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Abstract

We consider a sequential social-learning environment with rational agents and Gaus-
sian private signals. Agents observe some subset of their predecessors, and we focus on
the efficiency of private-signal aggregation on different observation networks. In equi-
librium, actions are a log-linear function of observations and admit a signal-counting
interpretation. The fraction of available signals incorporated into the group consensus
(“aggregative efficiency”) and hence the speed of social learning depend on the extent
of informational confounding in the network. Agents who do not observe all prede-
cessors optimally discount neighbors’ behavior to avoid over-counting early movers’
confounding actions. We show how to compute every agent’s accuracy on any network.
When agents move in generations and observe some members of the previous genera-
tion in a symmetric manner, we derive an exact expression for aggregative efficiency
as a function of the network parameters. Each generation aggregates fewer than two
extra signals in the long run, even when generations are arbitrarily large. When agents
observe all predecessors from the previous generation, no more than three signals are
aggregated per generation starting from the third generation, and larger generations
lead to a slower learning rate.
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1 Introduction

In many economic environments, information about an unknown state of the world is dis-
persed among a society of agents. As people take actions based on their private signals and
their observations of social neighbors, the process of social learning gradually aggregates
decentralized information into a group consensus.

How does the underlying social network influence the efficiency of this information ag-
gregation? Even if two networks both lead to the correct group consensus asymptotically,
agents might aggregate almost all previous signals in one network but make use of only a
small fraction of these signals in the other. Although people learn completely in the long run
in both networks, they learn at different rates and can experience different levels of welfare.

The economic theory literature contains a large body of work on Bayesian models of se-
quential social learning, where privately informed individuals move in turn and draw rational
inferences from their observations. These papers have largely focused on long-run learning
outcomes, and less is known about how the social network affects the rate of learning. As
Golub and Sadler (2016)’s recent survey points out:

“A significant gap in our knowledge concerns short-run dynamics and rates of
learning in these models. [...] The complexity of Bayesian updating in a network
makes this difficult, but even limited results would offer a valuable contribution
to the literature.”

The present paper investigates the impact of the social network on the efficiency of private-
signal aggregation, and hence on the rate of rational sequential learning. We work with the
canonical sequential social-learning model, but make two richness assumptions to address
some of the “complexity” that Golub and Sadler (2016) mention. We assume the state is
binary and agents have Gaussian private signals about the state. We also suppose that
agents have rich actions, so players exactly infer their neighbors’ beliefs through their be-
havior. This rich-signals, rich-actions world strips away some other obstructions to efficient
learning (considered by Harel, Mossel, Strack, and Tamuz (2020); Molavi, Tahbaz-Salehi,
and Jadbabaie (2018); Rosenberg and Vieille (2019) and others) and isolates the role of the
social network.

In general, the observation network creates informational confounds for social learning
even with rich action spaces. Suppose an agent only observes the actions of a pair of neighbors
who have both seen the action of an even earlier mover. From the agent’s perspective, this
unobserved early action confounds the informational content of her two neighbors’ behavior,
as the observation network makes it impossible to fully incorporate the neighbors’ private
information without over-weighting the early mover’s private information. Rational agents
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solve a signal-extraction problem to decide how to optimally combine their observations and
signals. Networks differ in the severity of such informational confounds, and thus Bayesian
social learning can aggregate information more or less efficiently.

We find that the unique equilibrium of the social-learning game has a log-linear form. We
characterize the equilibrium strategy profile that solves agents’ signal-extraction problems
and give a procedure to compute the finite-agent accuracy of social learning in any network.
The equilibrium action of each agent is distributed as if she sees some (possibly non-integer)
number of independent private signals. This signal-equivalence property characterizes action
distributions up to a single parameter measuring the accuracy of beliefs. It also lets us
define learning efficiency in any network in terms of the fraction of private signals that are
consolidated in equilibrium, a quantity we call “aggregative efficiency.” Networks that lead
to faster rates of learning are precisely those that impound larger fractions of available signals
into the social consensus.

We show that aggregative efficiency allows non-trivial welfare comparisons across network
structures. Networks with higher aggregative efficiency reach any utility threshold earlier
when private signals are not too precise, and they are ranked strictly higher by sufficiently
patient social-welfare functions. By contrast, all network structures satisfying a mild condi-
tion are equally optimal under the “infinitely patient” social-welfare function that evaluates
networks on their long-run learning outcome alone.

As the main application, we quantify the information loss due to confounding in a class
of generations networks. Agents are arranged into generations of size K and each agent
in generation t observes some subset of her generation t − 1 predecessors. This network
structure could correspond to actual generations in families, or successive cohorts in settings
like firms or universities. How well can agents learn when they only observe the actions
from the recent past, but not the choices from long ago or from their contemporaries? A
broad insight is that these networks cannot sustain much learning: even if generation sizes
are large, additional generations after the first contribute very little extra information.

We first study the speed of learning in “maximal generations networks” where each agent
in generation t observes the actions of all predecessors in generation t − 1. Society learns
completely in the long run for every K, but aggregative efficiency is worse with larger K.We
also show that no matter the size of the generations, social learning accumulates no more
than three signals per generation starting with the third generation, and no more than two
signals per generation asymptotically.

More generally, we consider any symmetric inter-generational observation structure —
all agents observe the same number of neighbors and all pairs of distinct agents in the same
generation share the same number of common neighbors. We derive a simple formula for the
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aggregative efficiency as a function of the network parameters. This expression quantifies
how adding more links to the network trades off the increased number of social observations
against the lower informational content of each observation, due to the extra confounding.
The result also implies that the same long-run bound of two signals aggregated per gener-
ations holds for all networks in this class and for all generation sizes. An arbitrarily small
fraction of available signals is included in the social consensus and agents learn arbitrarily
slowly relative to the efficient rate, even though there is a feasible (but non-equilibrium)
strategy profile that is eventually more accurate than aggregating K0 signals per genera-
tion for every K0 < K. We discuss an economic application of our results to the value of
mentorship in speeding up learning within organizations.

In the appendix, we study the effect of adding links on learning dynamics in arbitrary
networks (which need not have the generations structure). We show that society learns
completely in the long run if and only if late enough agents have arbitrarily long observational
paths. As a result, adding links to an observation network can only (weakly) improve its long-
run learning outcome. But, the same is not true for the rate of learning. In a special class of
networks without confounding, adding links speeds up learning and improves every agent’s
accuracy. In general, however, agents can become less accurate in networks with additional
links, even when those new links do not introduce new intransitivities into the network.
Extra observations can harm agents, even without creating any additional confounds.

1.1 Related Literature

We study rational learning in a sequential model (as first introduced by Banerjee (1992) and
Bikhchandani, Hirshleifer, and Welch (1992)) with network observations. Acemoglu, Dahleh,
Lobel, and Ozdaglar (2011) and Lobel and Sadler (2015) show that in sequential-learning
environments similar to our model, rational agents learn the true state asymptotically under
mild conditions on the network. We instead focus on finite-time learning accuracy and the
speed of learning in different networks.

Harel, Mossel, Strack, and Tamuz (2020) study a setting where a fixed group of agents
repeatedly receive signals and choose actions each period, learning from each others’ past
actions. Like in our generations network, they find that the rate of learning can be equivalent
to perfectly observing an arbitrarily small fraction of private signals. The mechanism behind
their result, “rational groupthink,” relies on coarse communication — agents have a finite
action space and may get trapped in a wrong consensus for an extended period of time,
because small changes in individual beliefs that do not lead to taking a different action are
unobservable to other group members. In fact, social learning would proceed at the efficient
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rate if actions were rich. We highlight a different mechanism for inefficient aggregation of
decentralized information: an observation network that generates informational confounds
can also lead to rates of learning far below the optimum even in a setting with rich actions.

The coarseness of the action space serves as the primary obstruction to the efficient rate
of social learning in several other papers. Rosenberg and Vieille (2019) consider rational
sequential learning with binary actions and relate properties of the private signal distribu-
tion to whether the speed of learning achieves a particular benchmark. Hann-Caruthers,
Martynov, and Tamuz (2018) compare the rates of learning from past binary actions versus
past signals. By contrast, we study network-based obstructions to achieving the efficient rate
of learning and characterize this rate asymptotically in some examples, by making stronger
assumptions on the informational environment.

Another group of papers point out that sequential social learning can be slow when
information about the state derives from myopic agents’ information-acquisition choices.
In settings where agents pay for experiments and observe the actions but not the signal
realizations of their predecessors, Burguet and Vives (2000) show that costly information
acquisition slows down learning relative to exogenous signals, while Mueller-Frank and Pai
(2016) and Lomys (2019) show that equilibrium learning is slower than the social planner’s
solution. Liang and Mu (2020) prove that slow learning obtains even in a setting where
myopic agents see predecessors’ signal realizations. We abstract away from this source of
slow learning by letting agents have exogenous signals, following most of the literature on
sequential social learning. This allows us to derive more substantial results and comparative
statics about how different networks influence the rate of learning.

To the best of our knowledge, Lobel, Acemoglu, Dahleh, and Ozdaglar (2009) is the
only other paper that considers how the rate of rational sequential learning varies with
the observation network. In a binary-actions model, they compare two specific network
structures where each agent has one neighbor: either their immediate predecessor, or a
random past agent drawn uniformly. We give an expression for the equilibrium accuracy of
every agent on arbitrary fixed networks — in particular we allow for general neighborhood
sizes. Informational confounds among social observations, the key obstacle to fast learning
that we identify, only appear in networks where agents observe two or more neighbors.

Several papers calculate speed of learning under naive updating heuristics instead of
rational learning, e.g., Ellison and Fudenberg (1993) and Molavi, Tahbaz-Salehi, and Jad-
babaie (2018). In the DeGroot updating model, Golub and Jackson (2012) show that speed
of learning is determined by a simple network statistic that also measures the amount of
homophily in the network.

In a different class of social-learning models where a finite set of agents repeatedly observe
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their neighbors on a fixed network and simultaneously choose actions every period, Gale and
Kariv (2003) and Goyal (2012) have compared learning dynamics on specific networks to
highlight a possible trade-off between the accuracy of the long-run group consensus and the
speed of convergence to said consensus. In the sequential social-learning model we study,
this trade-off does not appear since rational agents learn correctly in the long run on all
networks satisfying mild conditions (Proposition 3).

