(2019) further require that this set remains connected after dropping any worker from the

set, and call it the leave-one-out connected set. Finally, recall that our estimator requires

that every worker and every firm in the sample has at least two observations.

Our starting point is the sample we used for the AKM estimation in Section 7. In this

sample, we keep only the first two observations for each worker to create a short panel, as in

Kline, Saggio, and Sølvsten (2019) and Bonhomme, Lamadon, and Manresa (2019). We find

the largest leave-one-out connected set and keep only workers and firms belonging to this

set, as in Kline, Saggio, and Sølvsten (2019). There are two observations per worker and at

least two observations per firm in the resulting sample, and hence it satisfies our restriction.

Using this sample, we first calculate ρ̂ using our approach and ρ̂AKM using OLS. Since

AGSU, KSS, and BLM do not weigh spells by duration, we also do not weigh spells when we

compute these two moments. That is, we set the duration of each match to 1, twi,m = tfj,n = 1

for each i = 1, . . . I, j = 1, . . . , J , m = 1, 2, and n = 1, . . . , Nj. We compute the AGSU

and KSS bias corrected correlations using the code created by Kline, Saggio, and Sølvsten

(2019) which is available on GitHub, version 2.15.33 We choose the Johnson-Lindenstrauss

approximation method and set the precision parameter to ε = 0.005. We also use their code

to find the largest leave-one-out connected set. We estimate BLM using the code provided

by the authors on GitHub, version from March 15, 2019.34

Table 5 in the body of the paper shows the results. Imposing additional restrictions

on the sample reduces the number of workers by less than 7% and firms by less 43%, with

the exception of column (1). This sample size reduction does not have an economically

33 https://github.com/rsaggio87/LeaveOutTwoWay
34 https://github.com/tlamadon/rblm
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significant impact on our estimates ρ̂. The AKM correlation ρ̂AKM decreases compared to

Table 4 and is now negative in each sample. The AGSU and KSS corrections are similar.

The bias-corrected correlations are both bigger than the OLS estimates of ρ̂AKM , but remain

close to zero. The BLM estimates of the AKM correlation yields a higher estimate of the

AKM correlation, averaging 0.296 for men and 0.289 for women for the mixture model. Still,

these are much smaller than the estimates of our correlation.

Finally, we reconstruct the time series figure using these methods. For each year, we

start from the sample we used in Section 6.5 but keep only the first two wage observations

for each worker. We then find the largest leave-one-out connected set where each worker

and firm has at least two observations. We then compute unweighed ρ̂ and the OLS, AGSU,

KSS, and BLM estimates of ρ̂AKM . Figure 7 depicts the results.

The level comparison is similar to that seen in Table 5: the OLS estimate of the AKM

correlation is the lowest, followed by AGSU and KSS. The BLM estimate is closer to ρ̂, which

is the highest. For both men and women, the time trend in the AGSU and KSS estimates

of ρ̂AKM are similar to the time-trend in ρ̂: increasing for men and decreasing for women.

The BLM estimates of the AKM correlation shows little time trend, especially for women,

although its level is close to ρ̂.
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pp. 291–312.

67



1985 1995 2005 2015

−0.20

0.00

0.20

0.40

0.60

year

co
rr
el
at
io
n

Men

ρ̂ ρ̂AKM , OLS ρ̂AKM , AGSU
ρ̂AKM , KSS ρ̂AKM , BLM

1985 1995 2005 2015

−0.20

0.00

0.20

0.40

0.60

year

co
rr
el
at
io
n

Women

Figure 7: Year-by-year estimates of the correlation ρ and the AKM correlation using different
methods, using AMDB 1986–2018 and the independence assumption III. The initial data
construction is identical to that in Figure 3 but we further restrict the sample in each
year to the largest leave-one-out connected set where every worker has exactly two distinct
employers, and every firm employs at least two workers. The estimates are not weighted by
duration.
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