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Abstract

Experimenters often collect baseline data to study heterogeneity. I propose
the first valid confidence intervals for the VCATE, the treatment effect variance
explained by observables. Conventional approaches yield incorrect coverage
when the VCATE is zero. As a result, practitioners could be prone to detect
heterogeneity even when none exists. The reason why coverage worsens at
the boundary is that all efficient estimators have a locally-degenerate influence
function and may not be asymptotically normal. I solve the problem for a
broad class of multistep estimators with a predictive first stage. My confidence
intervals account for higher-order terms in the limiting distribution and are fast
to compute. I also find new connections between the VCATE and the problem
of deciding whom to treat. The gains of targeting treatment are (sharply)
bounded by half the square root of the VCATE. Finally, I document excellent
performance in simulation and reanalyze an experiment from Malawi.
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1 Introduction

In recent years, there has been a rapid expansion of experiments to evaluate public
policy programs and corporate initiatives. There is also more evidence that the effec-
tiveness of a program can vary across individuals. For instance, Dizon-Ross (2019)
studies a population of low-income parents in Malawi with large misperceptions about
their children’s school performance. She finds that a simple intervention can bridge
these gaps and that the Conditional Average Treatment Effect (CATE) varies by
children’s initial scores. In practice, even though researchers collect baseline surveys
with many characteristics, the CATE is typically estimated via regressions with one
or two interactions, thus underutilizing the full set of variables. The promise of lever-
aging the vast and readily available baseline data has sparked more applications of
supervised machine learning (Crépon et al., 2021; Davis and Heller, 2020; Deryugina
et al., 2019). Methods such as LASSO, neural networks, random forests, or boosting
are data-driven and allow for more variables and flexibility.

In this paper, I focus on the unconditional variance of the CATE, the VCATE,
which measures the dispersion of treatment effects predicted by a set of baseline char-
acteristics. The VCATE has a clear interpretation, even if the CATE is nonlinear or
depends on many characteristics. Chernozhukov et al. (2022a) and Ding et al. (2019)
separately propose estimators with a misspecification robust interpretation, whereas
Levy et al. (2021) propose an efficient estimator. Despite these recent advances, there
are currently no valid confidence intervals for the VCATE. In fact, Levy et al. (2021)
study the performance of confidence intervals based on the efficient influence func-
tion, i.e., the conventional way. They find that coverage degrades near the boundary,
reaching a low of 32% in simulations. They speculate that poor coverage is due to the
degeneracy of the efficient influence function when the VCATE is zero. As a result,
conventional guarantees for y/n—asymptotic normality do not apply to this part of the
parameter space. Moreover, a VCATE close to zero is economically meaningful be-
cause it could reflect null effects, low effect heterogeneity, or irrelevant covariates. For
such situations, which are common in practice, conventional approaches to inference
could be misleading.

This paper provides fresh insights regarding the VCATE and proposes a solu-
tion for inference in experiments. I propose (a) novel ways to interpret the VCATE

for decision-making by deriving sharp bounds on the population gains of person-



alized treatment assignment, (b) novel estimators of the VCATE that are both
misspecification-robust and efficient, combining the best features of previous ap-
proaches, and (c) novel confidence intervals that are shape-adaptive and fast to com-
pute.

I break down why conventional confidence intervals have incorrect size. I show
that the boundary inference problem can manifest even when the CATE is linear and
univariate. I solve the problem for the linear case by proposing adaptive confidence
intervals that meet the high-level conditions outlined in Andrews et al. (2020). I
then show that these can be readily extended to the class of nonlinear models in
Chernozhukov et al. (2022a) that combine regression adjustments and a machine
learning first stage. In addition to providing new confidence intervals, my paper has
novel implications for estimation by showing that only a subset of these multi-step
estimators is efficient. Adaptive inference and regression adjustments work well for
various predictive models under weak assumptions.! In the fully nonparametric case, I
use a conservative procedure with valid coverage over multiple sample splits.? I derive
the local power curve for the associated tests of homogeneity and their relationship
to the tests in Crump et al. (2008) and Ding et al. (2019). I also propose confidence
intervals for settings with cluster dependence.

I document excellent root mean square error (RMSE) performance and coverage
in simulations using LASSO, even in high dimensions. I benchmark my multi-step
approach against a two-step debiased machine learning estimator. As predicted by
theory, all approaches are asymptotically normal, efficient, and have good coverage
in highly heterogeneous designs. However, when the VCATE is zero or close to zero,
coverage of two-step alternatives can be as low as 45%. By contrast, my adaptive
intervals produce coverage at the intended 95% level and better RMSE at all regions
of the parameter space. I study the robustness of the multi-step approach in both

the theory and simulations. I consider situations where the predictive component is

"While I specialize my results to the VCATE, my inference approach relies on more general
principles: I use knowledge of the limiting distribution function, conditional on the cross-fitted
estimates. Correct coverage follows from verifying high-level assumptions that can be satisfied by
a wide array of machine learning method used in the first step. In principle, my approach could
extend to other non-standard inference problems.

2This adjustment is in the spirit of (Chernozhukov et al., 2022a), who propose robust t-tests
assuming a conditionally normal distribution. Their results are not directly applicable here due to
the boundary inference problem. However, I apply the principles behind their “median-parameter”
confidence intervals to my adaptive intervals.



misspecified or slow to converge. I also discuss issues related to uniform vs. pointwise
coverage.

[ apply my approach to data from Dizon-Ross (2019), an information experiment
with low-income parents in Malawi who had at least two school-age children. The
intervention redesigned the way in which parents received information about their
children’s school performance. The endline survey measured parental beliefs about
student grades and asked parents to allocate tickets to a scholarship between their chil-
dren. Dizon-Ross (2019) presented graphs with a non-parametric CATE by baseline
test scores, which had an approximately linear shape, and separately tested for signif-
icance using a regression with an interaction. I use LASSO to compute the VCATE
for the two outcomes (parental beliefs and lottery allocations) by different charac-
teristics of students, parents, and households. To make the results interpretable, I
focus on the standard deviation of the CATE, i.e., VVCATE, and normalize it by
the standard deviation of the outcome in the control group.

My approach allows us to quantify the magnitude of effect heterogeneity. I find
that the treatment effect heterogeneity explained by test scores is equivalent to 40%
of the standard deviation (SD) of the beliefs of the control group, and 16% of the
SD of the control group lottery allocation. I also find that the effect heterogeneity
collectively explained by other student variables (grade, age, gender, attendance, and
educational expenditures) is comparable to 11% of the SD of beliefs in the control
group. The VCATE of beliefs by student variables is significant at the 5% level, but
the VCATE of lottery outcomes by student variables is not. The combined VCATE
associated with student scores and 12 other key characteristics has a similar value
to the VCATE with only scores. Despite being conservative, the intervals for the
VCATE are short in length in this empirical example. Using my new welfare bounds
(—|ATE| + VVCATE + ATE?)/2, 1 predict that targeted interventions using the
baseline covariates have a maximum added benefit of 7.9% SD and 7.4% SD (standard

deviations of the outcome for the control group) on beliefs and lottery allocations,

respectively.

Researchers should focus on the VCATE because it is a model-free quantity with
good properties: it is well-defined even if the CATE is continuous or discrete, and it
weakly increases when researchers add more covariates to their analysis. Researchers
can test for homogeneity by evaluating whether confidence intervals for the VCATE

include zero. In addition to testing, by quantifying the VCATE, researchers can



compare the magnitude of heterogeneity relative to a benchmark, such as the variance

at baseline, the VCATE for different covariates, or experiments in other sites.

1.1 Contribution

My first main contribution is to show that the VCATE provides a bound for the
welfare gains of policy targeting. A policymaker might decide to use the information
from the CATE to design personalized treatment recommendations (Athey and Wa-
ger, 2021; Kitagawa and Tetenov, 2018; Manski, 2004; Mbakop and Tabord-Meehan,
2021). Omne can measure utilitarian welfare by computing the expected outcome un-
der different policies. Such policies can be further constrained to a class that respects
budget limits, incentive compatibility, or fairness considerations (Sun, 2021; Viviano
and Bradic, 2023). I show that the difference in mean outcomes between a targeted
policy and a non-targeted policy using only the average treatment effect (ATE), is
bounded by vV CATE/2. For instance, under homogeneity (VCATE = 0), there are
no gains from targeting. I show that this bound holds in the population regardless of
the choice of policy class and the underlying distribution. Furthermore, the bound is
sharp in the sense that it holds exactly for at least one policy and distribution.

The proposed bound on utilitarian welfare communicates information to practi-
tioners about whether a targeting exercise is even worth pursuing, without needing
to solve the targeting problem itself. The VCATE can be a supplemental quan-
tity reported in regression analyses, or a benchmark for analysts choosing the opti-
mal policy. If the VCATE is very low, practitioners may consider expanding the
set of covariates in the analysis. To derive the bound, I use a constructive ap-
proach to solve the most adversarial distribution. I also prove a more general bound
(—|ATE| + VVCATE + ATE?)/2, and show that the distribution that leads to a

maximum welfare gain is one where the CATE has binary support and mean zero.

The gains from targeting easily diminish if the value of the ATE is relatively higher
than the VCATE.

My second contribution is related to efficient estimation and robust inference.
New theory is required here because of a unique feature of the VCATE: the efficient
influence function is degenerate when the CATE is homogeneous (Levy et al., 2021).
Classical results by Newey (1990) show that any regular, efficient estimator can be

1

decomposed as + 3" | ¢; + Ry, where n is the sample size, {p;}_, are a set of i.i.d.



mean-zero influence functions, and R, is a residual with higher-order terms that are
0,(n~Y/2).3  Conventional approaches assume that V() > 0 and in this case, the
estimation error converges at /n to N(0,V(y;)) by the CLT. However, when the
VCATE is zero, V(p;) = 0 as well. Hence, the limiting distribution is dominated
by the higher terms in R,,, which may not be asymptotically normal. Therefore,
while y/n—estimation is still possible, t-tests that plug in an estimate of V() may
have incorrect coverage. By contrast, other common quantities such as the average
treatment effect (ATE) or the local average treatment effect (LATE) do not have this
problem because they satisfy V(p;) > 0 uniformly (Chernozhukov et al., 2018).

I start by analyzing a simple two step estimator, assuming that the CATE is
linear in covariates and can be estimated from a regression. I show that the limiting
distribution of the VCATE estimator can be written as a linear combination of a Chi-
square that converges at n-rate and a normal distribution that converges at \/n—rate.
The weights are determined by the value of the VCATE, which means that the shape
of the distribution changes depending on the region of the parameter space. At the
boundary, it behaves like a rescaled chi-square, is O,(n™!), and confidence intervals
with normal critical values will have incorrect coverage. For values of the VCATE
bounded away from zero, the distribution is asymptotically normal as in the classical
results.

In the linear case, I construct adaptive confidence intervals that account for the
higher terms of the distribution. I apply the framework of Andrews et al. (2020) to
show that this produces uniform, exact coverage when the linear model is correctly
specified.* The intervals are fast to compute because the expressions are all analytic.
When there is a single covariate, I also show that a homogeneity test that evaluates
whether zero is contained in the confidence intervals is algebraically identical to (i)
a test of whether the interaction in the regression model is equal to zero, and (ii)
the single-covariate homogeneity test of Crump et al. (2008). The test is also asymp-
totically equivalent to Ding et al. (2019). However, these other tests only apply to

series estimators and are not nested with mine in the multivariate and non-parametric

3Many standard estimators can achieve this property, e.g., the “debiased machine learning”
estimator (Chernozhukov et al., 2018) or the targeted maximum likelihood estimator in Levy et al.
(2021).

4This type of strategy has proven effective to deal with other non-standard problems where the
shape of the limiting distribution depends on an unknown parameter, such as the AR coefficient
in a time series, the effect parameter under weak instruments, or the quasi-likelihood ratio test for
nonlinear regression (Andrews et al., 2020).



cases.

I extend my results to the class of nonlinear models proposed by Chernozhukov
et al. (2022a). Chernozhukov et al. (2022a) showed that in experiments with known
assignment probabilities, their models produce a meaningful pseudo-VCATE even
if the functional form is misspecified. The pseudo-VCATE is non-negative, weakly
lower than the VCATE, and converges to the true value under mild conditions on the
estimated CATE.?> Chernozhukov et al. (2022a) argue that the pseudo-VCATE might
be of independent interest as a measure of model fit.® They describe a three-step
estimator with a machine learning/prediction first-stage, a regression second-stage,
and a sample-variance third stage. Related multi-step estimators have also been
considered in other work (Guo et al., 2021).

To the best of my knowledge, there are no existing asymptotic results for the
multi-step VCATE estimator proposed in Chernozhukov et al. (2022a). I fill in that
gap by proving two sets of results. First, [ show that all the estimators in their class
converge to the true VCATE at least at y/n-rate, are 0,(n~'/2) at the boundary (as
in the simple linear model), and have the convenient property that they are always
non-negative. This builds on the asymptotic expansion for the linear case I intro-
duced above. Second, I prove that only a subset of the Chernozhukov et al. (2022a)
estimators are efficient, i.e. converge at y/n— to an average of i.i.d. efficient influence
functions. The key ingredient is to prove a novel finite-sample equivalence result.
I find that the first order conditions of the regression step and the bias-correction
component of the VCATE influence function are in fact identical, given a particular
decomposition of the nuisance functions. The asymptotic results follow from fairly
standard assumptions on convergence rates (Belloni et al., 2017; Chernozhukov et al.,
2018). To get the limiting distribution, the only meaningful extra assumption is that
the estimated CATE has bounded kurtosis (thin tails).

I show that extending the adaptive confidence intervals (CIs) to multi-step estima-
tors is straightforward. The procedure randomly splits the data into subsets or folds
and estimates the nuisance functions and the VCATE on different folds. To compute
the confidence intervals for a particular fold, the researcher can treat the second-stage

regression as if the variables were given, and then construct the Cls as in the simple

5This monotonicity property means that in experiments the pseudo-VCATE will not falsely detect
heterogeneity, even if the machine learning stage is misspecified.
6 Ding et al. (2019) also define a similar pseudo-VCATE based on randomization inference.



case. | construct median confidence intervals (Cls) to aggregate information across
multiple folds. I show that the single fold procedure produces uniform, exact coverage
for the pseudo-VCATE and point-wise, exact coverage for the VCATE for all points
in the parameter space, at a nominal level 1 — . The multifold CIs have pointwise
conservative coverage.

Furthermore, the probability that the true VCATE is below the confidence interval
bounds is uniformly bounded by « in large samples. This result applies to the single
and multifold CIs and does not require that the first-stage estimates to converge.
Instead it relies on the fact that in experiments the pseudo-VCATE is weakly lower
than the true VCATE. Tests for homogeneity (whether zero is contained in the CI)
belong to this broader class of tests. Having uniform size control for this class of
one-sided tests means that my tests of homogeneity are robust.

This paper is also related to a growing literature on debiased-machine learning
(Belloni et al., 2017, 2014; Chernozhukov et al., 2018, 2022b,c), semiparametric effi-
ciency (Newey, 1990), uniform inference for non-standard problems (Andrews et al.,
2020), and tests of treatment effect homogeneity (Bitler et al., 2017; Crump et al.,
2008; Ding et al., 2019; Heckman et al., 1997). My approach combines results from
these literatures by addressing a boundary inference problem with a machine learning
stage, and applying techniques of uniform inference. A related literature also focuses
on confidence intervals around point-predictions of the CATE (Athey et al., 2019;
Semenova and Chernozhukov, 2021), rather than overall measures of dispersion.

Section 2 provides key definitions, introduces the welfare bound, and presents a
version of the adaptive confidence intervals for the univariate regression case. Section
3 frames the inference problem in a more general setting, and extends the adaptive
confidence intervals for VCATE estimation with a machine learning first stage. Sec-
tion 4 presents the large sample theory. Section 6 introduces the simulations. Section

7 applies my approach to an empirical example from Malawi. Section 8 concludes.

2 Overview of framework

Consider a program evaluation setting in which an individual is assigned to either a
treatment (D = 1) or a control group (D = 0). The outcome of interest Y depends
on the treatment status. I denote the potential outcome under treatment and control

status as Y] and Yj, respectively, and the treatment effect as Y; — Y. The conditional



average treatment effect (CATE) given covariates X is defined as
m(x) =EY1 - Y | X =z,

and the average treatment effect (ATE) is defined as 7,, := E[Y; — Y5]. This paper
proposes an estimator of the variance of the CATE (VCATE) defined as

The variance V. measures the dispersion of treatment effects that can be attributed to
observable characteristics X. The value of V. depends on the choice of covariates. To
understand how different covariates might impact the VCATE, let V! = V(E[Y; - Y} |
X']) be the VCATE for a different set of covariates X'.

Lemma 1. If X is X'-measurable, then V. < V! < V(Y] —Yp).

Lemma 1 shows that the VCATE has the following monotonicity property: if the
researcher adds more covariates to the analysis, or breaks down an existing covariate
into more categories, then the VCATE will be weakly larger.

The propensity score, p(z), is defined as follows
p(r) =P(D=1]| X =x). (1)

I restrict attention to experimental settings where p(x) is known. The CATE can be

identified under further assumptions.

Assumption 1. (i) Stable unit treatment value assumption (SUTVA), Y =YD +
(1—-D)Yy (ii) Strong overlap, there is a constant 6 € (0,1/2) such that P(6 < p(X) <
1—6) =1, (i) Selection on observables, Y1,Yy I D | X.

Assumption 1.(i) formalizes the idea that the researcher can only observe either Y}
or Yp, but not both, for any particular individual. Assumption (ii) holds in randomized
controlled trials with treatment probabilities bounded away from {0, 1}. Assumption
(iii) states that an individual’s treatment probability depends on X but not their
potential outcomes. Let p4(x) be the conditional mean of Y given X and a fixed
value of d € {0, 1},

pa(x) :=E[Y | D =d,X = x| (2)



Under Assumption 1, E[Y; | X = z] = pq(z), and hence 7(z) = py(x) — po(z). This
means that the VCATE is identified, with V; = V(p1(X) — po(X)).