Board and Meyer-ter-Vehn (2020) also study the role of the social network in a continuous-
time product adoption model featuring random entry times and perfectly informative private
signals. They show that starting from a network where none of i’s direct neighbors share
common indirect neighbors, adding links among i’s neighbors always leads to slower adop-
tion for i. These additional links would not affect i’s learning in a sequential social-learning
model, since they do not generate what we call informational confound — that is, multiple
neighbors of i learning from a common source that i does not observe.

2 Model

There are two equally likely states of the world, ω ∈ {0, 1}. An infinite sequence of agents
indexed by i ∈ N+ move in order, each acting once. On her turn, agent i observes a private
signal si ∈ R and the actions of her neighbors, N(i) ⊆ {1, ...i− 1}. Agent i then chooses an
action ai ∈ [0, 1] to maximize the expectation of

ui(ai, ω) := −(ai − ω)2

given her belief about ω. So, she will choose the action equal to the probability she assigns
to the event {ω = 1}.

We consider a Gaussian information structure where private signals (si) are conditionally
i.i.d. given the state. We have si ∼ N (1, σ2) when ω = 1 and si ∼ N (−1, σ2) when ω = 0,
where N (a, b2) is the normal distribution with mean a and variance b2, and 0 < 1/σ2 < ∞
is the private signal precision.

Agents’ neighbors are defined by a deterministic network with adjacency matrix M. We
put Mi,j = 1 if j ∈ N(i) and Mi,j = 0 otherwise. The network M is common knowledge.

With the networkM fixed, let di := |N(i)| denote the number of i’s neighbors. A strategy
for agent i is a function Ai : [0, 1]di ×R→ [0, 1], where Ai(aj(1), ..., aj(di), si) specifies i’s play
after observing actions aj(1), ..., aj(di) from neighbors N(i) = {j(1), ..., j(di)} and when own
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private signal is si.1 Given a profile of strategies (Ai)i∈N+ , observation (aj(1), ..., aj(di), si) is
on-path if it has positive density under the profile. A perfect Bayesian equilibrium (equilib-
rium for short) is a strategy profile (A∗i )i∈N+ so that for all i and for all on-path observations
of i, A∗i maximizes the Bayesian expected utility given the (well-defined) posterior belief
about ω. We will see that in any equilibrium, si 7→ A∗i (aj(1), ..., aj(di), si) is a surjective func-
tion onto (0, 1) for all i and aj(1), ..., aj(di). So an observation is on-path in equilibrium if and
only if all observed actions are interior.

The sequential nature of the social-learning game implies there is a unique equilibrium.
Agent 1 who has no social observations must use the same strategy A∗1(s1) in all equilibria.
So agent 2 also only has one equilibrium strategy A∗2, as the behavior of agent 1 is unique
across all equilibria. Proceeding inductively, there is a unique equilibrium profile (A∗i )i∈N+ .

3 Equilibrium

3.1 Linearity of Equilibrium

We will find it convenient to work with the following log-transformations of variables: s̃i :=
ln
(
P[ω=1|si]
P[ω=0|si]

)
, ãi := ln

(
ai

1−ai

)
. We call s̃i the log-signal of i and ãi the log-action of i. These

changes are bijective, so it is without loss to use the log versions. Write Ã∗i (ãj(1), ..., ãj(di), s̃i)
for i’s equilibrium log-strategy: the (unique) equilibrium map between the log-actions of i’s
neighbors and i’s own log-signal to i’s log-action.

In this section, we show that every Ã∗i is a linear function of its arguments, with coeffi-
cients that only depend on the network M and not on the precision of private signals. We
also show that there exist constants (ri)i∈N+ with ri ≤ i so that in equilibrium, (ai, ω) is
jointly distributed as-if i chooses ai solely based on ri independent private signals.2 The con-
stants ri depend on the network and may be interpreted as the number of signals that social
learning on M aggregates by agent i. This gives a sufficient statistic to compare society’s
short-run accuracy on different networks.

In general, the behavior of i’s neighbors are correlated even after conditioning on the
state. Intuitively, i would like to put enough weight on the actions of her neighbors to
incorporate their private signals, but doing so would also over-count the signals of the earlier
agents observed by several members of N(i) but not by i. The social networkM thus creates
an informational confound that generally prevents i from fully extracting the signals of N(i).

1It is without loss for equilibrium analysis to focus on pure strategies, since agents are never indifferent
between two actions in equilibrium.

2The constants ri need not be integers, and we will formalize the meaning this claim for non-integer ri

in Definition 1.
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The equilibrium strategy of i represents the optimal aggregation of her neighbors’ actions.
The next result shows the optimal aggregation is linear and gives an explicit expression for
the coefficients. All proofs are in the Appendix.

Proposition 1. For each agent i with N(i) = {j(1), ..., j(di)}, there exist constants (βi,j(k))dik=1

so that i’s equilibrium log-strategy is given by

Ã∗i (ãj(1), ..., ãj(di), s̃i) = s̃i +
di∑
k=1

βi,j(k)ãj(k).

The vector of coefficients ~βi is given by

~βi = 2
(
E[(ãj(1), ..., ãj(di)) | ω = 1]×Cov[ãj(1), ..., ãj(di) | ω = 1]−1

)
.

These coefficients do not depend on the conditional variance of the private signals 1/σ2.

The interpretation of the inverse covariance matrix in ~βi is that i rationally discounts the
actions of two neighbors j(1) and j(2) if their actions are correlated in equilibrium.

For general private signal distributions, models of Bayesian updating in networks have
tractability issues, as Golub and Sadler (2016) point out. The key lemma to proving Propo-
sition 1 is the following property of the Gaussian information structure in our model, which
ensures that i’s observations have a jointly Gaussian distribution conditional on ω. This
permits us to study optimal inference in closed form.

Lemma 1. For each i, the log-signal s̃i has a Gaussian distribution conditional on ω, with
E[s̃i | ω = 0] = −2/σ2, E[s̃i | ω = 1] = 2/σ2, and Var[s̃i | ω = 0] = Var[s̃i | ω = 1] = 4/σ2.

Proposition 1 implies that we may find weights (wi,j)i≥j so that the realizations of equi-
librium log-actions are related to the realizations of log-signals by ãi = ∑i

j=1wi,j s̃j. Let
W be the matrix containing all such weights. Since none of the ~βi vectors depends on σ2,

neither does W.
Proposition 1 leads to an inductive procedure to compute the coefficients in the unique

equilibrium profile and the matrix W. We start with the first row of W, W1 = (1, 0, 0, ...).
Proceeding iteratively, once the first i − 1 rows of W have been constructed, we know the
weights that each of i’s neighbor’s log-actions ãj(k) puts on different log-signals, hence we
can compute E[(ãj(1), ..., ãj(di)) | ω = 1] and Cov[ãj(1), ..., ãj(di) | ω = 1].We can find ~βi using
Proposition 1, and hence construct the i-th row of W.

7



3.2 Measure of Accuracy

We would like to evaluate networks in terms of their short-run social-learning accuracy, so
as to compare the rates of Bayesian learning on different networks. Towards a measure
of accuracy, imagine that agent i’s only information about ω consists of n ∈ N+ indepen-
dent private signals. Then, the Bayesian i would play the log-action equal to the sum of
the n log-signals, so by Lemma 1 her behavior would follow the conditional distributions
ãi ∼ N

(
±n · 2

σ2 , n · 4
σ2

)
, with the positive and negative means in states ω = 1 and ω = 0

respectively. We quantify learning accuracy using distributions of this form that allow for
non-integer n.

Definition 1. Social learning aggregates r ∈ R+ signals by agent i if the equilibrium log-
action ãi has the conditional distributions N

(
±r · 2

σ2 , r · 4
σ2

)
in the two states. If this holds

for some r ∈ R+, then we say i’s behavior has a signal-counting interpretation.

When agents use a non-equilibrium strategy profile, in general the conditional distribu-
tions of ãi need not equal N

(
±r · 2

σ2 , r · 4
σ2

)
for any r, even when the profile is log-linear.

Indeed, if this profile results in i putting weights (wi,j)j≤i on log-signals (s̃j)j≤i, then ãi has
a signal-counting interpretation if and only if ∑i

j=1wi,j = ∑i
j=1w

2
i,j.

But as the next result shows, the equilibrium log-actions always admit a signal-counting
interpretation on any network.

Proposition 2. There exist (ri)i≥1 so that social learning aggregates ri signals by agent i.
These (ri)i≥1 depend on the network M, but not on private signal precision.

We can use (ri)i≥1 as a measure of how the network M affects the speed of rational
information aggregation in our social-learning setting. An alternative interpretation is that
ri/i ∈ [0, 1] measures the fraction of all available signals that get incorporated into the social
consensus by agent i, with some signals lost during social learning due to informational
confounding.

Definition 2. If limi→∞(ri/i) exists, it is called the aggregative efficiency of the network.

The aggregative efficiency measures the fraction of signals in the entire society that
individuals manage to aggregate under social learning. Networks that induce faster social
learning in the long run are equivalently those with higher levels of aggregative efficiency.

The signal-counting interpretation of behavior is closely identified with the rational learn-
ing rule. Even if all of i’s predecessors are rational, one can show that i’s log-action does
not admit a signal-counting interpretation under “generic” log-linear strategies. Conversely,
a rational agent’s behavior always admits a signal-counting interpretation even when her
predecessors use arbitrary non-rational log-linear strategies.
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Corollary 1. Fix arbitrary log-linear strategies for agents i < I, that is i’s log-action is
βi,0s̃i +∑di

k=1 βi,j(k)ãj(k) for any constants (βi,j(k))dik=0 where N(i) = {j(1), ..., j(di)}. If agent
I plays the best response against the strategies of i < I, then I’s behavior has a signal-counting
interpretation.

This result provides one way to extend the definitions of ri and aggregative efficiency
to analyze the rate of social learning under any log-linear heuristic. For a given heuristic,
consider a rational outside observer who has no private signal and who only sees the i-
th heuristic learner’s action. It follows from Corollary 1 that this observer’s log-action
has the conditional distributions N

(
±ri · 2

σ2 , ri · 4
σ2

)
for some ri. Here ri measures the

informativeness of the heuristic learner i’s behavior in the units of private signals and leads
to an upper-bound on i’s utility.

3.3 Long-Run Learning

Before turning to results about finite-time accuracy, we develop two equivalent necessary and
sufficient conditions for long-run learning in our setting. We say society learns completely in
the long run if (ai) converges to ω in probability. For a given networkM, write PL(i) ∈ N to
refer to the length of the longest path in M originating from i (this length is 0 if N(i) = ∅).