2.1 The VCATE and policy targeting

Practitioners can use estimates of 7(X) to decide whom to treat in future interven-
tions (Athey and Wager, 2021; Kitagawa and Tetenov, 2018; Manski, 2004). Program
managers can target the treatment recipients based on their initial covariates. How-
ever, whether targeting can substantially improve average outcomes depends on the
dispersion of 7(x). I show that a simple function of the VCATE bounds the marginal
gains of targeting.

Let v denote the joint distribution of (X, Y7,Yy), X a set containing the support
of X, 7,(z) :== E,[Y1 — Y, | X = 2] the CATE given v. A function which maps z to a
probability of treatment 7(z) is known as a statistical allocation rule (Manski, 2004).
Furthermore, I denote the set of all possible allocation rules by II, which contains
all functions {m : X — [0,1]}. The set II includes many well-known assignment
rules. For instance, it includes the “non-targeted” policy which assigns everyone
to treatment if E,[Y;] > E,[Yp] and to the control group otherwise. Moreover,
the average outcome under rule 7 is E,[7(X)Y; + (1 — m(X))Ys], and the marginal
benefit compared to the non-targeted policy is defined as U, (7) := E,[r(X)Y] + (1 —
7(X))Ys] — max{E, [Y],E, [Yo]}.

Theorem 1. Let I' denote the set of distributions such that V,[1,(X)] = V. For all
vyel and mell,

Welfare Welfare )
U, (m) < Optimal - No < 5\/‘/7.
Targeting Targeting
| |

supren By [1(X)Yi+(1-m(X))Yo]  max{E,[Y1],E,[Yo]}

The bound is sharp in the sense that U, () = %\/VT for at least one y € I' and m e II.

Theorem 2. Consider distributions where B, [7,(X)] = T4 and V,[1,(X)] = V;, then
Uy(m) < & (=|7a0| + A/Vr + 72,). This bound is sharp over this subset of distributions.

10



Theorem 1 shows the VCATE provides a welfare bound over the superset of policy
classes. Furthermore, any type of restrictions on II such as budget constraints or
incentive compatibility will achieve utilitarian welfare gains that are weakly lower
than %\/VT The bound in Theorem 1 and the generalization in Theorem 2 provide
simple bounds on the prospective gains of targeting, without needing to solve for
m(x). The bounds are most informative when V, is low. For instance, when V, = 0
there is no heterogeneity explained by the observables X and therefore there are no
gains from targeting. However, the fact that the bound is sharp does not imply that
it is always achievable for every v € I', and when V; is high it is still be necessary to
optimize 7(x) to determine whether personalized offers are worthwhile.

Finding the bound in Theorem 1 relies on two important insights. On one
hand, the optimal policy in II treats an individual if and only if 7(z) > 0 (Kita-
gawa and Tetenov, 2018). Substituting the optimal policy, sup,; U, () is equal to
E,[max{r,(X), 0}] —max{E,[7,(X)],0}. On the other hand, to avoid optimizing over
all v € I', I break the problem down into equivalence classes based on the moments
of the negative, zero, and positive components of the CATE. I use a constructive
approach to derive the most “adversarial” distribution. The upper bound is achieved
when the CATE has a binary support, which is partly why the bounds in Theorems

1 and 2 have simple closed forms.

Corollary 1. Let k1, k2 € R and define a new outcome Y = ki + k2Y . The mazimum
welfare gain for the transformed outcome is %(—|TM| + A/ Vi + (Taw)?).

Corollary 1 shows that the welfare bound is invariant to location shifts in the
outcome, and grows linearly with scale shifts. This result implies that transformations
that change the sign, e.g. k9 = —1, do not change the value of the welfare bound.
Consequently, the bound applies regardless of whether the welfare objective is to

increase a desirable outcome or to decrease an undesirable outcome.

2.2 Inference using regressions

Consider a simple situation where X is real valued, the treatment D is experimentally
assigned with constant probability, and U is a mean zero error term. The researcher

runs the following linear regression,
Y=c1+aX+060D+ /DX +U, E[1,X,D,DX)U]=0. (3)

11



Define the auxiliary quantities 7*(x) := f; + fex and V, := V(X). The pseudo-
VCATE is defined as
V= V(r*(X)) = 55V, (4)

T

The pseudo-VCATE has a close connection to the VCATE. If the linear model de-
scribes the conditional mean f4(z), then 7*(x) = 7(z) and V; = V*. For instance, in
models with binary X, the functional form is correctly specified and V, = V*. For
now, assume that the pseudo-VCATE and the VCATE coincide. In later sections, I
analyze models that allow for misspecification.

Consider a sequence of distributions {v,}?_; € I'°. T index the regression coeffi-
cients and model variances by the sample size n as fa, and (Vi,, V), respectively.
Define an estimator of the VCATE as XA/m = B%nf/m, where Bgn is the least squares
estimator of (3) and V,, := LY X2-[LY Xi]2. With some algebraic manipulations

the estimation error can be decomposed as

VTH_‘/T’N, = ‘/zn(62n_52n)2 (‘/zn> +252nvxn(ﬁ2n_ﬁ2n) <@> +5§nvxn (‘/zn - 1) :

To derive the asymptotic distribution we can apply the central limit theorem to indi-
vidual components. For generality, I state joint convergence to a normal distribution
as an assumption. This holds as a special case if the observations are i.i.d. and key
moments of the distribution are bounded, but may also hold under other forms of

dependence. I defer stating primitive conditions until Section 3.2.

Assumption 2. There is a sequence of distributions {v,}>_, € T'* with associated
quantities {Vyn, V., Bon, 0}y, which are related by the identity V.*, = (3, Vin, and
satisfy the following properties: (i) Vo, >0, (ii) V% is contained in a bounded subset
of [0,00), and (iii) S, is a positive definite matriz with eigenvalues bounded way from
zero and a finite upper bound. There is a sequence of estimators {f/m, \A/m, Bgn, @n}le
which satisfy Vi, = Bgnf/m Asn — o0, Q, —P Q,, and

0 2/n <mv(52n _152”)> =4 Zy ~ N(0, Irx2). (6)
Tan _

The normalization by V,,, is intended to align with the decomposition in (5). The

2 x 2 matrix €2, is an estimator of the covariance matrix. I present Assumption 2 as a

12



triangular array because it makes it easier to formalize discussions of uniform coverage
over the parameter space. Assumption 2 allows for cases where V* is arbitrarily close
to or includes zero. Let Q22 denote the Cholesky decomposition of a matrix €. The

estimator of the VCATE converges to the empirical process G, defined as

1/2
G(n, V7, Q,2,() = <€IQ 2<x/ RELIES (e Qvz), (1)

where z € R?, ( € {—1,1}, e; = [1,0] and ey = [0, 1]".

Lemma 2. Suppose that Assumption 2 holds, then ‘A/m—VT*n =0, (maX {%, A/ VL*"}) ,

n

and there exists a sequence of (, € {—1,1}, such that

N 1 [V v
Vi = Vi =G,V Qny Zn, Go) + 0p (ﬁ) + 0p ( %) + 0, (\/T%) . (8)

Lemma 2 shows that the limiting distribution of ‘A/m is a linear combination of a

Chi-square and a normal, whose weights depend on the value of V* . The relative
magnitude of V* determines the fit of the normal approximation. In the hetero-
geneous case, V* = 0 > 0, 4/nG converges to a normal as n — oo because the
first term in (7) is asymptotically negligible. However, when V* = 0, only the first
term remains and nG converges to a non-central Chi-Square distribution, which is
asymmetric. Using normal critical values here (even if everything else was known)
would produce distorted coverage. Furthermore, when V* = 0 the rate of conver-
gence is n, which is faster than 4/n, and hence the estimator is “super consistent”
near the boundary. The error is dominated by the first stage sampling uncertainty in
estimating the nuisance parameter 3,, which converges at n rate.

In practice, all three components in (7) contribute to the limiting distribution, and
this information can be used for inference. I propose an analytic approach based on
the quantiles of the empirical process that can deliver exact coverage. Let F), yx ¢ -(v)

be the conditional CDF of the empirical process, defined as

Foyrocw) =P(Gm, V02,0 <v),  Z~N(0ILy), veR  (9)

13



Based on this CDF we can construct a test statistic,

~

Fov (Ve = V),
indexed by unknown values of (V*, () and substituting the estimated covariance ma-
trix €,,. By construction, the test statistic is contained in [0, 1]. Similarly, I construct

critical values as functions of the parameters for a nominal level «, as follows

Goj2(n, V7,2, ¢) := min {a/2, F, yx 0.(0)}

(10)
Giap(n, V5, 9,() =1 —a +min{a/2, F, yxo(0)}

The difference in the critical values is (1 — «) to achieve the desired coverage. The
lower critical value is the minimum of the «/2 percentile and 0. This adjustment is
meant to increase the power of tests of homogeneity (see Remark 2). I propose an
adaptive confidence interval by substituting the Qn, n, and ‘A/m into the following

formula

Clom = {v: eR,, Ce{-1,1}:
(11)

A~

Fn7v7_*7ﬁn7§(‘/;n - V,—*) € [QQ/Q(na Vr*a Qrm C)? Q1—a/2(”, V;-*a Qrw C)] }

The set C/’\I on can be constructed via a grid search between 0 and an arbitrarily
high value, to test whether a particular V* satisfies the inequality constraints. The
procedure achieves correct asymptotic size because the test statistic converges to a
uniform random variable in [0, 1] for each value of V*. In general, the distribution in
(8) depends on the value of ¢ and I obtain a conservative interval in (11) by considering
the union of intervals with different values of (. Moreover, if the off-diagonal element
of Q,, is zero, then the distribution of the empirical process in (7) does not depend
on the value of (. This property is plausible and I introduce primitive conditions
that satisfy it in Section 4. Under those conditions the confidence interval has exact
asymptotic coverage .

The procedure is fast because at each point in the grid the researcher evaluates
the condition in (11), using the same estimate of (V;,, Q,). The critical values can be
computed numerically from the quantiles of a generalized Chi-square with distribution

F', which are available in most statistical software packages.
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Remark 1 (Equivalence of homogeneity test, 5 = 0). Researchers can test for ho-
mogeneity by evaluating whether 0 € C/’\Ian. By definition, e’lﬁi/ °7 = \/W,HZI,
where (2,, 11 is the upper-left entry. Under the null, the test statistic is FmO,QmC(U) =
P(Q,11Z7/n < wv), which is the CDF of a rescaled Chi-square distribution with
one degree of freedom. Furthermore, the critical values are {0,1 — a}, given that
FmO,ch(O) = 0. Neither quantity depends on the choice of (. Because of the nor-
malization in (6), we can choose €11 = V3, V(52n), where V(fs,) is an estimate of
the asymptotic variance of Bgn such as the robust sandwich estimator. Therefore,
evaluating Fn707§n7c(‘7m) € [0,1 — «] is algebraically equivalent to a test of whether
n(B2, Vin/ VinV(B2n)) = B2, /V(Ba,) exceeds the 1 —a quantile of a Chi-square with

one degree of freedom. This is identical to a test of 52 = 0 in the regression in (3).

Remark 2 (Adjusting critical values). The critical value g, o(V*,Q,n,¢) in (10) is
constructed to guarantee that \A/m € C/"\Icm. In this case, XA/m belongs to the CI if
and only if F

n,

7.0, ¢(0) is contained in the critical region for some ¢ € {—1,1}. The
unadjusted CI with critical values {a/2,1 — «/2} is not guaranteed to contain the
test statistic.” Another rationale for doing the adjustment in (10), is to increase the
power of the test of homogeneity, 0 € CT an, Telative to a test based on the unadjusted
CI. The unadjusted test has correct size but the rejection region is discontinuous: it
rejects when the test statistics is very close to zero or when it exceeds a threshold.
Instead, the adjusted test shifts the critical region left and has the form of a Chi-
squared test. It only rejects the null if the test statistic is larger than 1 — «, which is
a threshold that is smaller than 1 — «/2 for the unadjusted CI.

Remark 3 (Comparison to other tests of homogeneity). Crump et al. (2008) sug-
gest estimating fig(x) by a series estimator with K terms, for subsamples D =
d € {0,1}. They propose a bias-corrected Wald statistic, which takes the form
Tyeries = {[& = &I [V(& = &) E — &l — (K = D)}/4/2(K = 1), where (£1,)
are non-intercept coefficients associated with fi1(x) and fig(x), respectively and K is
the number of covariates. For regressions with univariate X as in (3), K = 2 and
Tseries — (nfB2 /V(Ban) — 1)//2. Essentially this is just a transformation of the test
statistic proposed above, which will produce the same acceptance/rejection result for

significance level v (using the critical values in their equation 3.11). Ding et al. (2019)

"For example, suppose that \A/m = 0. Then the empirical process has a Chi-square distribution for
V,: = 0. Since the unadjusted critical value is bounded away from zero, V.,, would not be contained
in the unadjusted CI.
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study a framework with a fixed population where the only source of randomness is
the experimental assignment of offers. They propose a similar Wald estimator, but
replace estimates of (51, 50) and the asymptotic variance with randomization inference
counterparts. In samples with large n, this leads to very similar test statistics, but
may produce slightly different results in small samples.

The approach that I introduce in the following section differs substantially in the
way that I handle multivariate cases. For K > 2, the approaches are non-nested
because I use sample splitting and consider a wider range of methods to estimate

la(x) than series estimators.

3 Inference for nonparametric CATE

In this section I provide an overview of the inference problems associated with efficient
estimators of the VCATE and how to solve them for the nonlinear /high-dimensional
case. Let {Y;, D;, X;} be i.i.d.. As shown in Newey (1990), efficient estimators can be

decomposed as

~

n(Vin — Vi) = ; + Residual,, , 12

vn( \fZ%D (12)
op(1)

where ¢; is an i.i.d. realization from the efficient influence function with mean zero,

and the residual becomes asymptotically negligible as n — oo. The semiparametric

lower bound is V(¢g;). Let n(-) be a set of nuisance functions defined as

() := (7(x), po(), p(), Tav). (13)

Levy et al. (2021) showed that the efficient influence function for the VCATE is equal
to @; = o(Yi, D;, Xi,m) — Vi, where ¢ is defined as

d(y — po(z) —7(z))  (1—d)(y— uo(w))]
p(x) 1—p(x) '

) = ()= +2(r )= ra) |

(14)
By (12), all efficient estimators —regardless of their form— are y/n—asymptotically
equivalent to £ 37" | ;. Let ¢; = (Y3, D;, X;,n(X;)) be a realization of the efficient
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influence function. If V(p;) > 0, then

V(o) % V(T — Vi) = V() Hﬁzs@] +0,(1) > N (0, 1)

In this case, any confidence interval based on normal critical values and a consistent
estimator of V(y;), produces valid coverage. For common functionals such as the
ATE, V(g;) > 0. However, this cannot be guaranteed for the VCATE.

Lemma 3. Let 0%(z) :=V(Y | D =d, X = x).
V(o) = V((7(X) = 7a0)?) + 4E [<T<X> . (f(%) ; 2((;()))] )

Both of the inner terms in (15) are multiplied by (7(z) — 7). When the VCATE is

zero, T(x) = 7 almost surely, and the influence function is degenerate. The condition

that V(p;) > 0 does not hold uniformly over all V, in the parameter space. In this
case, the distribution of \/n(V;, — V,,) is dominated by the higher order terms of
the residual (12), and the CLT cannot be applied to guarantee normality near the
boundary. The linear estimator discussed in the previous section is just one example.
Moreover, if the tails of 7(x) are thin, then the value of V(y;) is also small near the

boundary.

Corollary 2. IfE[(7(X) — 7)*] < k®V? for k e R, then

o< s (58]

Corollary 2 shows that the variance of the efficient influence function is bounded by
a quantity that scales up or down proportional to the value of V.. Consequently, when

V() is relatively small, the higher order terms in the residual may still dominate.

3.1 Pseudo-VCATE, regressions, and efficiency

A robust way to introduce nonlinearity is to consider a regression with real-valued
basis functions M (z) and S(z). For now, I will leave these unspecified but in the next

section I will show how they can be estimated non-parametrically in a first stage.
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Yi=co+ M(X)e + [D —p(X)]p1 + [ D —p(X)]S(X)Bg +U (16)
W(X.D)0
with weights A(X) = [p(X)(1 — p(X))]™?!, regressors W (X, D), and parameters

0 = [co, ¢1, 1, B2]. This specification accommodates experiments with heterogeneous

assignment probabilities.® Consider the following minimizers:

O* = arg min ENX)(Y — W(X, D)6)%]. (17)
Chernozhukov et al. (2022a) showed that if V(S(X)) > 0, E[S(X)] = 0, and the
vector (B, 32) are part of the solution to (17), then (f;, 52) are also the intercept
and slope of the best linear projection of 7(X) on S(X).? Hence the pseudo-VCATE
has an upper bound, V* = B3V(S(X)) < V,. Because of this bound, if V, = 0,
then the pseudo-VCATE (V*) will not falsely detect heterogeneity even if S(X) is
misspecified. If anything, poor choices of S(X) will possibly understate the amount
of heterogeneity. When 7(X) is spanned by S(X), V* = V. and the two notions
coincide.
To obtain a feasible estimator we define S(z) := S(x) —L37" | S(X;), and compute
W(m d) by substituting S(z) in (16). Now consider a value of f, that minimizes
Iy ANX)(Y; — W(X,, D;)'6)%, by solving the first order condition

_ % Z )Y = WX, D)8 W (X, D). (18)

The regression parameters can be used to construct the CATE and other nuisance

functions. For a given 6 € R*,

@)\ (W) = W(a,0))6
) fio.s(z) W (z,0)'0
no(z) = | " _ = . (19)
Po(z) p(x)
7~_cw,9 % Z?:l 7~-9()(2)
8When p(z) = 1/2 this produces exactly the same coefficients as a regression of Y on

(1, M(X),D,DxS(X)), but differs when the probabilities are heterogeneous. If M(X) = S(X) = X
as well, this reduces to (3).

9When V(S(X)) = 0, 82 does not have a unique solution in (17), but V* = 83V(S(X)) =0< V,
is still the best linear projection, regardless of the value of (5.
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Lemma 4 shows that the sample variance of the estimated CATE can be interpreted

as an estimator that plugs-in (19) to the efficient influence function in (14).

Lemma 4. Define Vy, = I3, S(X)2. Let @, il and Q(0) be defined as in (14),
(18), and (19), respectively. If én = (Eln,Egn,Bm,Bgn) solves Q(gn) =0, then ‘A/m =

Mechanically, the influence function can be decomposed into primary and bias-
correction components. As an intermediate step for Lemma 4, I show that the bias-
correction terms and the fourth component of (18) are proportional to each other.
The optimal §n implicitly sets the average bias correction to zero. Intuitively, the
linear model minimizes the covariate imbalances between the treatment and control
group in-sample. Lemma 4 suggests that \A/m could be asymptotically efficient if 75
is sufficiently close to 7. In Section 4.1, I show that my proposed semiparametric
estimator can indeed achieve this.

As a preliminary step, it is necessary to determine which S(z) and M (z) ensure
that 79 = 1. Not all choices achieve this property.'® However, if they are chosen in
such a way that W (z,d)'0 = us(x) for some § € R*, then that’s sufficient to guarantee
that 179 = . Lemma 5 shows that any 6§ with this property is also a solution to the

regression problem, and provides guidance on the choice of S(x) and M(z).

Lemma 5. Let ©* be the optimizer set defined in (17). If (i) E[S(X)] = 0 and (ii)
W(z,d)0 = pqa(x) for some 6 € R, then 6 € ©*. Conditions (i) can be satisfied
by setting S(x) = 7(x) — E|r]. Condition (i1) can be satisfied by setting M(x) =
po(z) + p(x)r(x). In this special case, 8 = (0,1, E[7(X)], 1) € ©*.

Lemma 5 provides efficient choices of S(z) and M (x) that can be expressed in
terms of conditional moments, and that for this choice, the optimal # has a known,

simple form. In practice, S(x) and M (z) can be estimated non-parametrically.

3.2 Multi-step approach

My proposed procedure randomly partitions the observations Z,, := {1,...,n} into K

folds of equal size ny := n/K. Denote the observations in each fold by Z,, so that

10This point highlights that while all regressions of the form in (16) proposed by Chernozhukov
et al. (2022a) estimate an interpretable V.* —regardless of the choice of M (x)-, not every regression
in this class is efficient. The functions S(x), and M (z) in particular, both affect efficiency.
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Uszl L. =71,, and let 7_,,;. := Z,\Z,, be the set of observations that are not in fold
k. In a slight abuse of notation, I use Z_,; when defining conditional expectations,
to denote the full set of random variables associated with observations not included
in fold k. For simplicity, I also label the fold of observation i € Z,,;, by k;.

Let n_p(x) := (T—g(x), fio.—x (), p(x), T—k.av) denote a prediction of the nuisance
function n(z) over the set Z ,x, using the researcher’s preferred prediction algorithm.
This could include traditional methods such as linear regression, or more modern
“machine learning” approaches such as LASSO, neural networks, or random forests.
The only function that is known in advance is the propensity score, since I restrict

attention to randomized experiments. Guided by Lemma 5, define

S_p(x) = T_p(x) — E[Tok(Xi) | Zonk],
M_(x) = Fo,—k(x) + p(x)T—(x), (20)
AMa) = [p(x)(1 = p(a))] ™,
W= |1 Mo (X)) (D= p(X) (Di— p(X)S 4, (X))
Consider a regression with weights A(X;), parameters 0 := (¢y, ¢o, 81, 52), and
Y= Wl + U, E[WiUi | Zo] =0 (21)

In practice, E[T x(X;) | Z_,x] needs to be estimated, and I use a sample analog:

~ R R R 1 R
S_k(z) = Tk (%) — Tnk.avs Tnkav = — Tk (Xa),
nk iGInk
1 !
b= | w | |E Y Wl
ot [n 2 WzWZ] [n 2, W
i€k 1€,k

Let HAnk = (Cink, Conk, Bmk, Bgnk) be the estimator over the subsample Z,,. The fold-

specific variance of S, (z) is defined as

~ 1 ~ )
Vowk 1= - DS (X)) (23)

€l

20



The estimator of the VCATE for fold & is

In this case XA/mk can be viewed as a preliminary estimate of the VCATE using the
data in Z_,,;, whereas ‘A/mk is a regression-adjusted estimator that fits the sample Z,;.
This adjustment will produce better results, with a pseudo-VCATE interpretation
even if the first step g_ki (x) function is noisy, misspecified, or slow to converge to
7(x). The estimator in (23) belongs to the class of multi-step estimators defined in
Chernozhukov et al. (2022a). I add a restriction on the choice of M_x(z), guided by
Lemma 5, to ensure asymptotic efficiency.

To quantify the uncertainty in (gnk, \A/mk) I compute a robust (sandwich) estimator.
I start by defining two auxiliary residuals, T = V1 g,ki (X:)? — 1 and U =Y, —

znk

Wz‘lé\nk- Let ﬁnk be a 4 x 4 diagonal matrix with diagonal entries (1,1,1 1771/2).

)y Vank

Researchers can compute estimators of the individual components of the sandwich

form jnk, ﬁ[nk, and a selection matrix T defined as follows

n

T . [1 ZieIk )‘(Xi)ﬁnkﬁ\/iwfﬁ'k 0

The sandwich covariance estimator is
Qi = T Hyop T 1Y (27)

The population covariance matrix is

an=V<

When the VCATE is zero, then ‘A/mk (as a consistent estimator of V,,) should con-

verge to zero along the asymptotic sequence. To prevent asymptotic degeneracy, we

(28)

NXD: = p( VoS (X)U:] | 7
VoS k(X0)? )

znk

need to rescale the estimands along the lines of Assumption 2. The random vari-
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able Vm;z/ ?S_(X;) is normalized to (conditionally) have variance one by design, even
if S_(X;) converges to zero. This requires two much weaker conditions: (i) that
Venk > 0, i.e. there is some noise in estimating the CATE;! (ii) Q,; has eigenvalues

bounded away from zero. To ensure this, the tails of S_;(X;) need to be thin.'?

Assumption 3 (Moment Bounds). Suppose that there exists a constant § € (0, 1) such
that for each fold k, almost surely, (i) E[M x(X;)*AM(X;) | Z k] — E[M_x(X)NX,) |
T lEINX) | Toni] 2 6, (i) EDM_ (X0 | Toi] < 1/, (iid) E[U} | -] < (1/5),
and () B[S_n(X) | Z_uk) < (1/OE[S?, | Z_ui]?, (v) E[7_1(X)? | Z_k] < 1/6.

Assumption 3.(i) is a rank condition that ensures that the auxiliary regressor
M_;(X;) is not degenerate. Assumption 3.(ii) ensures that the second-moment of the
candidate regressor M_(X;) is bounded. Assumption 3.(iii) is a standard condition
indicating that the fourth moment of the residuals are bounded. Assumption 3.(iv)
is a bounded kurtosis condition indicating that the out-of-sample, machine learning
predictions of 7(x) have thin tails. Finally, Assumption 3.(v) is a bound on the
variance of the first-stage VCATE.

Assumption 4 (Non-degeneracy). The following properties hold almost surely over

sequences of random data realizations {Z,1, ..., Lok} y. Conditional on T ,5: (i)
Venk > 0, (i) Vour has a finite upper bound, (i1) V*, := B3 Vinr is contained in

a bounded subset of [0,00), and (iv) Qi defined in (28) is a positive definite matriz

with bounded eigenvalues.

Assumption 5 (Random Sampling). The observations {Yy;, Y1, D, X;} are i.i.d.

across i for fivzed n, and drawn from a sequence of data generating processes {7y, }>_;.

Theorem 3 shows how these primitive conditions imply an analog of Assumption

2 for the cross-fitted case.

Theorem 3. Consider a sequence of random data realizations {Z,1, . .., Lk }>_, with
associated quantities {Vynk, V.5 1, Bonks Quk ooy for each k, as well as a sequence of es-
timators {ank,f/xnk,‘zﬂ;k,ﬁnk}le computed from (22), (23), (24), and (27), respec-

HT also propose an extension that allows for V. = 0 in Remark 6.

120ne sufficient additional restriction is that E[U; | X;, Di,Z_nx] = 0 (the model is correctly
specified), V(U; | X;,D; | Z_,%) is bounded away from zero, and S_;(X;) has bounded kurtosis.
In that case the off-diagonal elements of €2, are zero and the diagonals are uniformly bounded.
Positive-definiteness may also hold in a neighborhood where the nuisance functions are close to the
true value and E[U; | X;, D;, Z_nx] =~ 0.
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tively. Suppose that these quantities satisfy Assumptions 1.(ii), 3, 4, and 5. Then as

ng — oo, for all ke {1,..., K}, Conditional on a sequence of T .,

(i) ( V’“v(ﬁ“__l o)

xznk

) | Ifnk - an ~ N(O; [2><2)-

<

~

Theorem 3 presents a central limit theorem for the components of AT*nk = B%nk‘/}xnkv
properly rescaled and conditional on Z_,,;. This result holds regardless of whether the
nuisance parameters are properly specified and primarily relies on the independence

of the folds. By Lemma 2, conditional on Z_,,

~ 1 | V*
%—nk — V:nk = G’(nk, V:nk, an, an) + 0p (n—k) + 0p ( Tnk) + 0p (\/T%Z) . (29)

Then it is possible to construct adaptive confidence intervals, substituting the sample

~ ~

size ny and estimated statistics (Ving, Qnk)-

Cloni = {VT* eR,,(e{-1,1}:

~

Fnk,VT*,an,C(M'nk - V;—*) € |:q01/2(nl€’ Vr*7 ana C), Q1fo¢/2(nk; V;—*a ana C)] }
(30)

The confidence intervals take the same form as in the regression case in (11), except

that now the inputs are obtained from the cross-fitted regression step. The confidence

~ ~

interval is fast to compute because (Vynk, Q2,1) only needs to be computed once. It is
worth noting that because the confidence interval only uses information in fold Z,,
the effective sample size is n,. While this does not affect the nominal asymptotic size

of the confidence interval, it may affect the power of tests against specific alternatives.

3.2.1 Ensemble estimator

We can construct an “ensemble” to aggregate across folds, defined as follows
~ 1 & o .

In Section 4.1, I show that this ensemble estimator is efficient.
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3.2.2 Splitting uncertainty and median intervals

So far in this section we have used the data from a single split or fold of the data.
However, the choice of fold k£ or the particular split may lead to different values of
XA/mk and hence distinct confidence intervals. Chernozhukov et al. (2022a) propose an
aggregation procedure based on “median parameter” confidence intervals, inspired by
false-discovery rate adjustments. Their proposed conditional t-tests are not directly
applicable here because ‘A/mk conditionally converges to a generalized Chi-square.
However, I show that the basic idea can still be adapted.

Let K be the total number of folds, obtained across one or more splits of the data.
For instance, a 2-fold sample with 10 splits would have K = 20, Let inf 1 ank and
sup i ank denote the lower and upper bounds of el ank, Tespectively, and Medg{- - - }
denote the median over a set indexed by k = {1,...,K}. If K is even then two
quantities might be tied for the median, and in that case I compute their midpoint.

The multifold confidence interval is defined as

—~ multifold

cil,, = [MedK {inf C/j\[%nk} , Medg {sup C/’\I%nk}] ) (32)

Intuitively, the K fold-specific intervals “vote” to include a particular value, and
—~ multifold . X L. . X —~ multifold
V¥e CI only if there is a majority vote. The “median” interval CTI,

contains values within the median lower bound and the median upper bound across

an

folds. To control the overall false discovery rate, I adjust the nominal size to «/2.
This adjustment produces a conservative interval because it assumes a worst-case
dependence structure between the folds and the splits, regardless of the size of K.
In some instances, the asymptotic coverage probability may be strictly higher than
(1—a), particularly when there is a lot of heterogeneity.'® At the boundary, with low
effect heterogeneity or none at all, it is much harder to asses the dependence struc-
ture between the fold-specific estimators. One of the benefits of using a worst-case
approach is that it provides coverage guarantees under weak assumptions. Moreover,
the empirical example illustrates that even though these intervals are conservative,

they may have a short length in practice.

13For instance, given a single split, Theorem 6 implies that the {\/ms(Vrns — Vo)HE | are asymp-
totically uncorrelated. However, near the boundary, the estimators converge at a rate faster than
A/n and their relative dependence structure at that rate is unclear.
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4 Large Sample Theory

4.1 4/n-Consistency, Efficiency, and Boundary Rates

Let v € I denote a probability distribution over i.i.d observations (Y7;, Yo;, D;, X;). 1
use the notation E,[-] and P,(-) to denote the expectation and probability under ~,
respectively. Let S_j(z) be the function defined in (20). The true value of the CATE
and VCATE is given by 7, and V;(v), respectively. The pseudo-VCATE is given by

VA To) = Ve) = int B [(7(X) = B = S (X)) | Tl (33)

Define the estimation error of the CATE in the L, norm as

w(7) = \/Ew[ll?—k(X) — (X)) (34)
We can bound the difference between the pseudo-VCATE and its true value:

Theorem 4 (Bias of the pseudo-VCATE). Under the distribution v € T,

E[[Vr(7) = V¥ (7, Zopi)|] < min {16 x w(7)*, V(1) } . (35)

Theorem 4 derives a non-asymptotic bound for the VCATE as the minimum of
two key quantities: (i) the conditional Ly error between the candidate function and
the true CATE, and (ii) the true value of the VCATE. This proof only relies on the
definition in (33). For instance, when V.(y) = 0, then V,(v) — V*(v,Z_.k) = 0,
regardless of whether 7 x(-) is properly specified. The difference between the two
quantities is also small if w(7y) is sufficiently close to zero. In the multi-step approach,
w(7y) captures the first-stage uncertainty from estimating the CATE, which decreases

with sample size. I consider the following convergence condition.
Assumption 6 (Convergence CATE). \/nzw(7,)? = o(1) as n — 0.

Assumption 6 imposes an Lo consistency condition on the CATE. A large class of
machine learning models can meet this requirement. For example, Bickel et al. (2009)
and Belloni et al. (2014) evaluate rates of convergence under sparse models, Chen and
White (1999) for neural networks, and Wager and Walther (2015) for regression trees

and random forest.
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Theorem 5 (Faster than /n convergence near boundary). Consider a sequence of
data generating processes {7y}, where V.(7,) — 0 as n — o and Assumptions 1,
3, 4, 5 and 6 hold. Define Ay := (f/mk — VT(’yn)) for the estimator defined in (24).
Then (i) \/nDAnie = 0p(1), and (i) if in addition n,lc/ﬂpVT('yn) = o(1) for pe [0,1/2),
then n,i/ﬂpAnk = 0,(1).

Theorem 5 shows that multi-step estimators of the VCATE converge to zero faster
than ,/nj near the boundary. I formalize “near” by considering sequences of distri-
butions where the VCATE approaches zero. Theorem 5 relies on the non-asymptotic
bound in Theorem 4, the normal approximation in Theorem 3, and the empirical pro-
cess in Lemma 2. There is no requirement on the rate of convergence of ji_g(-) (and
consequently on the generated regressor M_.(-)), only an assumption that p(z) is
known and that the CATE is estimated at a sufficiently fast rate. Furthermore, if the
true CATE is nearly flat in the sense that for p € [0,1/2), then n,i/erpVT(%) = o(1)
(or even exactly equal to zero), then the estimator has a faster rate guarantee.

To prove efficiency we have the stronger requirement that all the nuisance functions

converge to their true value in the L, norm and at n,lc/ * rate in the Ly norm.

Assumption 7 (Regularity conditions). Define the residuals U; = Y; — E, [Y; |
Di, Xil. (1) Boy, [1Yi[*], B [IUGIPT, B, [n(X) M1, (i) B, [k (Xo)|*] are uniformiy
bounded, (iii) B, [|7-x(X) = n(Xi)|*] =0, (i) /mEs, [I7-(X:) — n(X3)[*] = o(1)
forallke{l,... K}.

The next step is to show that the estimation error of the fold-specific VCATE

converges at ,/n; to an average of efficient influence functions.

Theorem 6 (y/n Consistency and Efficiency). Consider a sequence of data generating
processes {yn}, where V.(v,) — 0 as n — o and Assumptions 1, 3, 4, 5, 6, and 7
hold. Then

VI (Ve = Vs D, wit (1)

€l

(1)) = %

Theorem 6 shows that the fold-specific estimator converges at ,/nji-rate to an
average of i.i.d influence function. This requires standard regularity conditions. The
proof of Theorem 6 is non-standard due to the multi-step nature of the procedure. I
start by applying Lemma 4, which shows hows to write ‘A/mk as an average of estimated

influence functions. I break down the proof into sequences where V,(7,,) converges to
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zero and those where it’s bounded away from zero. For the first part, I leverage (a)
the boundary convergence result in Theorem 5, (b) the bound for V(y;) in Lemma 2.
For the second part, I provide a novel decomposition of regression adjusted nuisance
functions. The key is to prove that the regression parameters énk converge at ni/ 4
rate to the values in Lemma 5 for sequences where V,(v,) — V; > 0. Once in this
form, the rest of the proof relies on a traditional Taylor expansion argument.

The ensemble estimator IA/m combines information from the whole sample. By
definition n = ny x K and K is finite, which means that algebraically /7 (V,, —

Vi) = Mzk 1( rnk — Vo(7n)), and by Theorem 6,

~ 1 K 1 &
Vi (Ve = Vi) = WZZ% Kk;op(l) Z\/—H;%Jrop(l)

k=11i€Z,

This means that aggregating the estimators restores full efficiency, satisfying the

property described in (12).

4.2 Asymptotic Coverage

I start by showing that the single fold confidence interval has uniform coverage for

the pseudo-VCATE, and exact coverage under an additional assumption.