Proposition 3. The following are equivalent: (1) lim
i→∞

PL(i) =∞; (2) lim
i→∞

[
maxj∈N(i) j

]
=

∞; (3) society learns completely in the long run.

Condition (1) of Proposition 3 says society learns completely in the long run if and only
late enough agents have arbitrarily long observational paths. In fact, the proof of the result
shows ri ≥ PL(i) + 1 in all networks. Condition (2) is the analog of Acemoglu, Dahleh,
Lobel, and Ozdaglar (2011)’s expanding observations property for a deterministic network.
It says if we consider the most recent neighbor observed by each agent, then this sequence of
most recent neighbors tends to infinity. Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) show
that expanding observations is necessary and sufficient for long-run learning in a random-
networks model with rich signals and binary actions. With continuous actions, the same
result is a consequence of Proposition 2.

Proposition 3 tells us that whether society learns in the long run is not a useful criterion
for comparing different networks in this setting, as the conditions that guarantee long-run
learning are very mild. We will instead focus on comparing (ri)i≥1 and aggregative efficiency
across different networks. Section 5 shows that aggregative efficiency comparisons translate
into two kinds of welfare comparisons.
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4 Rate of Learning in Generations Networks

As an application of Section 3’s characterization results, we study the speed of rational
learning in generations networks. Agents are sequentially arranged into generations of size
K, with agents within each generation placed into positions 1 through K. Agents in the
first generation (i.e., i = 1, ..., K) have no neighbors. A collection of observation sets,
Ψk ⊆ {1, ..., K} for k = 1, ..., K define the network M for agents in later generations. The
agent in position k in generation t ≥ 2 observes agents in positions Ψk from generation t− 1
(and no agents from any other generation).That is, for i = (t − 1)K + k where t ≥ 2 and
1 ≤ k ≤ K, network M has N(i) = {(t− 2)K + ψ : ψ ∈ Ψk}. 3 Figure 1 shows an example
with K = 3.

1 2 3

4 5 6

7 8 9

Figure 1: A generations network with K = 3 agents per generation and the observation sets
Ψ1 = {1, 2}, Ψ2 = {2, 3}, and Ψ3 = {1, 3}.

4.1 Full Observations and the Role of Generation Size

We first focus on the maximal generations network where Ψk = {1, ..., K} for all k, so agents
in generation t for t ≥ 2 have all agents in generation t − 1 as their neighbors.4 The next
result relates the generation size K to the speed of signal aggregation.

3Stolarczyk, Bhardwaj, Bassler, Ma, and Josić (2017) study a related model where only the first generation
observes private signals. Their main results characterize when no information gets lost between generations,
i.e., social learning is completely efficient.

4This network is similar to the “multi-file” treatment in the laboratory experiment of Eyster, Rabin, and
Weizsacker (2018), except agents only observe the actions of the immediate past generation, not those of
all previous generations. In the multi-file treatment, unlike in the maximal generations network, Bayesian
agents can perfectly infer the private signals of all previous movers in equilibrium.
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Figure 2: Number of signals aggregated by social learning in maximal generations networks
with different numbers of agents per generation, K ∈ {2, 3, 4, 5}.

Proposition 4. In the maximal generations network with any K ≥ 1, society learns com-
pletely in the long run. We have limi→∞(ri/i) = (2K−1)

K2 , so aggregative efficiency is lower
with larger K, and social learning aggregates no more than two signals per generation asymp-
totically for any K. For any K and any agents i, i′ in generation t and t − 1 with t ≥ 3,
ri − ri′ ≤ 3.

Proposition 4 contains two parts. First, it shows that even though society learns com-
pletely with any K, the aggregative efficiency is lower with higher K. Indeed, if K = 1, then
every agent perfectly incorporates all past private signals and the speed of social learning
is the highest possible. Not only does this result about the aggregative efficiency imply an
asymptotic ranking on the speed of learning, but the same comparative statics about speed
also hold numerically for all agents i ≥ 16 when comparing among K ∈ {2, 3, 4, 5}, as shown
in Figure 2.

Second, Proposition 4 bounds the number of signals that social learning aggregates per
generation in the maximal generations network. The proof of Proposition 3 shows ri ≥
PL(i) + 1 in all networks and thus provides a lower bound of 1: each agent i in generation
t has PL(i) = t − 1. Proposition 4 shows this lower bound is not too far from the actual
learning rate. No matter how large K is, social learning aggregates fewer than two signals
per generation asymptotically. There is also a short-run version of this result: starting with
generation 3, fewer than three signals are aggregated per generation for any K. For K large,
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these bounds of two or three signals per generation constitute an arbitrarily small fraction
of available signals.

4.2 Partial Observations and Aggregative Efficiency

Proposition 4 shows that social learning aggregates fewer than two signals per generation
asymptotically on maximal generations networks with any K. We now provide an exact
expression for the aggregative efficiency in a broad class of generations networks with more
general observation sets. In particular, this result will imply the same two signals per
generation bound holds for all networks in this larger class.

We only impose one regularity assumption on the observation sets (Ψk)k: symmetry.

Definition 3. The observation sets are symmetric if all agents observe d ≥ 1 neighbors and
all pairs of agents in the same generation share c common neighbors, i.e. |N(i)| = d for all
i > K and |N(i1)∩N(i2)| = c whenever i1 = (t− 1)K + k1 and i2 = (t− 1)K + k2 for some
t ≥ 2 and 1 ≤ k1 < k2 ≤ K distinct.

To give a class of examples symmetric networks, fix any non-empty subset E ⊆ {1, ..., K},
and let (Ψk)k be such that for all 1 ≤ k ≤ K, Ψk = E. To interpret, E represents the
prominent positions in the society, and agents only observe predecessors in these prominent
positions from the past generation. The maximal generations network represents the special
case of E = {1, ..., K}. For another example, suppose K ≥ 2 and each agent observes a
different subset of K − 1 predecessors from the previous generation. Specifically, Ψk =
{1, ..., K}\{k − 1} for 2 ≤ k ≤ K, and Ψ1 = {1, ..., K − 1}. This network is symmetric with
d = K − 1 and c = K − 2. (The network in Figure 1 has this structure, with d = 2 and
c = 1.) More generally, for every c ≥ 1 and d = mc+ 1 where m is a positive integer, there
exists a symmetric network with parameters d, c and K = (d2 − 1)/c (Jørgensen, 2001).

Theorem 1. Suppose the observation sets (Ψk)k are symmetric, with every agent observing
d neighbors and every pair of agents in the same generation sharing c common neighbors.
Then5

lim
i→∞

(ri/i) =
(

1 + d2 − d
d2 − d+ c

)
1
K
.

Theorem 1 gives the exact aggregative efficiency for a broader class of generations net-
works and quantifies the information loss due to confounding. Provided c ≥ 1, the number
of signals aggregated per generation is strictly increasing in d and strictly decreasing in c,
with the interpretation that more observations speed up the rate of learning per generation

5With the convention 0/0 = 0.
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but more confounding slows it down, all else equal. Theorem 1 specializes to the expression
for aggregative efficiency in Proposition 4 by letting d = c = K.

In fact, the maximal generations network leads to the slowest per-generation rate of
learning among all symmetric (Ψk)k where each agent observes K neighbors. Theorem 1 also
implies that the aggregative efficiency of the network where agents observe all predecessors
from the past generation is identical to that of the network where each agent observes all
members of the previous generation except the agent in the position immediately before
theirs (i.e., society learns as quickly in the maximal generations network with K = 3 as
in the network from Figure 1). The extra social observations in the first network exactly
cancel out the reduced informational content of each observation, due to the more severe
informational confounds in equilibrium.

Even though the maximal generations network leads to the worst aggregative efficiency
conditional on the number of observations, Theorem 1 nevertheless provides a uniform
learning-rate bound of two signals per generation across all symmetric generations networks,
as d2−d

d2−d+c ≤ 1. To provide some intuition for this bound, imagine that instead of observing
their predecessors, all agents in generation t observe a common set of n independent signals,
in addition to their own private signal. We can show an agent in generation t + 1 who ob-
serves d of these generation t predecessors puts a weight of n+1

dn+1 on each of their log-actions,
and aggregates n(2d−1)+1

nd+1 more signals than they do. As n→∞, the number of extra signals
aggregated approaches 2d−1

d
≤ 2. In any generations network for late enough t, each gener-

ation t agent’s social observation constitutes a highly informative signal of the state (i.e.,
n→∞), but different agents can have different observations. This somewhat alleviates the
informational confounding for generation t + 1, but is limited by the fact that all agents’
actions are approaching perfect correlation when t → ∞. Even agents with very different
neighborhoods end up observing highly correlated information in the long run, so no network
in the class we consider aggregates more than two signals per generation asymptotically.

The uniformly slow speed of signal aggregation is an inefficiency generated by decentral-
ized social learning, not an inherent limitation of the generations structure. To illustrate
this point, we show there exist feasible (but non-equilibrium) log-linear strategies so that
agents are asymptotically more accurate than aggregatingK0 signals per generation for every
K0 < K.

We consider a slightly more restricted class of networks.

Definition 4. The observation sets (Ψk)k are strongly connected if for every 1 ≤ k1 ≤ k2 ≤
K, there exist t1, t2 so that t1K + k1 is connected to t2K + k2 in M.

This rules out the cases such as when the second agent in every generation is always
excluded from the indirect neighborhood of the first agent of every future generation, which
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would mean agents in the first position cannot aggregate more than K − 1 signals per
generation.

We introduce a new measure of accuracy. Agent n’s action is more accurate than r signals
if P[an > 0.5 | ω = 1] > P[Ar > 0.5 | ω = 1] and P[an < 0.5 | ω = 0] > P[Ar < 0.5 | ω = 0],
where the log transform of Ar has conditional distributions Ãr ∼ N (±r · 2

σ2 , r · 4
σ2 ) in the

two states. That is, n’s action is more likely to lean towards the correct state than the
action of someone who observes r independent signals. While this definition applies even
for non-equilibrium strategies that do not lead to ãn having the conditional distributions
N (±rn · 2

σ2 , rn · 4
σ2 ), if some such rn existed then the definition would be equivalent to rn > r.

Proposition 5. Suppose the observation sets (Ψk)k are strongly connected and symmetric
with c ≥ 1. There is a log-linear strategy profile such that, for every positive real number
K0 < K, there exists a corresponding T so that for all t ≥ T and 1 ≤ k ≤ K, the action of
agent (t− 1)K + k is more accurate than (t− 1)K0 signals.