Assumption 8 (Exact coverage condition). Let ;12 be the off-diagonal element of
Qi For each t > 0, limsup sup,ep Py (£/ V¥ (7, Znk )| Q12| > 1) = 0.

n—aoo

Assumption 8 states that the product of the pseudo-VCATE and the off-diagonal

element of the limiting covariance matrix in (28) needs to converge to zero uniformly.

Theorem 7 (Uniform Coverage of Pseudo-VCATE). Let I' denote a set of distribu-
tions, constrained in such a way that Assumptions 1, 3, 4, and 5 hold. Let Clomk and
V¥ (v, Z_nk) be defined as in (30) and (33), respectively. Then

1 —a < liminfinf P, (VT* (v, I k) € C/’\Icmk) (36)
n—oo  ~yel’

If Assumption 8 also holds, then

lim sup sup P, (VT* (v, Z_nk) € &ank) <1l-oa. (37)

n—o  yel’

27



Theorem 7 shows that the confidence intervals always have uniform coverage of
the pseudo-VCATE of at least (1 — «)."* The key is to prove that the confidence
intervals yield coverage under arbitrary sequences of distributions, which includes
cases where V* is either equal to zero or approaches zero as n — co. The proof
builds on the approximation of Lemma 2 and shows that for every sequence, the
test statistic for a particular ¢,, € {—1,1} converges to a uniform distribution. This
sequential characterization suffices to apply generic results in Andrews et al. (2020),
which guarantee uniform coverage even in non standard cases like this one. Coverage
over the pseudo-VCATE holds regardless of whether the nuisance functions are slow
to converge or even misspecified.

The intervals are in general conservative because we’re not plugging in the un-
known (, and instead define a robust confidence interval as the union of Cls with
given ¢ € {—1,1}. However, the key insight is that ¢ only affects the coverage when
the pseudo-VCATE is bounded away from zero. If Assumption 8 holds, the value of
¢ doesn’t enter the asymptotic distribution of the estimator. I show that this con-
dition holds automatically if the nuisance functions converge to their true value at a

sufficiently fast rate.

Lemma 6 (Verify Exact Coverage). Let I' denote a set of distributions that satisfy
Assumptions 1, 3, 4, 5, 6, and 7. Then Assumption 8 also holds.

As a special case, when the model is correctly specified, i.e. W/0 = p4(x) for some
0 € R, then Q12 = 0 by construction. Lemma 6 states that we only need a model
that is correctly specified asymptotically, given the rates in Assumptions 6 and 7.
Then for non-boundary cases, 2,,; converges to the population analog under correct

specification. These conditions also imply point-wise coverage of the true VCATE.

Theorem 8 (Pointwise, Exact Coverage of VCATE). Let I' denote a set of distribu-
tions that satisfy Assumptions 1, 3, 4, 5, 6, and 7. Then

inf lim inf P, (VT(W) € &ank) = sup limsup P, (VT(w) € C/’\Lmk> =1-aq.

yel n—oo ~vel'  n—o

Theorem 8 shows that if the nuisance functions converge at a sufficiently fast

rate, then the proposed intervals achieve point-wise exact coverage. The confidence

14The theorem only uses Assumptions 1, 3, 4, and 5 to verify normality in Assumption 2. A broad
class of confidence intervals of the form in (11) constructed from regression adjusted estimators will
satisfy these uniformity properties.

28



intervals provide correct size coverage for all regions of the parameter space, including
V:(v) = 0.

Proving uniform coverage of the VCATE (rather than the pseudo-VCATE) is
more challenging in the non-parametric case without much stronger conditions on
the convergence rates of the nuisance functions. The lack of uniformity stems from
a difficulty in controlling the ratio \/ngw(¥s)/+/Vs(7n), which measures the relative
error in estimating the CATE vs. the overall level of the VCATE. By the bound in (4),
this ratio is easy to control when n;V,(7y,) = o(1) (near homogeneity) or V,(v,) —
V. > 0 (strong heterogeneity). However, it is possible to construct sequences, e.g.,
neVe(vm) — v > 0, where (‘A/mk — V*(Yn, Z_ k) converges to zero at a faster or
comparable rate to the error of the pseudo-VCATE. There may be distortions in

coverage in smaller samples. I illustrate this issue in the simulations.

Remark 4 (Uniform inference for one-sided tests). Uniform inference is only chal-
lenging for two-sided tests. If instead, the researcher is only interested in left-sided
tests, then uniform inference is still possible. To do so, we can make explicit use of
the inequality V*(v,Z_nk) < Vi(v). If V2 (y) < infy» Clonk (the lower bound of the
CI), then V*(~,Z k) ¢ C1 oni. Therefore, for all vel,

P, (%(7) > inf (TJW) <P, (VT* (v, To) ¢ &ank) . (38)

I prove a weaker uniformity result for one-sided tests building on Theorem 7.

Corollary 3. If Assumptions 1, 3, 4, and 5 hold, then

lim sup sup P, (VT(v) < inf &ank) < limsupsup P, (VT* (v, Zonk) & &ank) < a.
n—ow  yel' n—ow  yel’

Corollary 3 is empirically relevant for interpreting confidence intervals that do not
include zero. It states that the asymptotic probability of having V() € [O, inf O'T ank)
is uniformly less than a. Tests of homogeneity belong to this class and therefore have
the correct size when V() = 0. Moreover, the result in Corollary 3 is much stronger
because it guarantees that a broader class of one-sided tests also has the correct
size. It is important to emphasize that I do not impose any assumptions on rates
of convergence of (7_x(z) — n(x)), but only the inequality on the pseudo-VCATE.
Consequently, while estimating p(x) and 7(z) may be important for increasing the

power of tests of homogeneity, it is not necessary for controlling their size.
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4.3 Multifold Coverage

The multi-fold confidence interval covers the VCATE asymptotically.

Theorem 9. Let I be a set of distributions that satisfy Assumptions 1, 3, 4, 5. Then

. . —~ multifold
lim sup sup P, (‘/T(fy) <infCI,,, ) <.

n—oo el
If Assumptions 6, and 7 also hold, then

. —~ multifold
sup limsup P, (VT(v) ¢CI,, ) < .
vel' n—ow0
The first part of Theorem 9 shows that the multifold CI uniformly controls the
size of one-sided tests. The second part shows that if the nuisance functions converge
to their true value asymptotically, then the multifold confidence interval provides
point-wise size-control for two-sided tests. Coverage of the true parameter will be

weakly larger that (1 — «) asymptotically.

4.4 Power

The test of homogeneity has power against local alternatives.

Lemma 7. Consider a sequence of distributions {7, }io_y and {Z_.x}_,, where Qpp —
Qo and NV (Yo, L nk) = v + o(1), for v e [0,00). Assume that 1, 3, 4, and 5 hold.
Let Q.11 be the upper-left entry of Qg, () be the standard normal CDF, and z;_,
be the (1 — a)—quantile. Then

lim P, (0¢ Clonk | Z k) =1—P [ 29 — + —].
n—w ( a 2 ( ! Qoo,11 v/ Qo 11

Lemma 7 computes the power curve for a sequence of local alternatives. When

v = 0 the power is equal to «, whereas when v — oo the power tends to one. This
shows that tests of homogeneity have local power the null. When the pseudo-VCATE

is bounded away from zero, the test rejects with probability approaching one.
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5 Extensions

Remark 5 (Clustered Standard Errors). In some cases, assuming that units ¢ are
independent may be strong. For example, in Dizon-Ross (2019) units are randomized
at the household level, and it is reasonable to expects that units within a household
have correlated outcomes and covariates. To deal with this dependence structure,
suppose that the sample can be partitioned into C' clusters, ¢ € {1,...,C}, which
are independent and identically distributed. The researcher can compute @nk, ‘an
and CT ank Via cross-fitting by randomly partitioning entire clusters rather than the

individual observations.

Lemma 8. Let {r,x}>_, be a sequence of positive scalars. Suppose that Vyr > 0,
O,k 18 positive definite with positive eigenvalues, and that conditional on a sequence

0 -1
{Z i}y, 70 ok =P Qe, Mg/ i — 0, and

—1/2

T'nk

‘/zn An - n
% <\/7‘(71712kk 52 k)) |I—nk; _)d Zn N N(O,]QXQ). (39)

Vznk

Then C/’\Iomk, substituting the arguments (ny, XA/mk, an), satisfies Theorem 7.

Lemma 8 proposes high-level conditions that ensure that confidence intervals have
correct coverage. The quantity m is the effective rate of convergence, which
features prominently in problems with cluster dependence (MacKinnon et al., 2022).
For example, if the observations are fully correlated within clusters and the clusters
have equal size, then r,; is the cluster size, ng/r,, = C, and the estimators in (8)
converge at v/C rate (the total number of clusters). The analyst does not need to
specify the quantity 7, to apply the procedure, but merely specify an estimator of
the covariance matrix that meets the rate requirement. Under minor modifications
to the existing proofs, we can also prove analogs of Theorems 8 and 9.

We can construct estimators that satisfy Lemma 8. Let Z,;. be the set of units in
fold k and cluster ¢, and let C,; be the indexes of the clusters selected for fold k.

A NX) T NeAuATANY
-2z (2P o)

c€Cpi 1€Lnke €L ke

The clustered standard errors are Qdpster = T, JLHcuster 217! where Juk, Lok

are computed as outlined in (25).
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Remark 6 (Confidence intervals when V., = 0). When the conditional mean is
constant, i.e. pug(x) = E[Yy], prediction models with corner solutions like LASSO
may estimate a constant conditional mean, i.e. [ig k(%) = g, T-£(z) = 11 —k(z) —
o —r(z) is constant, and consequently V.., = 0.'° This violates Assumption 4.(i),
and it is challenging to construct a confidence interval with exact coverage. One
alternative is to construct an ensemble of sparse and non-sparse estimators of the

CATE in the first-stage. Another alternative is to use degenerate confidence intervals:

—~.0 C/Y\[omk if V:Enk # 07

(40)
[0,0]  if Vi = 0.

The confidence intervals collapse to zero when the 7 j(x) prediction is degenerate.
For example, in LASSO researchers can check whether the coefficients are zero, in
tree-based methods when there are no splits, or whether \A/mk = 0. We can also define

an analogous multifold confidence interval.

—~. 0,multifold

cl,, = [MedK {inf C/?%nk} , Medg {sup &%nk}] . (41)

I study the asymptotic properties of these confidence intervals.

Lemma 9. Let I' denote a set of distributions that satisfy Assumptions 1, 3, and 5.

Suppose that Assumption 4 holds, except for the requirement that Vi = 0. Then (i)

liminf inf P, (v: (1, Z i) € (lenk) >1-a (42)

n—o el

(i) If Assumptions 6, and 7 also hold, then

inf lim inf P, (VT(y) e (TJSM) >1—a (43)
vyel' n—o0
inf lim inf P, <VT(,Y) € C/ﬁiﬂumﬂ)ld) >1—a. (44)
yel' n—o0

To prove this result I focus on the coverage for subsequences where V,,,;, = 0 and
Venke > 0, and apply the results for conservative coverage results in Andrews et al.
(2020). In subsequences where V,,x = 0, then V*(,Z ,x) = 0 which means that

coverage of the pseudo-VCATE is equal to one. In subsequences where V. > 0

151t is still possible to have Vi, > 0 almost surely even if V; = 0, as long as jig(x) is not constant.
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and assuming that €2, has eigenvalues bounded away from zero, then we can apply
similar arguments as before to prove 1 — a coverage. To prove point-wise coverage,
I separate the cases where V (v) = 0 and V,.(y) > 0. In the latter case, I show
that V., is point-wise bounded away from zero, though not uniformly. The proof of
Lemma 9 does not rely on the i.i.d. assumption, and can also accommodate cluster
dependence. In the empirical example, I compute confidence intervals with clustered
standard errors and degenerate CATE predictions.

When there’s more heterogeneity and the nuisance functions are estimated accu-
rately, then V,,x > 0 with high probability. However, when V,,, ~ 0 and V(po(X)) ~
0, then procedures like LASSO may imply V,,x = 0 (Fu and Knight, 2000), which
means that marginally heterogeneous CATEs could be estimated as homogeneous.
This could be impact the power of tests of homogeneity. The size for two-sided tests
is not uniformly bounded. Furthermore, the multifold confidence interval allows for
some quantification of uncertainty across folds/splits: the CI is degenerate only if
more than half the fold/split-specific Cls are degenerate.

Furthermore, the degenerate CI has correct size control for one-sided tests.

Corollary 4. Under the assumptions of Lemma 9.(i),

lim sup sup P, (VT(’y) < inf (/J’\Iznk) <. (45)

n—w  yel

. . —~ 0,multifold
lim sup sup P, <VT(’y) <infCI,,, )

n—o ~el’

< a. (46)

The tests of homogeneity have the correct size when V,.(v) = 0. Corollary 4
guarantees that the probability of falsely rejecting a class of one-sided test is uniformly

bounded in large samples.

Remark 7 (Monotonic Transformations). It may be useful to report the standard
deviation of the CATE, which is vVCATE. 1 propose the following confidence

interval:

~ 0,multifold,sqrt ~ 0,multifold
Clo " Ve v e G (47)
Since the square root is a strictly increasing transformation and the VCATE is non-
X — 0,multifold,sqrt —~ 0,multifold .
negative, then /V.(y) € CI,, if and only V.(v) € CI,, . Since

the events are equivalent, the transformed confidence interval preserves the coverage

probabilities and will have valid coverage by Lemma 9.
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6 Simulations

I use a simulation design to study the properties of the VCATE estimators. The
baseline covariates are distributed as [Xo, X1] € N(0,X,), where p = 0.5 and

Iy I
5, = IxJ  PLyxJ .
pIJxJ Iy

The random variables X, and X are standard normal vectors of dimension J. The
covariance between pairs of components Xy; and X is equal to p = 0.5 for when
j = j', but zero otherwise. The outcome is generated from a model where Y =
DYy + (1 — D), D is generated by a Bernoulli draw with probability 0.5, and

Yo = ¢ + B3 Xo + Uon/63 + i XoXprio

(48)
Yi = (4 7) + BoXo + X1 + Uin/6? + 4 X1 X0,

where ¢, 7 € R, By, B, ko, k1 € RP. The errors (Uy, U;) are independent of the covari-
ates (Up, Up)lL(Xo, X1), and distributed as standard normals [Uy, U1]" € N (02x1, I2).
The key model quantities have closed-form expressions. The conditional means at
baseline and the CATE are given by ui(z) = a + Bjzo and 7(x) = 7 + (.74, re-
spectively. The conditional variances are o3(x) = rhzqx/rsg for d € {0,1}. This
formulation incorporates heteroskedasticity. Covariates that influence the outcomes
at baseline may also affect the treatment effects.

The regressors are constructed in such a way that E[X;X]] = I, for d € {0,1}.

This implies simple expressions for the variances of the model, V(Uy) = 63 + K)kq,
Ve =B.5- V(Yo) = ByBo + 6 + Kok,

V(Y1) = BoBo + B.6- + 2(1 — p) By + 07 + Kk,

I choose an approximately sparse specification for (48) where the coefficients

decay exponentially at a rate of decay of A\ = 0.7. Let ¢; = (11_’/\’\‘,) Al=7 be
a geometric sequence, which satisfies Z;Zl (%) A7 = 1. Given user-specified
parameters (V,,V;, 03, 0%), the coefficients for the entries j € {1,...,J} are deter-

mined by So; = ljn/Vi, Brj = Ui Ve, kay = lja/o3 — 3, for d € {0,1}. Since
Zj:l (11__;:]) AT = L, then 5650 = V/u 57’67 = ‘/7'7 and B[I)ﬁT = VM‘/T We can
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Figure 1: (Density of estimators) The figure shows the distributions of Vyy, (multi-step) and Vin°*P  defined
in (31) and (49), respectively, for n = 2500, K = 2 folds, and a single split. The horizontal panels show designs with
homogeneity (V> = 0, left), moderate heterogeneity (V> = 0.5, middle) and high-heterogeneity (V- = 1, right). The
vertical panels have a low dimension case with 2J = 10 (top), and a high-dimension case with 2J = 40 (bottom).

obtain analogous expressions for the variances of the unobserved components, so that
52 + Khko = o3 for d € {0, 1}.

I choose an average effect size of 7 = 0.15, that is coherent with the recent meta-
analyses of economic experiments in Vivalt (2015). To make sure that the magnitudes
are interpretable, I normalize the coefficients so that the variance for the control group
is V(Yp) = 1, by setting set ¢ = 1, 04 = 0.7, 64 = 0.21, and V,, = 0.3. The design
is easy to scale for different values of V. and J. My design is similar to that in
Belloni et al. (2014) but I choose 3, and the sparsity structure in such a way that V;
has a closed form expression. I use LASSO to estimate p(x) and po(x), tuned via
cross-validation. The coefficients of this model are consistent given this sparse linear
structure, even in high dimensions. I randomly simulate 2000 datasets to compute
each of the estimators, and split them into K = 2 folds.

Figure 1 considers a simulation with n = 2500. The figure displays a density plot
for the multi-step estimator, ‘Afm defined in (31), and a two-step debiased machine

learning estimator computed as:
~ 1 & R
W;;VO_Step = _Zgo(anthn*kz(Xl))? (49)

n i=1

where 7_p(z) = (T_g(@), flo,~k (@), p(@), Tna) and Tnaw = 370 74, (X;). When
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Figure 2: (Root Mean Square Error) The figure shows the root mean-square error of Vrn (multi-step) and
\7$,“Z°‘Step, defined in (31) and (49), respectively, for different sample sizes, K = 2 folds, and a single split. The
‘oracle” estimator is constructed by substituting 7_x(X;) = n(X;) in (49). The horizontal panels show designs with
homogeneity (V> = 0, left), moderate heterogeneity (V; = 0.5, middle) and high-heterogeneity (V> = 1, right). The
vertical panels have a low dimension case with 2J = 10 (top), and a high-dimension case with 2J = 40 (bottom).