AsK grows large, Theorem 1 and Proposition 5 combine to say that in strongly connected
and symmetric generations networks with c ≥ 1, individuals only manage to aggregate an
arbitrarily small fraction of the private signals that can be feasibly aggregated by a social
planner using a log-linear strategy. The idea behind the construction is that the social
planner can counteract the muddling of private signals when a group of individuals share
common social observations by asking each agent to put extra weight on her own private
signal in choosing her action.6

4.3 Application: Value of Mentorship

We provide an economic application of our results in terms of the value of mentors who share
their private signals with mentees in the next generation.

Many organizations with cohort structures, such as universities and firms, have mentor-
ship programs that pair newcomers with members of a previous cohort. Our results suggest
that one benefit of such programs is that mentors provide information that helps newcomers
interpret others’ actions, thus increasing the speed of learning within the organization.

Formally, we model a mentor as sharing her private signal with a mentee in the subse-
quent generation. Equivalently, the mentor could share a sufficient statistic describing her
best estimate of the state based on her social observations. If we begin with the maximal
generations network and add mentorship relationships in this way, learning is nearly efficient.

6If non-log-linear strategies are allowed, then the social planner can achieve close to perfect information
aggregation in every generation using exotic strategies that encode individuals’ signals far into the decimal
expansions of their actions, for example.
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Corollary 2. Suppose each agent observes the actions of all members of the previous gen-
eration and the private signal of any member of the previous generation. Then ri > i −K
for all i, and therefore the aggregative efficiency is 1.

If an agent observes the actions of the previous generation along with one of their private
signals, she can calculate the common confounding information and fully compensate for this
confound. In networks with large K, showing each agent just one extra signal (of someone
from the previous generation) increases aggregative efficiency from nearly 0 to 1.

In the context of the application, incumbents in the organization act based on private
information and shared organizational knowledge. A newcomer ignorant of the organization
knowledge cannot fully separate these two forces that shape others’ behavior. But by de-
scribing her perspective, a mentor can help a newcomer interpret everyone else’s behavior,
removing the informational confound and extracting the private information that underlie
these predecessors’ actions. A related force is described in management literature:

“Mentors can be powerful socializing agents as an individual adjusts to a new job
or organization. As protégés learn about their roles within the organization, men-
tors can help them correctly interpret their experiences within the organization’s
expectations and culture.” – Chao (2007)

Our result formalizes this intuition in a social-learning environment. Our stylized model of
mentorship abstracts away from many of its other benefits (e.g., the expertise of the mentor
in terms of being able to generate more precise signals than the mentee), and shows how the
“interpretive” value of mentorship improves learning within the organization.

If each mentor instead generates a new, independent private signal for their mentee, rather
than sharing the realization of their own private signal from the past, then social learning
does not speed up very much. Compared to a world without mentoring, this intervention
would at most double the number of signals aggregated by each agent. In organizations
with large cohorts, mentors who share their personal experience increase the rate of social
learning much more than mentors who generate new signals. This shows that Corollary
2 relies critically on the “interpretative” channel of mentoring: the key is not so much
that the mentor provides an extra signal about the state of the world, but that this signal
clarifies other people’s behavior and allows the mentee to extract more information from said
behavior.
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5 Aggregative Efficiency andWelfare Comparisons Across
Networks

Let vi := E[ui(a∗i , ω)] denote the expected equilibrium welfare of agent i, and recall that
−0.25 < vi < 0 for every i on any network and with any private signal precision 0 < 1/σ2 <

∞. If society learns completely on a network, then limi→∞ vi = 0. Given a threshold level
v ∈ (−0.25, 0) of utility, we might ask when does social learning first attain vi ≥ v. We say
social learning strongly attains v by agent I if I is the smallest integer such that vi ≥ v for
all i ≥ I. We say social learning weakly attains v by agent i if i is the earliest agent with
vi ≥ v (but the expected utilities of some later agents may fall below v).

The next result shows that when signals are not too precise, a network with a higher ag-
gregative efficiency strongly attains any such utility threshold strictly earlier than a network
with lower aggregative efficiency weakly attains the same threshold.

Proposition 6. Suppose in networksM andM ′, social learning aggregates (ri)i≥1 and (r′i)i≥1

signals by agent i, respectively, with limi→∞(ri/i) > limi→∞(r′i/i) > 0. For every utility
threshold v ∈ (−0.25, 0), there exists a bound τ > 0 on private signal precision so that
whenever 0 < 1/σ2 ≤ τ , social learning strongly attains v by agent I in M and weakly
attains v by agent i′ in M ′

, with I < i
′.

Now fix the signal precision and consider the expected welfare profiles (vi)i≥1 and (v′i)i≥1 in
two networksM andM ′ that both lead to complete social learning. A planner could compare
these two profiles through a social welfare function Λ with Λ(v) = ∑∞

i=1 λivi+λ∞(limi→∞ vi),
where λ1, λ2, ..., λ∞ ≥ 0 is a summable sequence of welfare weights that combine utilities
across agents. Here λ∞ is the welfare weight on “the end of time,” and comparing two
networks based on whether they lead to complete social learning corresponds to an “infinitely
patient” Λ∞ with the weights λi = 0 for all i ∈ N+ and λ∞ = 1. A social welfare function
ΛT is called T -patient if λi = 0 for all i < T and λi > 0 for all finite i ≥ T . That is,
the planner is blind to the welfare of the first T − 1 agents, but strictly cares about the
welfare of all later agents. One example is λi = δi−T for i ≥ T where the welfare of agents
later than T are discounted at rate δ ∈ (0, 1). For large T, we can interpret a T -patient
social welfare function as corresponding to a “very patient” but not “infinitely patient”
planner. The next result implies that all very patient planners will rankM andM ′ based on
their aggregative efficiency, even though the degenerate limiting case of the infinitely patient
planner is indifferent between them.

Proposition 7. Suppose in networksM andM ′, social learning aggregates (ri)i≥1 and (r′i)i≥1

signals by agent i, respectively, with limi→∞(ri/i) > limi→∞(r′i/i). There exists a T ∈ N+
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such that for all T ≥ T , any T -patient social welfare function ΛT is strictly higher on M

than on M ′
.

6 Conclusion

This paper presents a tractable model of sequential social learning that lets us study how
quickly rational agents learn on different observation networks. Generally, observation net-
works with intransitivities confound the informational content of neighbors’ behavior and
slow down learning. Rational agents face an optimal signal-extraction problem, whose so-
lution takes a log-linear form in our environment. For a class of symmetric networks where
agents move in generations, additional observations speed up learning but extra confounding
slows it down. Confounding severely limits the rate of signal aggregation — on any network
in this class, social learning aggregates no more than two signals per generation in the long
run, even for arbitrarily large generations.

We derive an analytic expression of the aggregative efficiency in all such networks and
quantify the information loss due to confounding. This allows us to make precise comparisons
about the rate of learning and welfare across different networks, where additional links may
trade off extra observations against the reduced informational content of each observation.

We have focused on how the network structure affects the speed of social learning and ab-
stracted away from many other sources of learning-rate inefficiency. These other sources may
realistically co-exist with the informational-confounding issues discussed here and complicate
the analysis. For instance, even though the complete network allows agents to exactly infer
every predecessor’s private signal, it could lead to worse informational free-riding incentives
in settings where agents must pay for the precision of their private signals (e.g., Ali (2018)),
compared to networks where agents have fewer observations. Studying the trade-offs and/or
interactions between network-based information confounds and other obstructions to fast
learning could lead to fruitful future work.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. We show that s̃i = 2
σ2 si. This is because

s̃i = ln
(
P[ω = 1|si]
P[ω = 0|si]

)
= ln

(
P[si|ω = 1]
P[si|ω = 0]

)
= ln

exp
(
−(si−1)2

2σ2

)
exp

(
−(si+1)2

2σ2

)


= −(s2
i − 2si + 1) + (s2

i + 2si + 1)
2σ2 = 2

σ2 si.

The result then follows from scaling the conditional distributions of si, (si | ω = 1) ∼
N (1, σ2) and (si | ω = 0) ∼ N (−1, σ2).

A.2 Proof of Proposition 1

Proof. Agent 1 does not observe any predecessors, so clearly Ã∗1(s̃1) = s̃1. Suppose by way of
induction that the equilibrium strategies of all agents j ≤ I − 1 are linear. Then each ãj for
j ≤ I − 1 is a linear combination of (s̃`)I`=1, which by Lemma 1 are conditionally Gaussian
with conditional means ±2/σ2 in states ω = 1 and ω = 0 and conditional variance 4/σ2

in each state. This implies (ãj(1), ..., ãj(nI)) have a conditional joint Gaussian distribution
with (ãj(1), ..., ãj(nI)) ∼ N (~µ,Σ) conditional on ω = 1, and t (ãj(1), ..., ãj(nI)) ∼ N (−~µ,Σ)
conditional on ω = 0, where ~µ = E[(ãj(1), ..., ãj(di))′ | ω = 1] and Σ = Cov[ãj(1), ..., ãj(di) |
ω = 1].

From the the multivariate Gaussian density, (writing (ãj(1), ..., ãj(nI))′ = ~a),

ln
(
P[ãj(1), ..., ãj(nI) | ω = 1]
P[ãj(1), ..., ãj(nI) | ω = 0]

)
= ln

(
exp(−1

2(~a− ~µ)′Σ−1(~a− ~µ))
exp(−1

2(~a+ ~µ)′Σ−1(~a+ ~µ))

)
= ~a′Σ−1~µ+ ~µ′Σ−1~a

which is 2 (~µ′Σ−1) · (ãj(1), ..., ãj(nI))′ because Σ is symmetric. This then shows agent I’s
equilibrium strategy must also be linear, completing the inductive step. This argument also
gives the explicit form of ~βI,·.

For the final statement, we first prove a lemma.
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Lemma A.1. Let Ŵ be the submatrix of W with rows N(i) and columns {1, ..., i− 1}.Then
~βi = ~1′(i−1) × Ŵ ′(ŴŴ ′)−1 and the i-th row of W is Wi =

(
(~β′i,· × Ŵ ), 1, 0, 0, ...

)
.