V. > 0 the efficient influence function is non-degenerate. In high-heterogeneity
regimes both converge to the same limiting distribution.!® However, when V, = 0,
the influence function is degenerate and they may converge at different rates. We
see that the multi-step approach is much more precise. This can be explained by the
fast boundary convergence rates derived in Theorem 5. The two step approach can
also produce negative estimates of V., which is an undesirable feature, whereas the
multi-step estimator is always non-negative. Both estimators have higher bias when
the dimension increases because there is more first-stage noise.

Figure 2 plots the root mean-square error (RMSE) of ‘A/m and IA/f;l”O*Step for different
sample sizes. I compute the semiparametric efficiency bound by computing the RMSE
of an “oracle” estimator that substitutes 7_4(X;) = n(X;) in (49). The results show
that as the sample size increases, both estimators achieve a higher level of accuracy
and their variance approaches the semi-parametric lower bound (the RMSE of the
oracle). As expected by Corollary 2, the semiparametric lower bound is zero at the

boundary. The differences in RMSE shorten with higher V, and in lower dimensional

16This is shown in Theorem 6 for the multistep approach and can be shown for the two-step using
standard arguments, e.g. Chernozhukov et al. (2018).
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Figure 3: (Coverage of V;) The figure shows the 95% coverage probabilities at different sample sizes, for
the multi-fold CIs and single fold confidence intervals defined in (40) and (41), respectively, for K = 2 folds, single

split. The two-step Cls are constructed as (1/n)> " | @; + 1.96V V,/n, where @; is the summand in (49) and V,,
is an estimate of its sample variance. The horizontal panels show a regime with homogeneity (V> = 0), moderate
heterogeneity (V> = 0.5) and high-heterogeneity (V; = 1). The vertical panels show low dimension case with 2J = 10
(top), a high-dimension case with 2J = 40 (bottom). The dotted vertical lines denote the true value of the VCATE.

settings (2J = 10) (which have lower first-stage noise).

Figure 3 shows the coverage of V. for the different proposed confidence inter-
vals (CIs). For the multi-step approach, I consider the single splits CIs in (40) and
the conservative multi-fold CIs from and (41). The two-step Cls are constructed as
LY Pit1.96 XAfw/n, where @; is the summand in (49) and \A/w is an estimate of its
sample variance. The coverage of the two-step approach is very low under homogene-
ity, and there is no improvement as sample size increases when V. = (0. The coverage
of the two-step estimator only improves with higher n, in high heterogeneity designs.
By contrast, both multi-step approaches cover the parameter at the intended level,
and coverage improves with higher sample size. For fixed n, coverage degrades for
both cases when the number of covariates is higher.

Figure 4 explores the differences in covering the VCATE vs the pseudo-VCATE
when n = 2500 and 2J = 10 for a fine-grained set of values of V,. Panel (a) reflects
a dip in coverage close to the boundary. My theory predicts that the multistep Cls
have exact coverage when V, = 0, but may not cover uniformly close to the boundary
(see discussion after Theorem 8). The mulit-fold CIs have conservative coverage.
Conversely, Figure 4, Panel (b) shows the multi-step Cls always uniformly cover the

pseudo-VCATE, as predicted by theory. This provides a robustness guarantee for
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how to interpret the ClIs. The two-step approach has much lower coverage and no

guarantees when V, = 0 in either panel.

Coverage of VCATE Coverage of Pseudo-VCATE
0.95- I‘\’C"" === 0.95- £~ -
-~
0.80- A 0.80- Approach
Multi Step /
% 0.60- 0.60- — Multi Fold
§ ___ 95% level
8 0.40- 0.40- Multi Step /
- - Single Fold
0.20 2
0.20 — Two Step
0.00 0.00
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
VCATE VCATE

Figure 4: (Coverage of V; vs V*) The figure shows the coverage of the VCATE (left) and the fold-specific
pseudo-VCATE (right) for a set of fine-grained values of the true V;, given n = 2500, K = 2, single split, and 2J = 10.
The multi-fold CIs and single fold CIS, defined in (40) and (41), respectively. The two-step Cls are constructed as

(I/n) >0, @i +1.96V V,,/n, where @; is the summand in (49) and V,, is an estimate of its sample variance. For the
multi-fold and two-step approaches in the right panel, I report coverage of the median Vr*nk across folds.

Figure 5.(left) shows the power of tests of homogeneity in a simulation with n =
2500. The multi-step, single fold approach has correct size control and has local power,
in line with the result of Lemma 7. The power of the test using the multifold approach
is similar to using a single fold. The right panel shows the probability that the VCATE
is strictly below the CI bounds. As predicted by theory, this probability is uniformly
bounded by a = 0.05 for the single and multifold approaches (see Corollaries 3 and
4, and Theorem 9). The two-step approach has a non-monotonic power curve with
incorrect size. The size of one-sided tests in the right panel is uniformly bounded by
a = 0.05, though this may be partly the fact that ‘A/f;”"_mp can take negative values

and has a negative bias (see Figure 1).

7 Empirical Example

In this section, I illustrate my approach using data from a large-scale information
experiment conducted by Dizon-Ross (2019). The study, which covered 39 school
districts, involved an intervention to provide low-income parents of at least two chil-
dren with information about their children’s school performance. Half the house-

holds where assigned to the information intervention and the rest were assigned to

38



Power of test of homogeneity Probability( VCATE < inf CI )

1.00- 1.00-
7
0.80- 0.80- Approach
. o Multi Step /
Z 0.60- 2 0.60- — Multi Fold
2 2 5% level
$ $
£ 0.40- s 0.40- Multi Step /
- - Single Fold
0.20 0.20
— Two Step
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
VCATE VCATE

Figure 5: (Power and size) Panel(a) shows the power of tests of homogeneity (whether zero is contained in the
confidence interval) for a set of fine-grained values of the true V;, given n = 2500, K = 2, single split, and 2J = 10.
Panel (b) shows the size of one-sided tests, i.e., the probability that the VCATE is strictly below the CI bounds.
The multi-fold CIs and single fold CIs are defined in (40) and (41), respectively. The two-step CIs are constructed as

(I/m) >0, @i +1.96V \A/(p/n, where @; is the summand in (49) and \A/<P estimates its sample variance.

the control group. Dizon-Ross (2019) showed that, at baseline, parents faced large
information gaps regarding their children’s grades and class ranking. Even though
schools produced a report card, 60% of parents were unaware of their child’s perfor-
mance. Many parents reported that they did not receive the report card (children
either lost them or did not take them home), or had trouble interpreting the report
card structure, primarily due to low literacy levels.

The intervention was designed to present details of their children’s school perfor-
mance in an easily accessible way. Dizon-Ross (2019) showed that the information
gaps (the difference between believed and true test scores) went down as a result of
the intervention, and the amount of updating varied depending on students’ initial
test scores. Dizon-Ross (2019) also introduced a real-stakes scenario where parents
received a series of lottery tickets for a scholarship paying for four years of high school.
Parents had to decide how to allocate tickets between two siblings. If there were more
than two siblings residing in the household, the survey team selected two at random.
The results showed that parents allocated tickets towards their better performing
child.

To test for heterogeneity, Dizon-Ross (2019) ran a linear regression of parental
beliefs on initial scores, treatment, and an interaction as in (3), and reported estimates
X = 46.8 (on a scale of 100) and (B, 3;) = (—25.9,0.40) in their Tables 1 and 2,

respectively. The coefficient 32 captures how much the treatment effects vary (on a
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0 to 100 scale) for a each additional point in students initial scores. The VCATE
combines information about the coefficient and the initial variability in scores. From
the data, I also estimate the variance of the control ‘A/I = 305.53, and estimate the
VCATE as Bgf/x = 48.89. Taking the square root and normalizing by the standard
deviation of the outcome for the control group (‘/}(y‘ p=0) = 311.72), produces 0.40.
This means that the magnitude of treatment effect heterogeneity explained by scores
is comparable to 40% of the standard deviation of beliefs in the control group.

The VCATE can also help us understand the magnitude of treatment effect het-
erogeneity in the experiment using multiple covariates. I use LASSO for the first-stage
predictions, two folds per split with 20 splits, and estimate {an}le using clustered
standard errors at the household level and the formulas for the confidence intervals
defined in (41). The results are not very sensitive to the number of splits. For ease
of exposition, I report point-estimates and Cls for %, which is the standard
deviation of the CATE divided by the standard deviation of the outcome for the con-
trol group. I compute confidence intervals for the square root via the transformation
proposed in (47).

Table 1 computes the ATE and the vV CATE for two outcomes (parental beliefs
and lottery allocations) and 8 different sets of covariates. Panel (a) shows that, on
average, parents downgrade their beliefs about test scores by 42% of the standard
deviation (SD) of the beliefs of the control group. The treatment effect heterogeneity
explained by test scores is equivalent to 40% of the standard deviation (SD) of the
beliefs of the control group. This is statistically significant at the 5% level and has
a comparable magnitude to the ATE. The confidence intervals are relatively short in
length. However, applying the bounds from Theorem 2 and Corollary 1 shows that
differentiating treatment offers based on scores could further lower beliefs by at most
8.1% SDs of the beliefs in the control group. In this case the ATE is already fairly
high compared to 4/V;, so in spite of the large heterogeneity, the marginals gains from
targeting would be modest. Panel (b) presents the results for the secondary school
lottery. The ATE is estimated precisely at zero, because the lottery tickets had to
be divided as a zero sum between the siblings. The VCATE measures how much the
dispersion in the allocation depends on the covariates. The standard deviation of
the VCATE explained by initial scores is 16% of the SD of the control group lottery
allocation, and the maximum welfare gains are around 7.8% SD.

The student variables (grade, age, gender, attendance, and educational expen-
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N Clusters  Estimate 95 Welfare Bounds

(HH) +/Vi/V(Yy) %CIL  Thm. 1 Thm. 2

Panel (a): Endline Beliefs. —4LE_: _0.42 (0.03)

Vo
Scores 5244 2626 0.40 [0.32, 0.48] 0.201 0.081
Parent Years of Education 5208 2608 0.05 [0.00, 0.13]  0.023 0.001
Scores + Parents’ Education 5208 2608 0.40 [0.32,0.48]  0.199 0.079
Above Median Educ. Expenses 5244 2626 0.06 [0.00, 0.15]  0.028 0.002
Respondent Variables 4722 2365 0.03 [0.00, 0.12]  0.015 0.001
Household Variables 5244 2626 0.02 [0.00, 0.10]  0.009 0.000
Student Variables 4959 2532 0.11 [0.04, 0.20]  0.057 0.007
All variables 4464 2278 0.40 [0.31, 0.48]  0.199 0.079
Panel (b): Secondary School Lottery. \;‘%: 0.00 (0.00)
Scores 5258 2629 0.16 [0.07,0.24]  0.078 0.078
Parent Years of Education 5222 2611 0.00 [0.00, 0.00]  0.000 0.000
Scores + Parents’ Education 5222 2611 0.16 [0.07,0.24]  0.078 0.078
Above Median Educ. Expenses 5258 2629 0.03 [0.00, 0.07]  0.015 0.015
Respondent Variables 4736 2368 0.00 [0.00, 0.00]  0.000 0.000
Household Variables 5258 2629 0.00 [0.00, 0.00]  0.000 0.000
Student Variables 4971 2535 0.06 [0.00, 0.15]  0.029 0.027
All variables 4476 2281 0.15 [0.05, 0.24]  0.076 0.074

Table 1: (Empirical Estimates) Each panel computes the ATE and VCATE normalized by the standard
deviation of each outcome for the control group. The N varies depending on the missing values for the covariates and
the outcome. Each line within panels (a) and (b) considers 8 different sets of covariates measured at baseline which
include test scores, years of parental education, an indicator for whether annual educational expenditures the previous
year (uniforms, fees, school supplies) are above the median, other respondent variables (gender, age, is literate, is
farmer), household variables (number of kids, single-parent), and student variables (grade, age, gender, attendance).
I estimated clustered covariance matrices at the household level. The function pg4(x) is computed using LASSO with
10-fold cross-validation, and the estimates are computed using 2-fold cross-fitting with 20 splits. The point estimates
are the median values of V;,, across splits. I compute the bound in Column 7, using the ATE from the corresponding
subsample.

ditures) collectively explain 11% of the SD of parental beliefs. This is statistically
significant at the 5% level. The magnitude is around a fourth of the variation for test
scores, and the maximum welfare gain from targeting is 0.7% of the SD of parental
beliefs in the control group. I find that other subsets of covariates do not produce
statistically significant estimates of the VCATE at the 5% level. The added welfare
of personalizing treatment assignment using these covariates is also very low.

The estimates that use all the covariates are computed over a smaller subsample
with non-missing values across all variables. Despite the large number of variables

and the smaller sample, the estimates of the VCATE remain relatively stable across
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specifications. The VCATE computed from a rich set of respondent, household, and
student covariates has a comparable magnitude to the VCATE that only includes stu-
dent scores. The confidence intervals are also similar. The estimates of the maximum
welfare gains from targeting using all covariates are 7.9% SD for beliefs and 7.4% SD
for lottery outcomes, respectively, which are similar to the welfare gains computed

using only scores.

8 Conclusion

I propose an efficient estimator of the variance of treatment effects that can be at-
tributed to baseline characteristics and propose novel adaptive confidence intervals
that produce valid coverage. I analyze issues of non-standard inference that arise
in this context, and how to address them. I also explore the economic significance
of the VCATE for policymakers and researchers, by showing that the vVCATE/2
bounds the marginal gains of targeted policies. Overall, this paper proposes a broadly

applicable approach to measure treatment effect heterogeneity in experiments.
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Online Appendix

A Critical Values

Define the correlation p = ©15/4/€112. By definition of the Cholesky decomposition,
(e QV22Z) = /1 Zy, and (ebQV2Z) = A/Qao(1 — p?)Zy + p/Q2Zy. Substituting

these terms into the expression for G

G(n, V7, Q, Z,()

Q V) | % v
= % Zl2 C 1 2\/,p QQQ Zl + — \/ﬁ |: Qgg(l - p2):| ZQ.
W_J “ _ ~ ~" -
141 g Ko
K1
This has a quadratic form, G(n,V*,Q, z,() = 1 (Zl + 21/1) + KoZy — —L, which fits

the form of a generalized chi-square (Das and Geisler, 2021). To Compute critical

values we compute feasible analogs (7, k1, ko) from an estimate of €.

B Proofs Main Document

Proof of Lemma 1. Define 7(X') := E[Y; — Y, | X']. Since X is X'-measurable,
then by the law of iterated expectations, E[7(X’) | X] = 7(X). By the law of total
variance V! = V(7(X)) + E[V(7(X") | X)] = V,. We can prove the upper bound by
setting X' =Y; — Y. ]

Proof of Theorem 1. The result is a special case of Theorem 2. The most adver-

sarial distribution is one where 7, = 0. O

Proof of Theorem 2. Our goal is to find R := sup,cr sup,eq U,(7), and to prove
that U, (7) = R for at least one vy e I' and 7 € II.

Define two random variables 7' := E,[Y; — Yy | X = z] and M := 1{T > 0}. By
adding/subtracting E,[Yy] and applying the law of iterated expectations, U, (7) =
E,[7(X)T] — max{0,E,[T]}. The optimal policy 7*(X) = 1{T" > 0}, which be-
longs to II, i.e. the “first-best” (Kitagawa and Tetenov, 2018). This means that
R = sup,r E,[max{0,T}] — max{0,E,[T]}.
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Step 1: (Problem Equivalence) The set of distributions T' is very large.
Instead I focus on the problem over a set of equivalence classes. For m € {0, 1}, define
the moments p,, = P, (M =m), 7, = E,|[T | M = m|, and w,, = V(T | M = m).
By definition, U, (7*) = p171 — max{0, 7,,}, where p;7y is the proportion of people
that benefit from treatment times their conditional mean. Let A := 7 — 79 be the
mean difference between those that benefit from the program and those that do not.
By definition A > 0 because 71 > 0 and 79 < 0. The conditional treatment effect
is E,[T | M] = 10 + MA, and 7,, = 70 + p1A. Rearranging these expressions,
T1 = Taw + (1 — p1)A and U(7*) = p1(Taw + (1 — p1)A) — max{0, 7,,}. By definition
V,(E,[T | M]) = A?p;(1 — p1). By applying the law of total variance V, = pjw? +
(1 = p1)wd + A%(p1)(1 — p1). Then

R = sup P1Tav + pl(l - pl)A - I'IlaX{O, Tav}7
{pl,To,A,wg,w%}

st. pref0,1],70<0,70+A>0,A>0,w},wi =07+ pA = Ta, (50)

pwi 4+ (1= pr)wg + pi(1 = p)A* = V..
The values of 7,, and V, impose the following constraints on the feasible set:

‘ V.=0 V.>0
Tav<0 D1 207 T0 = Tav, WOZO ple[oal)
Taw >0 | p1 =1, 7 =74, w1 =0 p;€(0,1]

By the form of the objective, if p; € {0,1} then R = 0. Therefore, if V, = 0, then
R = 0 and the result of the theorem holds. Any value of the remaining parameters

that satisfies the sign constraints will be feasible. Without loss, we focus on V, > 0.

Step 2: (Optimum has binary support) Consider a situation where (p;, w?, w3)

Ve —p1wi—(1—p1)wd
p1(1—p1)

are fixed and p; € (0,1). From the variance equation, A* = \/ , and
from the mean 7§ = 7, — p1A* and 77 = 74, + (1 — p1)A*.

A solution is feasible as long as w?, wj = 0, pywi+ (1—py)wig < V;, 7§ <0, 7 > 0,
and A* = 7} — 7¢ > 0. The optimal 7 is strictly increasing in (w?, w?) and 77 is
strictly decreasing. If a given value of (w?,w?) is feasible, then another candidate
which shrinks it to zero will still satisfy the constraints. Moreover, the objective
function is strictly increasing in A*, which in turn is strictly decreasing in (w?, w?).