Proof. SupposeN(i) = {j(1), ..., j(di)} with j(1) < ... < j(di). By Lemma 1 and construction
of Ŵ , we have E[ãj(k) | ω = 1] = 2

σ2
∑i−1
`=1 Ŵk,`. So, E[(ãj(1), ..., ãj(di)) | ω = 1] = 2

σ2 (Ŵ ·
1(i−1))′ = 2

σ2 1′(i−1)Ŵ
′. Also, again by Lemma 1 and construction of Ŵ , we can calculate

that for 1 ≤ k1 ≤ k2 ≤ di, Cov[ãj(k1), ãj(k2) | ω = 1] = 4
σ2
∑i−1
`=1(Ŵk1,`Ŵk2,`), meaning

Cov[ãj(1), ..., ãj(di) | ω = 1] = 4
σ2 ŴŴ ′. It then follows from what we have shown above that

~βi,· = 2 · 2
σ2 1′(i−1)Ŵ

′ ×
[

4
σ2 ŴŴ ′

]−1
= ~1′(i−1) × Ŵ ′(ŴŴ ′)−1.

Since i puts weight 1 on s̃i and weights ~βi,· on (ãj(1), ..., ãj(di))′ = Ŵ × (s̃1, ..., s̃i−1)′, this
shows the first i− 1 elements in the row Wi must be ~β′i,· · Ŵ while the i-th element is 1.

To prove the final statement of Proposition 1, W1 = (1, 0, 0, ...) does not depend on σ2.

The same applies to ~β1,·. By way of induction, suppose rows Wi and vectors ~βi,· do not
depend on σ2 for any i ≤ I. If Ŵ is the submatrix of W with rows N(I + 1), then since
N(I + 1) ⊆ {1, ..., I}, by the inductive hypothesis Ŵ must be independent of σ2. Thus the
same independence also applies to ~βI+1,· since this vector only depends on Ŵ by the result
just derived. In turn, since WI+1 is only a function of ~β′I+1,· and Ŵ , and these terms are
independent of σ2 as argued before, same goes for WI+1, completing the inductive step.

A.3 Proof of Proposition 2

Proof. It suffices to show that E[ãi | ω = 1] = 1
2Var [ãi | ω = 1]. By Proposition 1, ãi =

s̃i+
∑di
k=1 βi,j(k)ãj(k). From Lemma 1, we have E[s̃i | ω = 1] = 1

2Var [s̃i | ω = 1]. Furthermore,
s̃i is independent from

∑di
k=1 βi,j(k)ãj(k), as the latter term only depends on s̃1, ..., s̃i−1. So we

need only show E[∑di
k=1 βi,j(k)ãj(k) | ω = 1] = 1

2Var
[∑di

k=1 βi,j(k)ãj(k) | ω = 1
]

Let ~µ = E[(ãj(1), ..., ãj(di))′ | ω = 1] and Σ = Cov[ãj(1), ..., ãj(di) | ω = 1]. Using the
expression for ~βi,· from Proposition 1, E

[∑di
k=1 βi,j(k)ãj(k) | ω = 1

]
= 2 (~µ′Σ−1) · ~µ. Also,

Var
 di∑
k=1

βi,j(k)ãj(k) | ω = 1
 =

(
2~µ′Σ−1

)
Σ
(
2~µ′Σ−1

)′
= 4~µ′Σ−1~µ

using the fact that Σ is a symmetric matrix. This is twice E
[∑di

k=1 βi,j(k)ãj(k) | ω = 1
]
as

desired.
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A.4 Proof of Corollary 1

Proof. When i < I use log-linear strategies, each ãi is some linear combination of (s̃`)`≤I−1.

Thus, (ãj)j∈N(I) are conditionally jointly Gaussian, (ãj)j∈N(I) | ω ∼ N (±~µ,Σ). This is
sufficient for the the proofs of Propositions 1 and 2 to go through, implying that the ãI
maximizing I’s expected utility using the information in (ãj)j∈N(I) is a log-linear strategy
and has a signal-counting interpretation.

A.5 Proof of Proposition 3

We first state and prove an auxiliary lemma.

Lemma A.2. For any 0 < ε < 0.5,

P[ai > 1− ε | ω = 1] = 1− Φ
 ln

(
1−ε
ε

)
− ri 2

σ2
√
ri

2
σ

 ,
where Φ is the standard Gaussian distribution function. This expression is increasing in ri

and approaches 1. Also,

P[ai < ε | ω = 0] = Φ
 ln

(
1−ε
ε

)
+ ri

2
σ2

√
ri

2
σ

 .
This expression is increasing in ri and approaches 1.

Proof. Note that ai > 1 − ε if and only if ãi > ln
(

1−ε
ε

)
> 0. Given that (ãi | ω = 1) ∼

N
(
ri · 2

σ2 , ri · 4
σ2

)
by Proposition 2, the expression for P[ai > 1 − ε | ω = 1] follows. To see

that it is increasing in ri, observe that d
dri

ln( 1−ε
ε )−ri 2

σ2√
ri

2
σ

has the same sign as

−2
σ2 (√ri

2
σ2 )− (ln

(1− ε
ε

)
− ri

2
σ2 )(1

2r
−0.5
i

2
σ

) = − 2
σ3
√
ri − ln

(1− ε
ε

)
r−0.5
i

1
σ
< 0.

Also, it is clear that limri→∞
ln( 1−ε

ε )−ri 2
σ2√

ri
2
σ

= −∞, hence limri→∞ P[ai > 1 − ε | ω = 1] = 1.
The results for P[ai < ε | ω = 0] follow from analogous arguments.

We now turn to the proof of Proposition 3.

Proof. By Proposition 2, there exist (ri)i≥1 so that social learning aggregates ri signals
by agent i. We first show that society learns completely in the long run if and only if
limi→∞ ri = ∞. Let ε′ > 0 be given and suppose limi→∞ ri = ∞. Putting ε = min(ε′ , 0.4),
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we get that P[|ai − ω| < ε | ω = 1] → 1 and P[|ai − ω| < ε | ω = 0] → 1 since the two
expressions in Lemma A.2 increase in ri and approach 1, hence also P[|ai − ω| < ε

′ ] → 1.
So society learns completely in the long run. Conversely, if ri < K < ∞ for infinitely
many i, then by Lemma A.2 we will get that P[|ai − ω| < 0.1 | ω = 1] are bounded by
1− Φ

(
ln(9)−K 2

σ2√
K 2
σ

)
for these i, hence society does not learn completely in the long run.

Next, we show that Conditions (1) and (2) in the proposition are both necessary and
sufficient conditions for limi→∞ ri =∞.

Condition (1): limi→∞ PL(i) =∞.
Necessity: Suppose limi→∞ ri = ∞. For ` ∈ N, let I(`) := {i : PL(i) = `}. We show

by induction that I(`) is finite for all ` ∈ N. For every i ∈ I(0), ri = 1, so limi→∞ ri = ∞
implies |I(0)| < ∞. Now suppose |I(`)| < ∞ for all ` ≤ L. If i ∈ I(L + 1), then every j
that can be reached along M from i must belong to I(`) for some ` ≤ L. The subnetwork
containing i is therefore a subset of ∪L`=0I(`), a finite set by the inductive hypothesis. Thus
ri ≤ 1+∑L

`=0 |I(`)| for all i ∈ I(L+1). So limi→∞ ri =∞ implies I(L+1) is finite, completing
the inductive step and proving I(`) is finite for all `. Hence limi→∞ PL(i) =∞.

Sufficiency: First note if j ∈ N(i), then ri ≥ rj + 1. This is because in equilibrium,
ãj ∼ N

(
±rj · 2

σ2 , rj · 4
σ2

)
conditional on the two states, and furthermore ãj is conditionally

independent of si. So, ãj + s̃i is a possibly play for i, which would have the conditional
distributions N

(
±(rj + 1) · 2

σ2 , (rj + 1) · 4
σ2

)
in the two states. If ri < rj + 1, then i would

have a profitable deviation by choosing ãi = ãj + s̃i instead, since it follows from Lemma
A.2 that a log-action that aggregates more signals leads to higher expected payoffs.

Condition (2): limi→∞
[
maxj∈N(i) j

]
=∞.

Necessity: If Condition (2) is violated, there exists some j̄ < ∞ so that there exist
infinitely many i’s with N(i) ⊆ {1, ..., j̄}. The subnetwork containing any such i is a subset
of {1, ..., j̄}, so ri ≤ j̄ + 1. We cannot have limi→∞ ri =∞.

Sufficiency: Construct an increasing sequence C1 ≤ C2 ≤ ... as follows. Condition
(2) implies there exists C1 so that maxj∈N(i) j ≥ 1 for all i ≥ C1. So, PL(i) ≥ 1 for all
i ≥ C1. Suppose C1 ≤ ... ≤ Cn are constructed with the property that PL(i) ≥ k for all
i ≥ Ck, k = 1, ..., n. Condition (2) implies there exists Cn+1 so that maxj∈N(i) j ≥ Cn for all
i ≥ Cn+1. But since all j ≥ Cn have PL(j) ≥ n by the inductive hypothesis, all i ≥ Cn+1

must have PL(i) ≥ n + 1, completing the inductive step. This shows limi→∞ PL(i) = ∞.
By the sufficiency of Condition (1) for limi→∞ ri =∞, we see that Condition (2) implies the
same.
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A.6 Proof of Theorem 1

Proof. If d = 1, then exactly one signal is aggregated per generation so ri/K → 1 as required.
Also, if c = 0, then we must have d = 1. From now on we assume d ≥ 2 and c ≥ 1.

Lemma A.3. For d ≥ 2, each generation t and each i 6= i′ in generation t, Var [ãi | ω = 1]
and Cov [ãi, ãi′ | ω = 1] depend only on t and not on the identities of i or i′, which we call
Vart and Covt, respectively. Similarly, for i in generation t and each j ∈ N(i), the weight
βi,j depends only on t, which we call βt.

Proof. The results hold by inductively applying the symmetry condition. Clearly they are
true for t = 2. Suppose they are true for all t ≤ T . For an agent i in generation t = T + 1,
the inductive hypothesis implies Var[ãj | ω = 1] is the same for all j ∈ N(i),E[ãj | ω = 1]
is the same for all j ∈ N(i) (by using Proposition 2, and all pairs j, j ′ ∈ N(i) with j 6= j

′

have the same conditional covariance. Thus by Proposition 1, i places the same weight, say
βt, on all neighbors.

So we have

Var[ãi | ω = 1] = 4
σ2 + β2

t (dVart−1 + (d2 − d)Covt−1)

for all i in generation t, and

Cov[ãi, ãi′ | ω = 1] = β2
t (cVart−1 + (d2 − c)Covt−1)

for all agents i 6= i
′ in generation t. This shows the claims for t = T + 1.

Taking the difference of the two expressions for Vart and Covt gives:

Vart −Covt = 4
σ2 + β2

t (d− c)(Vart−1 −Covt−1). (1)

We now require two auxiliary lemmas.

Lemma A.4. Consider the Markov chain on {1, ..., K} with state transition matrix p, with
pi,j = P[i→ j] = 1/d if j ∈ Ψi, 0 otherwise. Suppose (Ψk)k is symmetric with c ≥ 1. Then
p∞i := limt→∞(pt)i ∈ [0, 1]K exists, and it is the same for all 1 ≤ i ≤ K.

Proof. For existence of p∞i , consider the decomposition of the Markov chain into its commu-
nication classes, C1, ..., CL ⊆ {1, ..., K}. Without loss suppose the first L′ communication
classes are closed and the rest are not.

We show that each closed communication class is aperiodic when (Ψk)k is symmetric and
c, d ≥ 1. Let i ∈ C` for 1 ≤ ` ≤ L

′
. Let Ψi = {j1, ..., jd}. If i ∈ Ψi, then i’s periodicity
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is 1. Otherwise, Ψi ⊆ C` since C` is closed, so for every 1 ≤ h ≤ d there exists a cycle of
some length Qh starting at i, where the h-th such cycle is i → jh → ... → i. Since c ≥ 1, i
and j1 share a common neighbor, which must be jh∗ for some 1 ≤ h∗ ≤ d. We can therefore
construct a cycle of length Qh∗ + 1 starting at i, i→ j1 → jh∗ → ...→ i. Since cycle lengths
Qh∗ and Qh∗ + 1 are coprime, i’s periodicity is 1.

By standard results (see e.g., Billingsley (2013)) there exist ν∗` , 1 ≤ ` ≤ L
′
, so that

limt→∞(pt)i = ν∗` whenever i ∈ C`. If i /∈ ∪1≤`≤L′C`, then starting the process at i, almost
surely the process enters one of the closed communication classes eventually. This shows
limt→∞(pt)i exists and is equal to ∑L

′

`=1 q`ν
∗
` , where q` is the probability that the process

started at i enters C` before any other closed communication class.
To prove that p∞i is the same for all i, we inductively show that for all i 6= j, ‖ p∞i −

p∞j ‖max≤
(
d−c
d

)t
for all t ≥ 1. Since c ≥ 1, this would show that in fact p∞i = p∞j for all i, j.

For the base case of t = 1, enumerate Ψi = {n1, ..., nc, nc+1, ..., nd},Ψj = {n1, ..., nc, n
′
c+1, ..., n

′
d}

where all n1, ..., nd, n
′
c+1, ..., n

′
d ∈ {1, ..., K} are distinct. Then

p∞i = 1
d

(
c∑

k=1
p∞nk

)
+ 1
d

 d∑
k=c+1

p∞nk

 ,

p∞j = 1
d

(
c∑

k=1
p∞nk

)
+ 1
d

 d∑
k=c+1

p∞
n
′
k

 ,
so

‖ p∞i − p∞j ‖max ≤
1
d

d∑
k=c+1

‖ p∞nk − p
∞
n
′
k
‖max

≤ d− c
d
· 1

where the 1 comes from ‖ x− y ‖max≤ 1 for any two distributions x, y.
The inductive step just replaces the bound ‖ x−y ‖max≤ 1 with ‖ p∞nk−p

∞
n
′
k

‖max≤
(
d−c
d

)t−1

from the inductive hypothesis.

Lemma A.5. βt → 1/d.

Proof. By Proposition 2, we can compute that:

βt+1 = Vart
Vart + (d− 1)Covt

≥ 1
d
.

It is therefore sufficient to show that Vart/Covt → 1. The weight wi,i′ that an agent i
in generation t places on the private signal of an agent i′ in generation t− τ is equal to the
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product of ∏τ
j=1 βt+1−j and the number of paths from i to i′ in the network M.

We can compute the number of paths as follows. Consider a Markov chain with states
{1, . . . , K} and state transition probabilities P[k1 → k2] = 1/d if k2 ∈ Ψk1 , P[k1 → k2] = 0.
The number of paths from i in generation t to j in generation t− τ is equal to dτ times the
probability that the state is j after τ periods.

By Lemma A.4, there exists a stationary distribution π∗ ∈ RK
+ with ∑K

k=1 π
∗
k = 1 of the

Markov chain. Given ε > 0, we can choose τ0 such that the number of paths from i in
generation t to j = (τ − 1)K + k in generation τ is in [dτ (π∗k − ε), dτ (π∗k + ε)] for all t and all
τ ≥ τ0.

Fixing distinct agents i and i′ in generation t:

Vart = 4
σ2 + 4

σ2

t−1∑
τ=1

K∑
k=1

w2
i,(t−τ)K+k and Covt = 4

σ2

t−1∑
τ=1

K∑
k=1

wi,(t−τ)K+kwi′ ,(t−τ)K+k.

We want to show that

Vart/Covt =
1 +∑t−1

τ=1
∑K
k=1w

2
i,(t−τ)K+k∑t−1

τ=1
∑K
k=1wi,(t−τ)K+kwi′ ,(t−τ)K+k

→ 1.

Take ε > 0 smaller than π∗k for all k. For τ ≥ τ0, we have

wi,(t−τ)K+kwi′ ,(t−τ)K+k ≥ (dτ
τ∏
j=1

βt+1−j)2(π∗k − ε)2 and w2
i,(t−τ)K+k ≤ (dτ

τ∏
j=1

βt+1−j)2(π∗k + ε)2

The covariance grows at least linearly in t since each β ≥ 1/d, while the contribution from
periods t− τ0 + 1, . . . , t is bounded and therefore lower order. Thus,

lim sup
t→∞

Vart/Covt ≤ lim sup
t→∞

∑K
k=1

∑t−1
τ=τ0(dτ ∏τ

j=1 βt+1−j)2(π∗k + ε)2∑K
k=1

∑t−1
τ=τ0(dτ ∏τ

j=1 βt+1−j)2(π∗k − ε)2 ≤ max
1≤k≤K

(π∗k + ε)2

(π∗k − ε)2 .

Since ε is arbitrary, this completes the proof of the lemma.

We return to the proof of Theorem 1. Fix small ε > 0. By Lemma A.5, we can choose
T such that βt ≤ 1+ε

d
for all t ≥ T . Therefore, β2

t (d− c) ≤
(1+ε)2

d2 (d− c) for t ≥ T . Consider
the contraction map ϕ(x) = 4

σ2 + (1+ε)2

d2 (d− c)x. Iterating Equation (1) starting with t = T ,
we find that Vart −Covt ≤ ϕ(t−T )(VarT −CovT ), so this shows

lim sup
t→∞

(Vart −Covt) ≤
4
σ2 ·

d2

d2 − (1 + ε)2d+ (1 + ε)2c

where the RHS is the fixed point of ϕ. Since this holds for all small ε > 0,we get lim supt→∞(Vart−
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Covt) ≤ 4
σ2

d2

d2−d+c .
At the same time, βt ≥ 1

d
for all t. Consider the contraction map ϕ(x) = 4

σ2 + 1
d2 (d− c)x.

Iterating Equation (1) starting with t = 1, we find that Vart−Covt ≥ ϕ(t−1)(Var1−Cov1),
so this shows

lim inf
t→∞

(Vart −Covt) ≥
4
σ2 ·

d2

d2 − d+ c

where the RHS is the fixed point of ϕ. Combining with the result before, we get limt→∞(Vart−
Covt) = 4

σ2 · d2

d2−d+c .

Using Proposition 2, we have Vart+1 = 2(βt+1d(Vart/2) + 2/σ2), so

Vart+1 −Vart = (βt+1d− 1)Vart + 4
σ2

= ( dVart
Vart + (d− 1)Covt

− 1)Vart + 4
σ2

= ( dVart
dVart − (d− 1)(Vart −Covt)

− 1)Vart + 4
σ2

Using limt→∞(Vart −Covt) = 4
σ2 · d2

d2−d+c , we conclude

lim
t→∞

(Vart+1 −Vart) = lim
t→∞

 Vart
Vart − 4

σ2
d2−d
d2−d+c

− 1
Vart + 4

σ2 .

Since Vart →∞, we get limt→∞

(
Vart

Vart− 4
σ2

d2−d
d2−d+c

− 1
)

Vart = 4
σ2

d2−d
d2−d+c using Taylor expan-

sion. So limt→∞ (Vart+1 −Vart) = 4
σ2

(
d2−d
d2−d+c + 1

)
, implying ri =

(
1 + d2−d

d2−d+c

)
i
K

+ o(i).
So limi→∞(ri/i) =

(
1 + d2−d

d2−d+c

)
1
K
.

A.7 Proof of Proposition 4

Proof. Regardless ofK, for each agent i in generation t, PL(i) = t−1, so limi→∞ PL(i) =∞.
By Proposition 3, society learns completely in the long run. The expression for ri comes
from specializing Theorem 1 (whose proof does not depend on Proposition 4) to the case of
d = c = K. Observe (2K−1)

K2 ·K = (2K − 1)/K < 2 for any K ≥ 1.
To bound ri starting with the 3rd generation, we first establish a lemma that expresses

~βi,· in closed-form for an agent i in generation t+ 1. Let ãsum be the sum of the log-actions
played in generation t − 1 in equilibrium. By the linearity of equilibrium (Proposition 1),
there must exist some µsum, σ

2
sum > 0 so that the conditional distributions of ãsum in the two

states are N (±µsum, σ
2
sum).
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Lemma A.6. Each element in ~βi,· is
(
µ2

sum
σ2

sum
+ 1

σ2

)
/
(
K µ2

sum
σ2

sum
+ 1

σ2

)
.

Proof. An application of Proposition 1 shows each agent j in generation t aggregates ãsum

and own private signal s̃j according to ãj = 2 · µsum
σ2

sum
ãsum + s̃j.