Therefore the optimum is (w?,w?2) = (0,0), i.e. binary support for the CATE, A* =
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V Vi/pr(1 = p1), 76 = Taw — vV /(1 _pl)\/vT7 and T = Top +4/(1 _pl)/pl\/i

Only some values of p; are feasible, i.e. satisfy the constraints A* > 0, 7} < 0,
and 7 > 0. The function p,/(1— py) is strictly increasing in p with a range in (0, o).

The feasible values depend on the sign of 7,,. If (i) 7, < 0, then p; € (0 CIf

’ 2+VT

. 0 2
(ii) T4 > 0, p1 € 2 1)

Step 3: (Solve points of support) For case (i) the objective function is R =
maxple[o Vs ] P1Taw + A/P1(1 — p1)v/Vr. The unique solution to the FOC is pf =

24V,

(1/2)—(1/2)+/72,/(72, + V), and is interior because /72 /(72 + V) = 72 /(72,+ V).
By strict concavity, it is a global optimum, and R = 7,,/2 — (Tuy|Taw|)/ (24/ 72, + V) +

V./(24/72, + V+). Since 74, < 0, this can be simplified to 2 (—|7a| + /72, + V;). For
case (ii), 74, > 0, the objective function is (p1 — 1)7ay + +/P1(1 — p1)VV ., subject to
1=2p > Tg:ivvr' The unique solution to the FOC is pf = (1/2)+(1/2)+/72,/(12, + V3),

174,
272, +V, & 72 +V )

it is interior because pf = 3 + and produces the desired R.

[]

Proof of Corollary 1. The potential outcomes under a linear transformation are
K1 + KoYy and Ky + koY), respectively. The treatment effect is ko(Y; — Yp), which
does not depend on k1, and the transformed CATE is ko7(z). The ATE is ko7,, and
the VCATE is x2V,. The result follows from substituting the transformed values into
Theorem 2 and factorizing |ks|.

]

Proof of Lemma 2 . We decompose ‘A/m = Bgnf}m into components that map into

those of Assumption 2, by centering the key terms.

> n2 17 2 Vxn

= [Wzn(één - /BQTL + 2 \/ anQn am 52n BZn)] [ xnﬁz] (;n — 1)

+ [\/ V:’tn(BQn - 5271)]2 (% - 1) + 2 \/ xnﬁZn \/ xn 5271 ﬁan)] (Kxn - 1) .

(51)
Let Z, = nl/QQ;m[\/Vm(Bgn — 5271),‘7;:71/‘/93” — 1]" be a normalized statistic, and
let e; = [1,0], e2 = [0,1]" be vectors that select the first and second coordinates,
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respectively. We can always find a (, € {—1,1} that solves (v Vi = Bon/Vin. If
V:n > 0 this is the sign of 33, but otherwise any ¢, € {—1, 1} will solve the equation.
By substituting the definition of Z,, V;, = 82 Vyn, and

~ 0.7 027 027
Vm—V:;L:(el n)’ +2Cn\/7<61 +VE €2
n

Vn Vn
, GOPZGPZ) |y (GO 20 (0 )
ng/g n ™ .

n

(52)

By Assumption 2, Zn — T + 0p(1). Moreover, since €2, has bounded eigenvalues,
W7, =07, + 0p(1). This means that

~ ! Q}/QZTL 2 VA Vo*
Vip = V2 = G Zn)” 2| 2 QY2 7, + e OV2 7, + Residual,,  (53)
n n Jn

where the residual is o, (n"')+o0, («/VT”;L/n) +0, (V¥ /1) +0,(n"3%) +0,(n"t1 /V%).

The fourth and fifth terms of the residual are o,(n™') and 0,(n~/2,/V*), and hence
asymptotically negligible. The leading term in (53) is O, (max {1/717 «/Vj;/n})

Proof of Lemma 3. Let ¢; = p(Y;, D;, X;,n) be a realization of the influence func-
tion in (14) and compute V[p; | D; = d, X; = x] = 4(7(1) — Tan)? [d:(i()xz) + (glidggf)()ﬁ)]
and E[p; | D; =d, X; = x] = (7(x) — Ta)*
By the law of iterated expectations E[p; | X; = z] = (7(x) — 74)%
|

By ap-

plying the law of total variance recursively, V(p;) = V(E[p; | X;]) + E[E[V(p; |

D;, X3) | X]] +E[V(E[g; | Di, X;] | Xi)]. This produces, V(¢;) = V((7(X;) — Ta)?) +

1B | (r(X) — 7w)? (2532 + 29 )| =
! av p(X3) (1-p(X:)) J |

Proof of Corollary 2. V((7(X;) — 7a)?) < E[(7(X)) — Taw)?] < &*V,. By the
Cauchy-Schwarz inequality, the term E [(T(X,) — Taw)? (U%(Xi) SR C.9) )] is bounded

p(X5) (1-p(X3))
o2(Xy) a2(X) \2
by "‘Vf\/E [( &+ o) ] =
Proof of Lemma 4. Let Q(6) be the Jacobian of the least squares problem, de-

fined in (18). Substituting I//[\/(Xi, DyYes = (D;—p(X:))S(X;) and A(X;) = [p(X;)(1—
p(X;))]™" into the definition, 5,Q(f)es = L 377" }#52 (X) (V=W (X, D;)).

Y(1-p(X;))
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By the definition of the nuisance functions in fjy(z) in (19), W (X;, D;)'6 = flo0(X;) +
Di#a(X,), 7a(x) = By + B:8(X0), and 7 = By + [ X, §(X3)

Ly S(X,) =0, then £,5(X;) = 7(X;) — Tanp and

(5. Furthermore, since

B0 = 3 R RS )0 e () ~ D).

Notice that D; —p(X;) = D;(1 —p(X;)) + p(X;)(1 — D;). This implies that Diop(Xi)

p(Xi)
p(l;é) — 1(1;&)) The next step is to substitute the estimated parameters. Then

EY (Vi D Xiilg, ) = 500 (75,(X0) = 7,5,)7 + B20Q(0n)es. The first term
simplifies to 32, [5 Dy S(X)) ] 32 V. Finally, Q(6,) = 0 implies that the sec-

ond term is zero.

[

Proof of Lemma 5. The parameter 6 = (ay, as, 1, f2) € ©F solves
E[MNX)W(X,D)Y]—E[NX)W(X,D)W(X,D)]6 = 04x1. (54)
If there exists a § € R* such that E[Y | D = d, X = z] = pg(x) = W(z, then by

d)'9,
the law of iterated expectations E [AN(X)W (X, D)Y]| = E[NX)W (X, D)W (X, D)'d].
Such a 6 would automatically satisfy (54). Now suppose that S(z) = 7(x) — T4,
M(x) = po(x) + p(z)7(z), and 6 = (0,1, 7,,1). For this choice, W(z,d)'0 = 0 +
(o(z)+p(z)7(2))+(d—p(2)) Tar + (d—p(x) ) (7 (2) —Tay ). This simplifies to W (z, d)'0 =
po(z) + dr(x) = pg(r) and 6 solves (54).
[

Proof of Theorem 3.(i). Define a vector Y, € R™ with the outcomes in fold Z,,,
W, . be an nj x 4 matrix of regressors, U, € R™ be a vector of errors, and A, be
a ng x ng diagonal matrix with entries {\(X;)}. Let @nk be an ny x 4 matrix of
generated regressors defined in (22), and let I1,;; be a 4 x 4 diagonal matrix with en-
tries (1,1, 1, Vm}fﬁ) Let 6%, := (Q1nks @20k, B1nks fxnkﬁgnk) and define an infeasible
estimator an =11 10nk (H’kW;kAnkWnank/nk) (I, W Ak Yor/nu).
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Define Quuw nk := E[NX;)W; W/ | Z_,x]. By Lemma 11,

7

EIMX:) [ 2] EMX)M_(X;) [ k] 0 0
0 Quue L = EMX)M_p(Xo) [ Toni] E[MX)M_(Xi)* [ Zoe] 0 0
ik 0 0 10
0 0 0 1

(55)

By Assumptions 1.(ii), 3.(1) and (ii), II/,,Quwnkll.x has bounded eigenvalues. Alge-
LW AWl 1 Dz L ANX)W;W/IL,,. Since the terms are con-
Nk Nk 1€lnk

ditionally i.i.d, it converges to (55). By Assumptions 3.(iii) and (iv) A(X;)ILW,;U;
is bounded in the L, norm, and 4/7”L/y€(§7’;k — One) = (11, Quow i ILnk) ™ L Wil y

V1
_ 2
0p(1): Also, Vook Ve =1 = 2 S [VihS4(X0)? =11 = | & S, Vil *S-(X0) |

The second term is O,(n™!) because the summand has mean zero and unit variance.

Ai:_<>\(X) kWUZ->7 e
VikSop(X0) — 1

braically,

0, 1

xnk

(H;lk; wa,nk an) -1 Q4]

By (55), (I', QuwnkIlu) ! has a block-diagonal structure, with a one in the bottom-
right cell, and hence Y[J*] ' = T. This means that

5*_9*
T ~ =T] A;
\/TTk <V$nkvxnk > " [ 1§k
VPAX)D; — p(Xi)S_ k(X)) U
Z :Enk )1(/21 p( 1)) k( Z) i +0p(1).
V29 LX) -1

znk

—i—op

=

(56)

Deﬁne ?nk aw = % ZiEInk //7—\7nk(X7,) and Tnkav = E[?fnk(X'L) | Ifnk] Alge—

braically, Wnk = W, (Luxa + Apk), where Ay, = [04,04, 04, €3(Thkar — Tnkav)] and

es = [0,0,1,0]". The bias in centering the fourth column of Wnk is a scalar times the
third regressor. Substituting @nk W T U (T + A,

§:k = (Hr_zkl(] + Ank)an) (H kW kAnk‘Wnank’) ! (H{rzkw;zk/\nkxnk)a (57)

which simplifies to 6%, = (T, (I + Ag)Ly) " 0%, Since AugAn, = Ognq, then
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znk

~ ~ —1 ~ ~
—1 * *
5 )= (H"’fA"’“H”’“> Qi ‘9”’“ =T _Hlnﬁ . (58)

The second equality follows from the fact that the selection matrix T only extracts the
fourth and fifth rows of the vector. We can plug-in (58) and the identity Y[6%,,1] =

(55, 1] into (56). By Assumptions 4 and 5, the observations are conditionally i.i.d.

-1 -1/2 N -1/2
nk n - nk;
(M1 + Aw)T) ™ = (T4 VA, ) — -V YA, and

given Z_,x, and 2, has bounded eigenvalues. Then by the Lindeberg-Feller CLT,

\/7(2—1/2 <Vﬁ2nkv Ban ) | Tt = N (091, ona). (59)
xnk Yank —

O

Proof of Theorem 3.(ii). Let A, = I + A, where the non-zero term in A, is
an average with mean zero and variance V. Under the assumptions of part (a),
1,11, = =1+ op( ) and anﬁnkﬂ’l I+Vv, 1/2Ank = I + 0,(1). Decomposing
anWnkAnkWnkH r in a similar way to (57),

( nkA, ank;)(H, kW;LkAnkWnank)( ;éAnkﬁnk) = H;kaw,nank + Op(l)

. Hence J,;, = J¥ + 0p(1). Substituting @nk, into the upper-left block of f[nk,

n

(AL I Z UPA(X)2T  WW Ty | (I A DL ). (60)

IEI nk

As before the outer terms are I + 0,(1). For the inner terms we apply (57) U, =
Y= Wil = Yi= WA = YVi—= WL A I I, = Yi— WL, 6%, = U —
W!TLy, (6%, — 6%,). The inner term of (60) is E[U2A(X; )L, WiW/TLy, | T_] + 0,(1)
under Assumption 1.(ii) (overlap) and 3 (bounds on moments of U; and IL,,W;). In
particular, 3.(iv) ensures that E[||TL,W;|* | I_nk] is uniformly bounded.

Define S, := Tll_kZz‘eI,nk S;k(Xi) and S_(X;) = 7_.(X,) — nlk ZzeI T k(’)\(z)
Adding/subtracting the mean, S_(X;) = S_1(X;)—S,k. Algebraically, - o DT T? =

(2

Vit (2 ez [5-0(X0)? = Vo) = Vi (£ S, S#(X0)" = V2,). This simpli-
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fies to V2

xnk

( Diier, [S-k(Xi) — Snk]4) — 1. By a binomial expansion,

TP e G T

LS VAR L -1

znk
zeI nk znk a:nk zeZ nk
. J
P gl
- op(1) 0,(1)

By Assumption 3.(iv), the bound on V., and the moment bounds for VCC;}! 2S,k(Xi),
then for ¢ € {1,2,3,4}, H Sier vzij/Qs,k(Xi)‘l—ﬂ] is 0,(1). By the weak law of
large number, V;mk/ Spx = 0,(1) and by (59), ‘A/mk/‘/}mk —P 1. Hence iZiean YA}Q =
E[V S k(X)) | I_nk] — 14 0,(1) = V(V;}!QS_k(XiV) + 0,(1). This shows that
the diagonals of an converge to their population analogs. The proof of convergence
for the off-diagonals is similar. By the form of Quunx in (55), TJ;kl = Y. Hence

YT Ho Joi X = T Hop 5+ 0p(1) = TH Y+ 0y(1) = Qi + 0,(1).
]

Proof of Lemma 4. We start by proving that ||V,(y) — V.*(v,Z_nx)| < V,. Since
the second term of (33) is always non-negative, V*(v,Z_,x) < Vi(y). Also, since
B1 = Ty and P2 = 0 are part of the feasible set, then the second term is at most
Vi (7) = E,[(7(X) — 7y.a)?]- This shows that V*(v,Z_,x) = 0.

To prove the second bound, we examine the solution to the best linear projection.
Since the folds are independent, conditioning on Z_,,; is only important to be able
to handle S_i(z) as a deterministic function. For ease of exposition, let F' denote
the conditional distribution of v given Z_,, and let |g|r2 = A/Er[[g(X)]?] denote
the Ly norm. Since Ep[S_x(X)] = 0, the optimal solution is 8y = Tra,. When
Ve(S_x(X)) = 0, the optimal 335 is indeterminate, and V*(v,Z_,x) = 0. Otherwise,

Covp(S_i(X), (X)) 1 Covp(S_k(X), 7r(X) — S_(X))
Ve (S_k(X)) Vr(S_k(X)) '

(B;F - 1) =

By the Cauchy-Schwarz inequality, (85 — 1)?Vp(S_x(X)) < Ep[(7(X) — Traw —
S 1(X))?]. Rearranging (33) and substituting the optimum:

Ve = VI = Ep[(7(X) — Tao — S_i(X) — (85 — 1)S_(X))*].
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By the triangle inequality for the L, norm, and the above Cauchy-Schwartz bound,

Vo(y) = VZ (1, Toni) < [2)79(X) = Traw — S-1(X) | p2]” (61)

Substituting S_i(x) = T_p(z) — Ep[7_x(X)], (61) can be rewritten as 4(7,(X) —
(X)) — (Erp[r(X)] — Ep[7T_n(X)])|? < 16]7_ — 7|}, By the law of iterated
expectations w(7y) := E,[|7_x(X) — 7(X)|*] = E,[|7- — 7,[|2]. Combining the two

bounds and applying Jensen’s inequality,
B [[Ve(y) = V(7. T ] < By [min{16]7  — 770, V2 (9)}] < min{16w(v), V2 (7)}.

O

Proof of Theorem 5 . Decompose A, = Aprr + Apga, where Ay = V() —
V*(’yn,I_nk) and Ao = XA/mk — V*(Vn, Z_pi). First, by Lemma 4 and Assumption

E., [ Anir]]] < min{16w(y,)2, Vs (1)} = o(n, /*). By Markov’s inequality, Az =
op(nk1 ). Second, conditional on a sequence {Z ,;}>_,, by Theorem 3 and Lemma 2,
8wl = Op (max {1, \/Vi (i Tt/ } ) Simee V2 (s L) < Valm) = o(1),
then almost surely, for all e > 0, ¥, - (Z_ni) :=P,, (nk |Ankall > € | Znk) — 0. By it-
erated expectations and the bounded convergence theorem, lim,, o P, (1, 2 | Ak <

) = 1ty s B [ (T )] = oy [l 0 (T )] = 0.

If, in addition, nk/2+pVT(7n) — 0 for p € [0,1/2), then n,i/ﬂpAnkl = 0,(1) (the
second bound dominates). Since nfV;(7,) — 0 as well and p < 1/2, then conditional
onZ ., nk/2+pA
again to show that P, (n,lc/2+p||Ank2H <e)=o(1).

nk2 = 0p(1). We can apply the bounded convergence theorem once

]

Proof of Theorem 6. Consider a sequence of distributions {,}*_,, with associated
nuisance functions (7,,(x), ton (), Pn(T); Tn.aw)-

Case 1 (Near Homogeneity): V,(v,) — 0. By the triangle inequality,

™k T Z Pi Z ©i —

i€lnk ZGI.,L k

‘7TTL]€ — Vir(

gnl

N\ < v

£n2

o4



By Theorem 5, &,1 = 0,(1). Since the ¢; are i.i.d with mean V,(v,), then E, [£2,] =
V.. (¢i). Let 03, (z) =V, (Y; | X; = 2,D; = d) and p,(z) =P, (D; | X; = z). By

Lemma 3 and Corollary 2, V., (p;) < 2V, (”yn)2—|—4/<;VT(’yn)\/E% [(i”((;{")) + 10_(2’;75&))) ] :

Since V,(7,) — 0 as n — oo, then E[£2,] — 0 and hence &2 = 0,(1).