Next, consider the problem of someone in generation t + 1 who observes the log-actions
ãj of the K agents j = (t− 1)K + k for 1 ≤ k ≤ K from generation t. By symmetry, i places
the same weight on these K log-actions in equilibrium. To find this weight, we calculate

E
[
K∑
k=1

ã(t−1)K+k | ω = 1
]

= 2Kµ2
sum
σ2

sum
+ 2K 1

σ2

Var
[
K∑
k=1

ã(t−1)K+k | ω = 1
]

= K ·
(

4 · µ
2
sum
σ2

sum
+ 4 · 1

σ2

)
+K · (K − 1) · 4 · µ

2
sum
σ2

sum

So by Proposition 1,

βi,j =
2 ·
(
2K µ2

sum
σ2

sum
+ 2K 1

σ2

)
K ·

(
4 · µ2

sum
σ2

sum
+ 4 · 1

σ2

)
+K · (K − 1) · 4 · µ2

sum
σ2

sum

=
µ2

sum
σ2

sum
+ 1

σ2

K µ2
sum
σ2

sum
+ 1

σ2

for every j = (t− 1)K + k for 1 ≤ k ≤ K, as desired.

Consider an agent i in generation t. From Proposition 2, there is some xold > 0 so that
ãi ∼ N (±xold, 2xold) conditional on the two states. In fact, from Proposition 1, xold =
2 · µ

2
sum
σ2

sum
+ 2

σ2 . For an agent in generation t + 1, using the same argument and applying the
formula for ~βi,· from Lemma A.6, we have

xnew =
2K(µ

2
sum
σ2

sum
+ 1

σ2 )2

K µ2
sum
σ2

sum
+ 1

σ2

+ 2
σ2 .

A hypothetical agent who observes ãsum (the sum of log-actions in generation t− 1) with
conditional distributions N (±µsum, σ

2
sum) and three independent private signals would play

a log-action with conditional distributions N (±y, 2y) where

y =
[
2µ

2
sum
σ2

sum
+ 6
σ2

]
+ 2
σ2 .
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We have

(y − xnew) · (Kµ2
sum
σ2

sum
+ 1
σ2 ) =

[
2µ

2
sum
σ2

sum
+ 6
σ2

]
·
[
K
µ2

sum
σ2

sum
+ 1
σ2

]
− 2K(µ

2
sum
σ2

sum
+ 1
σ2 )2

=(2 + 6K) · µ
2
sum
σ2

sum
· 1
σ2 + 6

σ4 − 4K · µ
2
sum
σ2

sum
· 1
σ2 − 2K 1

σ4

≥2K 1
σ2

(
µ2

sum
σ2

sum
− 1
σ2

)
.

We must have P[ãsum > 0 | ω = 1] ≥ P[s̃1 > 0 | ω = 1], a probability that just depends
on the ratio of the mean and standard deviation. So µsum

σsum
≥ 1

σ
, i.e. µ2

sum
σ2

sum
≥ 1

σ2 . Hence the
difference above is positive. This shows xnew − xold ≤ 3 · 2

σ2 .

A.8 Proof of Proposition 5

Proof. Consider a Markov process with states {1, ..., K} and state transition probabilities
P[k1 → k2] = 1/|Ψk1| if k2 ∈ Ψk1 , P[k1 → k2] = 0 otherwise. (Each Ψk is non-empty, since the
observation sets are strongly connected.) This process is irreducible by strong connectivity.
Also, since the observation sets are symmetric with c ≥ 1, the proof of Lemma A.4 implies
the process is aperiodic. By standard results (see e.g., Billingsley (2013)), there exists a
stationary distribution π∗ ∈ RK

++ with ∑K
k=1 π

∗
k = 1, such that limτ→∞(MΨ)τ~ek = π∗ for

every 1 ≤ k ≤ K, where ~ek ∈ RK is a vector with 1 in position k and 0 in other positions,
and MΨ is the stochastic matrix for the Markov process.

For t ≥ 1, 1 ≤ k ≤ K, abbreviate agent i = (t− 1)K + k as [t, k]. Consider the strategy
profile where agent [1, k] puts weight 1/π∗k on her log-signal, while agent [t, k] for t ≥ 2 puts
weight 1/|Ψk| on each observed log-action and weight 1/π∗k on her log-signal. The weight
that [t, k] puts on the log-signal of [t′ , k′ ] for t′ < t is (1/π∗

k′
) · ((MΨ)t−t

′
~ek)k′ . Noting this

quantity only depends on the difference t− t′ and on k, k′ , we abbreviate it as ct−t′ ,k,k′ and
observe that maxk,k′ |cτ,k,k′ − 1| → 0 as τ →∞, since limτ→∞(MΨ)τ~ek = π∗ for every k.

We show that under this strategy profile, ãi with i = [t, k] has the conditional distribu-
tions N (±((t− 1)K + o(i)) 2

σ2 , ((t− 1)K + o(i)) 4
σ2 ). Let ε > 0 be given and we show for all

large enough i = [t, k], |E[ãi | ω = 1]/(2/σ2) − ((t − 1)K)| < εi. This is because there is T
so that maxk,k′ |cτ,k,k′ − 1| < ε/4 for all τ ≥ T, which shows

|E[ãi | ω = 1]/(2/σ2)− ((t− 1)K)| ≤ (ε/4)(t− 1− T )K + max
k,k′ ,τ<T

|cτ,k,k′ − 1| · (TK) + 1/π∗k.

Because there are finitely many values of cτ,k,k′ with τ < T , the maximum maxk,k′ ,τ<T |cτ,k,k′−
1| is constant in i. Thus the bound is a constant term in i plus a term no larger than (ε/4) · i.
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By similar reasoning,

|Var[ãi | ω = 1]/(4/σ2)−((t−1)K)| ≤ (ε/2+ε2/16)(t−1−T )K+ max
k,k′ ,τ<T

|c2
τ,k,k′−1|·(TK)+(1/π∗k)2.

The bound is a constant term in i plus a term no larger than (2ε/3) · i for ε near 0.
Let K0 < K be given. If Ã has the conditional distributions N (±(t − 1)K0 · 2

σ2 , (t −
1)K0 · 4

σ2 ) in the two states, then P[A > 1
2 | ω = 1] = Φ(

√
(t− 1)K0/σ). Pick some

ε > 0 so that K−ε√
K+ε >

√
K0. There corresponds T so that for for i = [t, k] with t ≥ T and

1 ≤ k ≤ K, E[ãi | ω = 1] ≥ (t − 1)(K − ε) 2
σ2 and Var[ãi | ω = 1] ≤ (t − 1)(K + ε) 4

σ2 , so
P[ai > 1

2 | ω = 1] ≥ Φ(
√

(t− 1) · (K − ε)/(
√
K + εσ)), so i is more accurate than (t− 1)K0

signals.

A.9 Proof of Corollary 2

Proof. We claim that for any agent i in generation t, the action ãi is equal to the sum of s̃i
and s̃j for all agents j in generations 1, . . . , t− 1. The proof is by induction on t. The claim
holds for the first generation because all agents in the first generation choose ãi = s̃i.

Consider an agent in generation t. By the inductive hypothesis, she observes neighbors’
actions ãj = s̃j + ∑

j′≤(t−2)K s̃j′ for all j in generation t − 1 and observes sj for one such j.
Therefore, she can compute ∑j′≤(t−2)K s̃j′ and s̃j for all j in generation t − 1. Since these
signals are independent and she has access to no information about other signals from her
generation, she chooses

ãi = s̃i +
∑

j≤(t−1)K
s̃j.

By induction, we have ri = K(t− 1) + 1 > i−K for all agents in generation t.

A.10 Proof of Proposition 6

We first show that expected utility is increasing in ri.

Lemma A.7. Agent i’s expected utility is a strictly increasing function of ri.

Proof. Let ri > r
′
i ≥ 1. Consider an agent j who observes two conditionally indepen-

dent Gaussian signals of the state, sA and sB. When ω = 1, sA ∼ N (1, σ2/r
′
i) and

sB ∼ N (1, σ2/(ri − r
′
i)). When ω = 0, sA ∼ N (−1, σ2/r

′
i) and sB ∼ N (−1, σ2/(ri − r

′
i)).

If this agent chooses an action aj using only sA, then the conditional distributions of the
log-action are ãj ∼ N (±r′i · 2

σ2 , r
′
i · 4

σ2 ). If the agent instead chooses an action a∗j using both
sA and sB, then the conditional distributions of the log-action are ã∗j ∼ N (±ri · 2

σ2 , ri · 4
σ2 ), by
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the conditional independence of sA and sB. Action a∗j gives strictly higher expected utility
to j than action aj since it is based on an extra informative signal, and this implies i has
strictly higher expected utility when social learning aggregates ri instead of r′i signals.

We now prove Proposition 6.

Proof. From the hypotheses, there exist 0 < ρL < ρH and a finite I so that ri ≥ ρHi and
r
′
i ≤ ρLi for all i ≥ I. Without loss we can choose I > ρH

ρH−ρL
. Let R := maxi≤I r

′
i <∞.

We choose τ so that for any 0 < 1/σ2 ≤ τ , an agent who aggregates R signals has expected
utility strictly lower than v. To see this is possible, note that we can choose ε > 0 small enough
so that −(1− ε)(0.5− ε)2 < v. Find ζ > 0 so that if y ≤ ζ, then exp(y)

1+exp(y) ≤ 0.5 + ε. Suppose
some agent j’s log-action has the conditional distributions ãj ∼ N (±R · 2

σ2 , R · 4
σ2 ). Then

P [ãj > ζ | ω = 1] → 0 as 1/σ2 → 0, since ζ is σ2δ−2R
2Rσ standard deviations above the mean

when ω = 1, a quantity that tends to infinity as σ →∞. But whenever P [ãj > ζ | ω = 1] ≤ ε,
j’s conditional expected payoff when ω = 1 is bounded above by P[aj ≤ 0.5 + ε | ω =
1] · (−(0.5 − ε)2) ≤ −(1 − ε)(0.5 − ε)2, and symmetrically the same goes for j’s conditional
expected payoff when ω = 0.

For a given 1/σ2 ≤ τ, let i′′ be the least integer in the set {I + 1, I + 2, ...} such that ρLi
′′

signals lead to an expected utility of at least v. This i′′ exists since ρL > 0. Utility v is weakly
attained by no earlier than i

′′ in network M ′ . This is because M ′ cannot weakly attain v

before agent I + 1 by construction of τ, while agents i′ ≥ I + 1 and later aggregate no more
than ρLi

′ signals on network M ′ and their utilities are strictly increasing in the number of
signals aggregated by Lemma A.7. On the other hand,M strongly attains v by no later than
I = i

′′ − 1. This is because ρH(i′′ − 1) − ρLi
′′ = (ρH − ρL)i′′ − ρH ≥ (ρH − ρL)I − ρH > 0

by choice of I, so ri ≥ ρLi
′′ for all i ≥ i

′′ − 1. We again appeal to Lemma A.7 to deduce all
agents i′′ − 1 and later in M have expected utilities at least v.

A.11 Proof of Proposition 7

Proof. As in the proof of Proposition 6, there exists some I so that ri > r
′
i for all i ≥ I.

Now let T = I. Since welfare is a strictly increasing function in r by Lemma A.7, network
M leads to strictly higher welfare than M ′ for all agents i ≥ I.

B When Does Adding Links Improve Accuracy?

For two observation networksM andM•, writeM• ≥M ifM• can be generated fromM by
adding links, that is M•

j,k ≥Mj,k for all j, k. By Proposition 3, adding links leads to weakly
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better asymptotic learning outcomes — if the conditions for complete long-run learning are
satisfied forM, then the same holds forM•. But, when does adding links improve finite-time
accuracy?

We show that agent i is more accurate in networkM• than in networkM if both networks
are transitive at i: that is, whenever j ∈ N(i) and k ∈ N(j), we have k ∈ N(i). We also
highlight that intransitivities — that is, sequences of links in → in−1, in−1 → in−2, ..., i2 → i1

such that in 6→ i1 — form a key obstacle to obtaining higher accuracy on denser networks.
Accuracy may decrease for some agents if the new links create new intransitivities. Further,
accuracy may decrease even in the absence of new intransitivities, if the baseline network M
already contains intransitivities.

Proposition B.1. Suppose M• ≥M and both networks are transitive at i. Then ri is weakly
higher on M• than on M.

The proof of Proposition B.1 shows that for any network that is transitive at i, Wi,j = 1
for j ∈ N̄(i) ∪ {i} and Wi,j = 0 otherwise — that is, i perfectly incorporates the private
signals of all agents she indirectly observes. That is, ri is equal to the number of agents
indirectly observed by i. The denser network M• improves i’s accuracy because it expands
i’s indirect neighborhood.

We show by example that the same conclusion does not hold if M• generates new intran-
sitivities relative to M.

Example B.1. Consider the networks M,M•
2 , ...,M

•
n−1 in Figure B.1.

1

32 n-1

n

...

Figure B.1: The black links define a transitive network M with n agents. For k ∈ {2, ..., n−
1}, adding the k− 1 red links from agents 2, ..., k to agent 1 creates a new network M•

k that
is no longer transitive for agent n. For k ≥ 5, agent n has strictly lower accuracy on M•

than M.

In network M, agent n perfectly incorporates the private signals of neighbors 2, ..., n− 1
and social learning aggregates rn = n − 1 signals. In network M•

k for 2 ≤ k ≤ n − 1, the
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additional links expand n’s indirect neighborhood relative toM , but also create informational
confounds through intransitivities. In the new network, n cannot disentangle the private
signals of her neighbors from the unobserved signal s1 that serves as a common influence for
her neighbors’ behavior.

In the equilibrium on network M•
k , n puts weight 2

k
on the log-actions of 2, ..., k, thus

social learning aggregates r(k)
n = 4 · k−1

k
+ n− k signals by agent n. We have that r(2)

n > rn,
so the first red link helps and allows n to incorporate all private signals. But r(k)

n is strictly
decreasing in k. In particular, r(k)

n is strictly smaller than rn whenever k ≥ 5. Adding four
or more red links to the original network M strictly harms n’s welfare.

Suppose the baseline network M already contains some intransitivities. The next exam-
ples shows that adding links may decrease some agent’s accuracy even if the new links do
not create new intransitivities. In particular, links can harm agents without creating any
new confounds simply by changing the weights on existing confounds.

Example B.2. Consider the networks M and M• in Figure B.2.

1

23

45

6 7 8

9

Figure B.2: Adding the new link in red does not create new intransitivities, but nevertheless
decreases agent 9’s accuracy.

Intransitivities exist both in the old network M defined by the black links, and in the
new network M• that adds the one red link. Even though the newly added link does not
generate any additional intransitivities, we have r9 = 3681

533 ≈ 6.91 in the old network and
r9 = 1977

287 ≈ 6.89 in the new network, so socially learning aggregates fewer signals by agent
9 in M•.
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Agent 9 becomes less accurate in M• because agent 6’s new link causes her to change
her equilibrium play in a way that generates negative informational externality for agent 9.
In both M and M•, agent 6 cannot fully incorporate the private signals of agents 4 and 5
without over-counting the private signals of agents 1 and 2. In network M, agent 6 puts
weight 4

7 on the log-actions of agents 4 and 5, thus weight 8
7 on s̃1 and s̃2. In network M•,

agent 6 puts a higher weight 3
5 on the log-actions of agents 4 and 5, because she can now

subtract off part of the informational confound using her observation of agent 3. This change
in her equilibrium strategy means her over-weighting of s̃1 and s̃2 is exacerbated, with these
log-signals each receiving weight 6

5 . At the same time, s̃1 and s̃2 also confound agent 9’s
inference about the private signals of agents 7 and 8. Agent 9 finds it harder to incorporate
agent 6’s private signal in M•, because ã6 now contains a more severe over-counting of s̃1

and s̃2. The change in agent 6’s play on M• does not taken into account the welfare of agent
9, who has a different signal-extraction problem that involves worse confounding by s̃1 and
s̃2.

B.1 Proofs for Appendix B

B.1.1 Proof of Proposition B.1

Proof. We first show that on any network transitive at i, the equilibrium strategy of i is such
that ãi = ∑

j∈N̄(i)∪{i} s̃j. Clearly, ãi cannot put any weight on the log-signals of agents not
in N̄(i) ∪ {i}, for information outside of the sub-network containing i cannot reach i. Also,
if feasible, ∑j∈N̄(i)∪{i} s̃j is the optimal signal aggregation for i. For every j ∈ N̄(i), we have
N(j) ⊆ N(i). Since i knows j’s linear equilibrium strategy Ã∗j((ãk)k∈N(j), s̃j), i can identify
s̃j by calculating ãj −

∑
k∈N(j) βj,kãk. Therefore i can identify the sum ∑

j∈N̄(i) s̃j using her
neighbors’ actions.

Combined with Proposition 2, this shows ri on any network transitive at i is equal to
the cardinality of N̄(i) plus one. Agent i must have a larger indirect neighborhood on M• if
M• ≥M .

B.1.2 Proof of Example B.1

Proof. First, we show ~βn,j = 2
n−1 for j = 2, ..., n− 1 in the following network.
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1

32 n-1

n

...

We apply Lemma A.1 to calculate ~βn,·. The submatrix Ŵ of W with rows {2, ..., n− 1}
and columns {1, ..., n− 1} is

Ŵ =


1 1 0 0 . . .

1 0 1 0 . . .

1 0 0 1 . . .
... ... ... ... . . .

 .

So we get

(ŴŴ ′)−1 =


2 1 1 . . .

1 2 1 . . .

1 1 1 . . .
... ... ... . . .



−1

= In−2 −
1

n− 1Onesn−2

where In−2 is the (n − 2) × (n − 2) identity matrix and Onesn−2 is the (n − 2) × (n − 2)
matrix of all 1’s. So,

Ŵ ′(ŴŴ ′)−1 = Ŵ ′ − 1
n− 1Ŵ

′Onesn−2

=



1 1 1 . . .

1 0 0 . . .

0 1 0 . . .

0 0 1 . . .
... ... ... . . .


− 1
n− 1


n− 2 n− 2 n− 2 . . .

1 1 1 . . .

1 1 1 . . .
... ... ... . . .



where the dimension of each matrix is (n−1)×(n−2). The sum of each column is 2− 2n−4
n−1 =

2
n−1 , which is ~βn,j for j = 2, ..., n− 1.

In the equilibrium on network M•
k , agent n puts weight 1 on each of ãk+1, ..., ãn−1 and

weight 2/k on ã2, ..., ãk by comparison to the network above.
We have r(2)

n = n > rn, while d
dk

(4k−1
k

+ n − k) = 4
k2 − 1 < 0 for k > 2. This shows r(k)

n
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is strictly decreasing in k for k ≥ 2. Finally, rn − r(k)
n = k2 − 5k + 4 is a convex quadratic

function with zeroes at 1 and 4. So rn = r(4)
n while rn > r(k)

n for all k ≥ 5.

B.1.3 Proof of Example B.2

Proof. For the network where agent 6 does not observe agent 3, by Lemma A.1 we find

~β6,· = ~1′(5) ·



1 1
1 1
1 1
1 0
0 1


×


 1 1 1 1 0

1 1 1 0 1

 ·



1 1
1 1
1 1
1 0
0 1





−1

=
 4

7
4
7

 .

Then, letting

Ŵ :=


0 0 1 0 0 0 0 0
8
7

8
7

8
7

4
7

4
7 1 0 0

1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1

 ,

we get

~β9,· = ~1′(8)Ŵ
′(ŴŴ ′)−1 = ~1′(8)Ŵ

′ 1
533


853 −280 128 128
−280 245 −112 −112
128 −112 371 −162
128 −112 −162 371

 = 1
533


61
413
131
131

 ,

and hence we can calculate the 9th row of W and r9.

For the network where agent 6 observes agent 3, note that agent 6 can recover s̃1 + s̃2 + s̃4

and s̃1 + s̃2 + s̃5 using ã4 − ã3 and ã5 − ã3. Thus, the weights that agent 6 puts on ã4 and
ã5 are the same as in a network where agents 4 and 5 only observe agent 2. This can be
computed by Lemma A.1:

~1′(5) ·



1 1
1 1
1 1
1 0
0 1


×


 1 1 0 1 0

1 1 0 0 1

 ·



1 1
1 1
0 0
1 0
0 1





−1

=
 3

5
3
5

 ,
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which shows ~β6,· = (−1
5 ,

3
5 ,

3
5)′. Then, letting

Ŵ :=


0 0 1 0 0 0 0 0
6
5

6
5 1 3

5
3
5 1 0 0

1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1

 ,

we get

~β9,· = ~1′(8)Ŵ
′(ŴŴ ′)−1 = ~1′(8)Ŵ

′ 1
287


412 −125 60 60
−125 125 −60 −60

60 −60 201 −86
60 −60 −86 201

 = 1
287


72
215
69
69

 ,

and hence we can calculate the 9th row of W and r9.
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