Case 2 (Strong Heterogeneity): V,(v,) — V, € (0,00). For fixed (z,d),
the cross-fitted regressors are W(m, d) = [1, fto, (@) + pu(@)T-1(2), (d — pa(2)), (d —
p(a:))g,k(as)] Let e, be a 4 x 1 vector with a one in the ¢ coordinate and zero

otherwise. Analogous to (19), define the regression adjusted nuisance functions as

~

g, (@) = [es(W(x,1) - W(xz,0)) + exW (2,0)10nk + €300 (2) + €47nta0-  (63)

By applying Lemma 4 to the subsample in ¢ € Z,,

~ 1 R
‘/‘rnk = Z 90(}/;7 D’iaXian,kﬁnk)a

nk iEIk

wheren_, 5 (x) :=mn(x)+r(n_ 5 (x)—n(z)). The true nuisance function n depends
on the distribution indexed by n, but we drop the subscript to simplify the notation.

By a second-order term in the Taylor expansion around r = 0, for some 7 € (0, 1),

3 (Y, Dy, Xiv) — Vi ()]

iEInk

i (Do — V() = %n*

+ ~ (X)) —n(X;
WZ B (g, (X0 = (X))
1 & ,62¢(K,D1,X¢,?7, AM)
o 2y, () = (X)) o b (5 (X0) = n(X).

(64)

Our ultimate goal is to show that the second and third terms of the expansion are
0p(1). To keep the notation concise, let ¢;(n) := ¢(Y;, D;, X;,n). One of the main
challenges is that the nuisance functions are estimated in multiple steps, combining in-
formation from the Z,; and Z_,,; subsamples. The key is to decompose these different

~ ~ ~

sources of uncertainty. Define (Ax—A k) = [(Onk—601), Tok.av (0nk—0n) s (Tok.av—Tn.av)]’s
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where 6, = (0,1, 7,40, 1). By Lemma 14, there exist matrices W_,;(z) and A_,x(z)
that are (z,Z_,i)-measurable, such that for all x € X,

U o (2) Ot — Anke) + A_i(2). (65)

‘\‘0
b
;b)
>
—~
8
~—
|
3
~~
8
N—
Il

Let e, be a 4x 1 elementary basis vector. Lemma 14 shows that e5[_, 5 (z)—n(x)] =
0 and e5A ,;(x) = 0 because the experimental propensity scores are known. Lemma
14 also shows that ejA_,x(x) = 0 by construction. Substituting (65),

1 0p; 1 L . /
\/mz;k 90577(,77) (_p5,, (Xi) —=n(Xi)) = — ZZ 210 er(n_p4,, (Xi) —n(Xi))

I BHE] ASSWRY S ool L TAES

zeI K 0#3

- ~/
v Y

\

Aink Aank

Lemma 15 implies that S\nk — Ak = 0p(1).

(i) Prove that Ay,x = Op(1): By Lemma 13.(a) the conditional mean of —6(751“%734),

given (x,Z_,;) is 0,0, =2(7(z) — Th4v)] and by Lemma 14, e,U_,, = ¢. Also,
E, [1(X:) | Zonk] = E,, [mn(Xi)] = Tnew by fold independence. By the law of
iterated expectations, E., I:asgi](en)ez\ll—nk(Xi) |I,nk] = 0 for £ € {1,2,4}. By As-
sumption 7, E. [[n(X;)|*] and E,, [||UZH4] are uniformly bounded by a constant

C < . By Assumption 1.(ii), p,(z) is contained in [0,1 — ¢]. Applying Lemma
13.(b), E,, [Hagpi(n)/&‘m||4]l/4 < (16/6)C < . By Lemma 14.(d), and the triangle
inequality, E, [[|e;¥_(X;)| ]1/4 C[1 +E,, [|7-1(X;)|*]**]. By the bound in As-
sumption 7.(iii) and the Cauchy-Schwartz inequality, E., [Ha‘p’(”) ey _k (XZ)||] < 0.

We can combine these moment bounds to apply Lemma 12.(a), hence Ay, = Op(1).

(ii) Prove that Ag,x = 0,(1): By Lemma 13.(a), E,, [a% epA k(X)) | I_nk]
for ¢ € {1,2}. Using similar arguments E., [||8<pi(77)/877g|| | < C. By Lemma 14.(b),
| Ak (@)l < Cx |-k (2) =n(x)[. By Assumption 7.(ii), B, [|7-(z) — n(2)['] = o(1),
which means that E., [H 2t ey (X;) 2] is o(1). By Lemma 12.(b), Ag,, = 0,(1).

ong

Let = = [eq, €9, e4] be a 4 x 3 matrix such that |Z|| < 1. Let As,x be the second-
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order on the right-hand side of (64). Since the propensity score is known,

A3nk -

1 *0i(n_15,, )

— n 2 XZ — )(Z /E Ikl E/ A XZ — Xz .
ng Zggk v k(nfkﬂnk( ) 77( )) a(nb Mo, ?74)6(771, N, 774)/ (TLk,enk( ) 77( ))

2pi(n_y 5 . )
(iii) Prove that Ag,, = 0,(1): By Lemma 13.(d), ' 6(77177727774);(’;;7’;7’27”4), ‘ < 18x+/3/§. For

scalars, a,b € R, (a + b)* < 4(a® + 1?). By (65) and the triangle inequality, ||As.z| <
4 1858 (iR = Ml [ iz, 1k ()P | + | £ Sz, vl A (X0)2]).
By Lemma 15, «/nkHS\nk — Mikl? = 0,(1). By Lemma 14.(d), |V _.x(x)| < C[1 +
2||7_k(x)||]]. By the moment bound in Assumption 7.(i) and Markov’s inequality, then
LS Uk = Oy(1). By Lemma 14(e), |A (@)l < C x [74(x) — n(&)].
By Assumption 7.(iil), /B, [[7-1(X;) — n(X:)|*] = o(1), then by Lemma 12.(c),
m 2iez,, VA ik (Xi)[|? = 0,(1). Combining these results, Az, = 0,(1).

[]

Proof of Theorem 7. Let p(v,Z_ k) = P,(V*(v,I_nk) € C/'}ank | Z k) denote
the conditional probability that the pseudo-VCATE is contained in the confidence
interval. Let F(v) be the support of Z_,x, and let F(v,t) € F(v). Almost surely,

inf  p(v,Zowk) <SE [p(v, Ioe)] < sup p(v, Zonk) + Py (Zonk ¢ F(7,1)).
I_nk€F(7) T_nk€F(7,t)

(66)

The left inequality considers the worst-case coverage. The right inequality applies
the law of iterated expectations by the event Z_,;, € F*(7,t), then bounds P (Z_,, €
F(v,t)) <1 and p(v,Z_nx) < 1 to simplify the expressions. Applying limits,

. . . . < . . . * . /\an

hﬂlfgf #Eﬁ Ifnlkléff(v) o7 T k) llyllriloglf ’1er1£ P, (VT (v,I_n) € CI k) : (67)
and an analogous result for the upper bound. The data in Z_,; only affects fold
k through the estimated nuisance functions 7 x(z). To prove uniform coverage we
will derive the bounds for a class of distributions where the (Y;, D;, X;) in fold k is

distributed as 7 and the plug-in nuisance functions are deterministic. We will define
F(7,t) as the set where |V*(v,Z )k 12| < t for some fixed t > 0.
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Let {v,}% , and {Z_,x}>_, denote a sequence of distributions and data realizations,
respectively. Theorem 3 verifies that under Assumptions 1, 3, 4, and 5, the conditional
CDFs {F, iz .}, satisfy the high-level Assumption 2, almost surely. Furthermore,
C’]mk satisfies the form in (11), substituting (mG, an) Therefore, Lemma 10.(a)
shows that the uniform lower bound on the asymptotic coverage probability is (1 —a).
If Assumption 8 also holds, then for all t > 0, lim sup sup,¢p P (Z . ¢ F*(7,1)) = 0.

n—eo

Hence by Lemma 10.(ii), the upper bound is (1 — «) plus a term that can be made
arbitrarily small by choosing ¢ close to zero.
]

Proof of Lemma 6. Consider an arbitrary sequence of distributions {v,}%_, € I'®
and a convergent subsequence where V;(v,,) — V;. Since V*(vn,, Z_n,x) < Vip, and
2,1 has bounded eigenvalues, if V; = 0 then lim,_,, ]P’%Z(\/mmwk,lﬂ >
t) = 0. Now suppose that V, > 0. By Assumption 6, the nuisance functions con-
verge to their true value. Then T_,(z) converges point-wise to 7(z), and by the mo-
ment bound in 3.(v) and the dominated convergence theorem, V. = V.., (T x(X) |
Z k) = Ve(tn,) +0p(1) = V7 +0,(1). By (28),

Ay (X3 (D; m(m») mtﬁfs H(X)U;

ank = V'Yne < | Ingk) ) (68)
where U, = Y; — W/0,,,. By Assumption 7, for fixed {D; = d, X; = x}, W/ point-

wise converges to I/VZ-*’ = |1, pon, () + pn(@)70, (), (d — pn,(2)), (d — pp,(x)) 70, ()]
By Lemma 15, 6,z — 0,, := [0,1,7,, 40, 1]. By Lemma 5, W»*’@ne = fan, (), and

1

)

hence Uj,, :=Y; — W»*’@n,_,. Since Q,,,% is almost surely bounded by Assumption 3 over

random partitions Z_,,;, then applying the dominated convergence theorem,

ank = V'\/ng (
(69)

Since E,, [Us, | Di = d, X; = 2, ] = 0 and the second component of (69) only
depends on X;. By iterated expectations, €, 12 = 0,(1) and the limiting probability

is limgo Pr,, (V/VEF(Vgs Zongk) [Qngr12| > t) = 0. Hence we verified Assumption B*
in Andrews et al. (2020). Uniform consistency follows from their Corollary 2.1.

)\n Xz Dz_pn X ‘/;'71/2 Tn Xz — Tny,av U;n
(D= )V P00 = U] Y o),
v (Tnz (Xi) — Tnz,av)

]
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Proof of Theorem 8. We break-down the proof into cases.
Case (i): When V. (v) = 0, then V;(y,Z_,x) = 0 almost surely. Therefore,

~

e(Venk — VX (n, Zonk)) = np(VE, — Va(y)). Define p(v,Z_,x) as in Theorem 7.

Then ligiogf infr ere) (7, Zonk) < 1i7rlriioro1ﬂP’7 (V: (v, T—ni) € é\]ank) We can prove
an analogous upper bound. This implies that we only need to derive coverage bounds
under sequences of conditional distributions where V*(,,,Z .x) = 0. Exact coverage
follows from the proof of the near-homogeneity case in Lemma 10.

Case (ii) When V;(v) > 0. By Assumption 6, y/nxw(y)* — 0 as nj, — co. Then by
Lemma 4, /n|Vo(7) =V (7, Z_nk)| = 0p(1), and by the continuous mapping theorem,
NV VE(LT k) =P A/Va(7) > 0. By (69) in the proof of Lemma 6 and for fixed 7, = 7,
Qup = Q4+ 0,(1), where Q is a population covariance matrix that does not depend on
Z .- By applying similar limits to the mild heterogeneity case in Lemma 10 we can

show that (V... — V.(vy)) is /nx asymptotically equivalent to an empirical process
indexed by the oracle V, (). We obtain exact coverage due to Lemma 6. O]

Proof of Corollary 3. By the first part of Theorem 7,

lim sup sup P, (VT* (v, Z nk) ¢ C/j\lank> = 1—liminfinf P, (VT* (v, Z k) € C/’\Iomk) < a.

n—oo  ~el n—w el

The result follows taking limits on either side of the inequality in (38). O]

Proof of Theorem 9 . By the definition in (32),

— multifold

1 & . 1
> — > > —
Vi) 2 inf Ol = ;1 {VT(W) > 1nfCIank} =53

By negating the statement, computing expectations, and applying Markov’s inquality,

k

P, (V(7) <infClom ) =E, [ﬂ { (%Z 1{V,(7) < mfc?z;nk}> > 1/2}]
1 .
< Q?ZklE,y[]l{VT('y) < inf Clap}]
< 2P, (VT(fy) < mf(?[%nk) < 2P, (VT(%Iink,) ¢ 51*”,{)

The last line follows from the fact that the folds are split at random and the in-
equality in (38) holds almost surely. By Theorem 7 the asymptotic size is uniformly
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— multifold

bounded by 2(a/2) = a. By construction, P.(V.(v) ¢ CI ) = P.(Vi(y) <
—~ multifo multifol
inf C1 omlt 1d) + P, (V,(y) > supCI Omlt d). Applying Slmllar arguments as before,

— multifold

P,(V:(v) ¢ infCI,, ) < 2P, (VT(fy) ¢ C/*\I%nk). If Assumptions 6, and 7 also hold,
then Theorem 8 implies that the right-hand side is point-wise bounded by «a.
O

Proof of Lemma 7. Under the null hypothesis, G(ny, 0, Que, Z, ¢) = (€, 1/2 Z)? ny,
where Q}l/,fnZ where Z ~ N (0,1). The adjusted critical values are gq 2 (ny;, 0, an, () =
0 and ¢ a/g(nk,O an,(’) = Qur1125_o/nk. Then 0 € Cl,y,, if and only if 0 <
mG 0< an 11z1 o/ Following similar steps to the “near homogeneity” regime
in Theorem 7, nx(Vine — V(Y Z i) = (Qiﬁl Zok + 4/V)* — v + 0,(1), where

Zni ~ N(0,1). Consequently, npVink = (Q}fn wk +4/0)? 4+ 0,(1). Then

]P)’Yn (O € C/?omk | Ifnk) = ]P)'yn <O < nk‘,};nk < an,ll'z%_a>

=P, (O < (Qz?llznk +1/v)? < Qoo,llzia) +o(1)

NG NG
=P, | ———<Zy+o,(l)<z_o——— ] +0(1).
0 ( m k P() 1 m ()

and hence limy, o Py, (0 € Clani | Top) = P (2100 = V0/v/ Qo) =@ (—/0// Qo).
The final result is obtained by 1 — P, (0 € C’Iank | Z ok)- O

Proof of Lemma 8. The first part of the proof is identical to that of Theorem 7 in
terms of setting up the problem, and defining a sequence the conditional distributions
{Fy 7 )i By equation (39) this sequence satisfies Assumption 2 almost surely
with an effective sample size n = n/r,, and a particular choice of covariance estimator.
To complete the proof, we develop a modified version of Lemma 10 to prove uniform
coverage under cluster dependence. Consider a sequence of distributions {7, }%_, € '
and a subsequence {n,};°,, where - VT*W —Pve0,0), V3, —P0, and Q,, — Q as

ny — 0. Applying Lemma 2 , and factorlzmg terms as in Lemma 10,
DEWE S VE ) = (6,927, + V0)? — v+ 0,(1). (70)

TNy ™y
ne

Now we need to show that the quantiles of the empirical process converge to the same
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limit. The quantity *~G(ng, V7 QW, Z) is equal to
nz -

TNy’

(ehrm P02 22 Vi 1 neVen . ~1/20)
T oy [ 02 4 [FUe [V (e 0122, (7
ne

e

In the first term the n, components cancel out and r;@lfln[ —P . Similarly, since
:T‘;VT";W —P y the second term of (71) converges to 2y/ve|Q2/?Z, and a suitable fac-
torization with the first and second the expression in (70). Since ng/r,, — o by
assumption, then V% — 0 and the third term of (71) is 0,(1). Therefore the es-
timated quantiles are consistent. Proving consistency of the quantiles for the mild
hereterogeneity proceeds analogously. Once we prove that the quantiles are asymp-

totically correct, the rest of the proof is the same as in Lemma 10. O

Proof of Theorem 9 . The first part of the proof is identical to that of Theorem 7 in
terms of setting up the problem. In this case the sequence of conditional distributions
{F. T }o_, only satisfies Assumption 2 for subsequences where V.., = 0. Instead, I
will modify the first part of the proof of Lemma 10.(i) for a class of regression-adjusted
CIs with possible degeneracy. Consider a sequence of distributions {v,}+ ; € I'” and

let h, := (V2 V*

™7 ~T™n?

vec(), Cn, Van) be a sequence of parameters where V,, is the
variance of S_j(X;). Our goal is to show that for h € H and all subsequences {ns}},
where h,, > heH,
lm P, (v, € (ngmk) >1-a
Partition the subsequences in such a way that h,, either has V,,, = 0 or V,,, > 0.
When V,,,, = 0, then ‘A/T";l , is exactly degenerate and the confidence interval (40)
covers the pseudo-VCATE with probability one. For the sequences where V,,,, > 0,
we can apply the remaining cases from Lemma 10 which have coverage 1 — «. This
satisfies Assumption B in Andrews et al. (2020) and we can prove uniform conservative
coverage of the pseudo-VCATE applying their Corollary 2.1
We prove point-wise coverage by cases. When V,(v) = 0, then V*(v,Z ;) =
0 almost surely. By applying the result above and the near homogeneity case in
Theorem 7 we find that coverage is at least (1 — a)). Now consider the case where
V-(7) is bounded away from zero. By Assumption 6, the nuisance functions converge
to their true value. Then 7_,(z) converges point-wise to 7(x), and by the moment

bound in 3.(v) and the dominated convergence theorem, V., (7_,(X)) = Vo(v) +o(1),
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which is bounded away from zero. Then we can apply the mild heterogeneity results
in Theorem 7 to prove (43). The proof of (44) is identical to that of Theorem 9,
substituting the confidence intervals Cl ank instead of Cloni. Point-wise coverage of
the fold-specific confidence intervals holds by (43).

O

Proof of Corollary 4. The proof of (45) and (46) follows a similar structure to
Corollary 3 and Theorem 9, respectively. In each case the only thing that changes
is that we apply the uniformity result for degenerate Cls in (42) (Lemma 9), rather
than the non-degenerate uniformity result in Theorem 7.

[

C Swupporting Lemmas and Proofs

Lemma 10. Suppose that I is a set of distributions constrained in such a way that
Assumption 2 holds. Let V*(7) = Ba(7)?Va(7y) and Q(y) be the pseudo-VCATE and
covariance matriz associated with vy, respectively. If CI an 1S a confidence interval
obtained by substituting (V,,, Q) into (11), then

(i) 1 —a< hm 1nf infer P, (VT* (7) € C/'tfcmk)

(i) If in addition, Q12(v)V-(7) < t, then limsup sup, ¢ P, (Vr* (v, Z_nk) € &ank) <

n—aoo

(1 —a) + a(t), where &(t) = 0 and lim;_,o &(t) = 0.
Proof. Let {7, € T : n € N} denote a sequence of distributions. Our goal is to verify
that the confidence interval satisfies the assumptions of Corollary 2.1(c) in Andrews
et al. (2020). Define a sequence of parameters, h, = (nV3, V¥ vec(€,),(,). By
Assumption 2, each element is contained in H, a subset of the extended Euclidean
space in which €, is positive-definite with bounded eigenvalues. The quantity nV* is
positive but unbounded, and can converge to +o0. Assumption B in Andrews et al.
(2020) is stated in terms of subsequences and the first step is to write the problem in
this way. We show that for h € H and all subsequences {n,};°, where h,, - h € H,

1—a< lim P, (v;;w e (/J\Ian) <(—a)+alt), alt)=0ac(0,1]

nyg—00

We break down the proof by cases. (a) Near homogeneity case: Suppose that
neVy,, =P v e [0,0), Vi —P0, ¢, — ¢* e {01} and Q,, - Q as n — o,

TNy
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where €2 is positive-definite. For this case, \/n/V}%,, = o(1). By applying Lemma 2,

(V3 = Vi) = (972 2,,)° + 20" Voe QP Z,, + 0,(1)
= (Y% Z,, + V)2 — v+ 0,(1).

Let Z ~ N(0, I3x2) (independent of n,). Since QW = Q + 0,(1), then the estimated
empirical process at V* has the same limiting distribution as the estimator. For a

TNy

fixed ¢ € {—1, 1} (that may differ from ¢*),

neG(n, VE Qo Z,0) = (€927 + (/o) — v+ 0,(1).

) 7'7147

Define the limiting CDF as Hgq, () = P, ((e12Z + (\/v)? —v < ), where
Z ~ N(0, Irx2). Since Z has mean zero, Hg ,c—1(0) = Hg - 1(0) = Hq,(0), which
does not depend on (. Since  is positive-definite, the function Hg ,(0) is continu-
ous and strictly increasing. Let F ne Vi S CW(~) = Fne,VT*ng,ﬁnz,cw (0/ng) — Hq (D).

Since Hgq, is continuous, then (Lehmann, 1999, Theorem 2.6.1) implies that this

convergence is uniform in o, and since the limiting CDF is strictly increasing,

~ ~ A~

Fné,VT*,Qn,((VTne - ‘/7-*) = Fne,VT*ne,ﬁn,g(nf(vTW - V:,_*)) — Unev

for all ¢ € {—1,1} where U,, ~~ Uniform[0,1]. The test statistic converges to
a fixed distribution regardless of the choice of (. Similarly, qu/(ne, VE,,,Q,¢) —
min{a,/2, Hy,(0)}. Define a random variable, fing,c = Fnbvf*@mg(vw V;’;lz)

qa/g(ng,‘@“;[,ﬁw,g) ¢ U,, — min{a/2, Ho(0)}. By definition, V%, € Cl,, <

P, (v;;e e &ank> > max P, (Enm e 0,1 a]) >P,, (fzné,cw e 0,1 a])

¢e{—1,1}
=P, (0<U,, —min{a/2, Ho,(0)} <1—a)+o(1)
=(1—a)+o(1).

Since the limiting distribution doesn’t depend on (, we can apply the continuous

mapping theorem to show that E’g;ax = miNge(—113 fzné,g and ]%,”{1;“ = maX¢e({—1,1} ZTZW,C
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both converge to the same limit, U,, — min{a/2, Hq,(0)}. As ny — o0,

TNy Mng 7

P (V* e &mk) <P, (o < Rmex fmin < 1 — a) —(1—a)+o(1). (72

For this class of subsequences the confidence interval produces exact coverage.

Mild heterogeneity case: Suppose that n,V* — oo and V¥ — V* where V, €

TNy TNy

[0,0), G, — ¢*, and Q,,, — Q. Then we can rescale by 4 /ne/V, .

(V* o V* ) _ (6191/22 )2
Vr*ne ™y ™y /771(‘/:;;1[

= 2% (s Z,,)) + A/ VE(L2Z,,) + 0,(1).

260, (U Zn,) + AV (€012 Z0,) + 0p(1)

™y

The limiting distribution is normal. For convenience, we write this as 4 /ns/ TW( e
V* ) = 0(C*) Zn, + 0,(1), where Z,, ~ N'(0,1) and 0(¢)? := Q1 + V* Qg + C+/VF Qo

™y

for ¢ € {1,—1}. Since the norm of [1,{4/V*]" is larger than one, it follows that
0(¢)* = Amin, Where Ay, is the smallest eigenvalue of Q. In this case, the limiting
CDF is Hgq vy (0) := ®(9/0(()) where ®(-) is the CDF of a standard normal. Let

2o = @ 1(a) denote the a—quantile, and ¢(-) the marginal of a standard normal.

P, (Rucel0,1—a])=P ( a/2 < ( (( )an) 1—a/2) o(1)

R R T
)

k(o C) o(¢*)

To obtain the lower bound,P,, (V* € C/’\Iomk> =P, (énbc* €[0,1— a]) = (1-

™y

a) + o(1). To obtain the upper bound, I write down a Taylor expansion. There is a

7 = v/ Amin between o(¢*) and o(¢) such that

o o)~ (1 [ (Z52) ey -0 (22 2] 222

|2 oc/2|
m” o(¢*) = a(Q)]-

By another Taylor expansion, ||o(¢*) —a(¢)] < 2\/%\\0((*)2 —o(¢)?||. If in addition,

V Vo Qpo|| < ¢, then |o(C*) — o < t and we can define a non-negative function
g
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a(t) = t|z_asp|/(2AminV27), which satisfies lim;,o&(t) = 0. Therefore we have
bounded the coverage over an exhaustive class of subsequences of distributions. This
satisfies Assumption B in Andrews et al. (2020). By their Corollary 2.1,

l—a < liminfinf P, (VT*(V) € &an) = limsupsup P, (VT*(W) € C/’\Ian) < 1—a+a(t).

n—0o0 el n—oo  ~el
[l

Lemma 11. Let (S_p(X;), M_(X;),W;) and X(X;) be the set of regressors and
weights, respectively, that were defined in (20). Define Quuwnr = E[NX)W; W/ |
Z k] and let I,y be a 4 x 4 diagonal matriz with entries (1,1,1 Vﬁl/Q). If (X, D)

» =y =y Vank

are independent of the data in I_,y, then 11, Quw nillnk has the form in (55).

Proof of Lemma 11. Let V; = (D; — p(X;)). By definition, A\(X;)W;W/ is

1 M_(X;) Vi ViS_ik(X5)
)\(X) M—k(Xz) M—k(Xz)2 M—k(Xz)vz M—k(Xl)VZS—k(XI) (74>
' v M (X)Vi V2 V2S_1(X;)

ViS_ (X)) My (X)ViS_p(Xy) V2S_k(X5) VS k(X5)?

Since (X;, D;) are independent of the data in Z_,, then E[V; | X; = z,Z_,;] does
not depend on Z_,, and is equal to E[V; | X; = 2] = E[D; | X = ] — p(z) = 0. By
a similar reasoning, E[V? | X; = 2,7 x] = p(X;)(1 — p(X;)) = M(X;)~!. Using both
conditional moment results, we can show that E[A(X;)W,W/ | X;,Z_,x] is equal to

AX5) AMXo) M (X;) 0 0
o g | MEIMX) AXIM (X0 0 -
’ 0 0 1 S_k(X5)
0 0 S (X)) S_p(X,)?

We substitute E[S_g(X;) | Z_nk] = 0 and E[S_(X;)* | Z—nk] = Vink. Finally,
I, Quw niIln, only normalizes the lower right corner to 1.
O

Lemma 12 (Convergence of cross-fitted sums). Consider a sequence of distributions

{vn}2 ) over a collection of random matrices {Z, ..., ZiL}iez,, where L is a finite
constant, Zy € RM x RE. Define Cop := DiieT S Zy. Ifforallte{1,....L}, (i)
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the observations are i.i.d. conditional on I_, (1) B, [Zi | T—nk] = Oprx, and (i)
E..[[Zic|?] has a uniform upper bound and ~,, then as ny — o0, (a) n,zl/ank = 0,(1),
(b) If in addition, E, [|Ziu|?*] = o(1), then n,, V20 = 0p(1), (¢) Now suppose (ii)
and (iii) do not necessarily hold, but instead njE,, [
r >0, then n};_lgnk = 0,(1).

Zi|] = o(1) for all ¢ and some

Proof. Since M, L, B are all finite, it suffices to consider 6nkgmb = Ziel_nk Zitmb,
where Zjp,p is the coordinate (m,b) of Z,. By the law of iterated expectations,

Rygemy = E, [(Enkémb -E,, [CAnkzmb | Z_.k])?] is equal to E, [E,, [(Enk@mb -E,, [6nk€mb |
Z k])? | Z_k]]- Substituting the definition of conditional variance,

Ryiemp = E,, [an [anémb | Z k] + E,, [anémb | Ifnk]2:| : (75)

The first term of (75) is O(n;'). By Assumption (i), Cokemp is & sum of ny, variables
that arei.i.d. conditional on Z_,, and hence V., [@Mmb | Z_i] = 76V, (Zitws | nk) =
nkEn, (22 | Zuk]- By the law of iterated expectations, E., [V% [Enkgmb |I,nk]] =
kB, [Z%,,]: The second term of (75) is zero by Assumption (ii).

To prove (a), we apply Chebyshev’s inequality P(n} Copems > t) < B[22, ,]/12
for some ¢t > 0. This shows that n,zl/ ZEnkémb = O,(1). To prove part (b), we use
the condition that E. [Z2, ,] = o(1) to show that n;1/2<?nk£mb = 0,(1). To prove (c),
we apply the triangle inequality, Hn;—fnumbn ny ! Yiier_ ., | Ziem|. By Markov’s
inequality, P(||n), angmb” > t) < nLE[| Zioms| ]/t = 0( ), hence nzflfnkgmb = 0,(1).

[

Lemma 13 (Derivatives of Influence Function). Let ;(n) := o(Y;, Di, Xi,n), for
i € Lk, and U; = Y; — E[Y; | D;, X;|. Suppose that {Y;, D;, X;}ier,, is independent of
{Yi, D, Xi}ier_,, forallke{l,..., K}, and consider a set of n € T where the propen-
sity score is bounded in [§, 1—-6] for § € (0,1/2]. Then (a)E [a%—") | X =2z Z,nk] =

o(n1,m2,ma)’
1/4
[0707—2(7/(1') — Tau)] almost surely, (b) E[[|0i(n)/ond*]" < (8/8)(E[In(X)|*]* +
1/4 .
E [|‘Uz‘|4:| ), and (c) H o ‘37490582 —" H < 18 x \/3/6 almost surely, for e T.
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Proof. Part (a): The jacobian of ¢;(n) _Opiln)

?o(n1,m2,m4)
D, Di(Yi—po(Xi)—Di7(X5)) _ (A-Di)(Yi—po(Xi))
2(T(Xz) - Tav) |:1 p(Xz):| +2 |: MOp(Xi) - 17p(Xl;;) :|

2(r(X0) = 7uu) [—5885 + 585 |
“2(r(X) — ) 2 BRI (R0

Part (a): Substituting E[D; | X; = z,Z_] = p(z) and E[D;Y; | X = 2,Z_,x] =
p(x)(po(x) +7(x)), then E[0pi(n)/0(m, 2, m)' | X = 2, T ni] = (0,0, =2(7(z) —7)]".

Part (b): By construction, U; = Y; — uo(X;) — D;7(X;). Then the jacobian
simplifies to dw;(n)/0(n1, N2, ) = G1; + Go;, where GM = 2(1(X;) — Taw) x [(1 —
Di/p(Xi)), (=Di/p(Xi) + (1 = D)/(1 — p(Xy))), —1] and Ga; := 2(D;/p(X;) — (1 -
D;)/(1 = p(X3))) x [U;,0,=Ui]. Since p(z) € [6,1 — 6], [Gul < (4/9)[7(Xi) —
Tao|| < (8/)|n(x)| and |Ge;| < (8/6)|Us|. Therefore, by the triangle inequality,
E [|0g:(n)/onel']"" < (8/8)E[n(X.) |1 + E [JUi]*])-

Part (¢): The hessian of ¢;(7), which T denote by H(7), is symmetric and

D,
L 2|1 - 85| - 285
0 %’(77) _ | oD 4 1D 0
o(m1, M2, Ma)0(1, M2, Ma)! pXi) T 1=pX)
p(Xs) p(Xe)  1-p(X4)

Since p(z) € [9,1 — ], then ||D;/p(X;)| < 1/4, |1 — D;/p(X;)| < (1 +1/6) < 2/6, and
|Di/p(X:) —(1—D;)/(1—p(X;))| < 2/9. This means that each of the entries of H(7)
is bounded by 6/6. By Lemma 16, |H ()| < 3 x (6/0) x v/3 = 18 x 1/3/6.

[l

Lemma 14 (Decomposition of Nuisance Functions). Define 7)_; 5 (x) as in (63),

Qn = (O, 1, Tn,avs 1), (Xnk - >\nk) = [(é\nk - 0n), ?nk,av(é\nk - gn); (?nk,afu - Tn,av)]/; and let
{ej}?zl be 4 x 1 wvectors with 1 in the j coordinate and zero otherwise. Then there

exist (x,Z_ni)—measurable matrices V_,(x), A_,,(x), such that

A @) = (1) = Vo) e = k) + A (), (76)

and for some constant C' < o0, (a) es|n 5 (x) —n(z)] = 0, (b) esA_i(x) =
A (1) = 0, () Vo = ¢, for c € BY, (d) [V_w@)] < C x [1+2074x)]]
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a.s., () [An(2)| < C x[[nk(x) = ()] a.s.

Proof of Lemma 14. Define é(m) = [el(W(x, 1) — I//I\/(x, 0)) + GQW(JS,O)’].
JI) + €3pn(x) + 64?nk,(w7
x)gn + €3Pn (I) + 64?nk,a'ua

lTn(x) + €2M0n($) + €3pn($) + €4Tnav-

3
s
I
@

The estimation error can be decomposed as

~

ﬁ—kﬁnk () —n(z) = B(‘T)(‘gnk —0n) + ealTuk.av — Trao] + [é(‘r)len — €17y () + eapion ()]
(77)
By definition é(x) = Uy (%) + Tokaw Vo —nk(x), with auxiliary matrices Wy 5 1=
e1[0,0,1, 7 i (x)]+eo[l, M_1(X), —=pn(z), —pn(x)T—k(x)] and ¥s . := €1]0,0,0, —1]+
2[0,0,0,p,(z)]. Substituting the parameter 6, := (0, 1,7, 4, 1) and grouping com-
mon terms, B(2)0, — e17(x) — eapion(x) = e1[(For(@) — 7(®)) + Ty — Tukav)] +
eo| M_1(x) — pron(x) — pru(@)T_ k() + Pn(2) (Tak,ao — Tn,aw)]. We can simplify the second
term of this expression by substituting M_,(z) = fig_x(x) + pn(x)7—x(z), which pro-
duces es[ (fion () — tton () + Pn () (Tuk.av — Th.aw)]- Consequently, the second and third
terms of (77) can be written as W i (%) (Thk.a0 — Tnoav) + Ak (x), where Uy i (x) :=
—e1 + eapp(x) + eq and A_ i () = e (7 (2) — 7)) + ea(fi_p(x) — pon(x)).
Define V_,i(z) = [VY1 (), Vo _ni(x), V5 _ne(z)] and the parameter error as

~

Ok = Aak) := [Orke — 00, Fatoaw O — 00)', (Fraeaw — Tnao)]’- Combining the results,

g, () = (@) = U_e(@) R = Ae) + A ().

Measurability with respect to (z,Z_,;) can be verified by inspection. Property (a)
follows from the fact that the propensity score is known, and (b) because W_,x(x)
and A_,(x) depend on vectors ey, ez, which are orthogonal to es, es. Property (c)
follows by the fact that e} ¥, = [0,.s, 1]. To prove part (d), we apply Lemma 16 to
show that W_,(z) is bounded by 94/4 times the largest absolute value of the matrix.
Since p,(z) < 1, then the largest value is bounded by 1+ ||fig —x ()| + ||7—x(2)| which
is less than 1 + 2||)_4(x)|. This means that |[U_,.(2)]| < 12 x V4 x [1 + 2|7 _4(2)]].
To prove, part (e) we once again apply Lemma 16. The quantity A _,x(z) isa 4 x 1

vector, whose individual entries are bounded by ||fio—x — fron(@)| + [T=k(z) — T ()],
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which is weakly less than 2|n_x(z) — n(x)||.
[

Lemma 15 (Convergence of regression parameters). Consider a sequence of distri-
butions {v,}°_, that satisfy Assumptions 1, 3, 4, 5, 6, and 7, and that V., — V, >
0. Define oracle regressors, VVi* = [1, pon(Xs) + pulXi) 70 (X), (Di — pu(:)), (D —

P (X)) (70 (X5) = Taw n)]l and 0, ==K, [An (Xi)Wz‘*Wi*l]ilE% A (X)WY;]. Then (a)
?nk,av Tn,av = Op(nk; 1/4) (b) 9” = (07 17Tn,(w7 1),7 and (C) é\nk — 971 = OP(nlzl/éL)-

Proof. Part (a): Decompose, n,i/‘*(?nk,au—Tav,n) = n;1/4 [\/%7 Zieznk To(X;) — Tn,w] +
n,i,/ -t Yiier, [T-#(Xi) = 7,(Xi)]. The first term is a centered random variable that is
0p(1). By Assumption 7.(iv), and the Cauchy-Schwartz inequality, E.,, [n,lﬁ/ Y7 (X)) —
(X)) < Eo [n*[7 #(X0) = n(X)[2? — o(1). By applying Lemma 12.(c),
1/4
nk (Tnk av Tav,n) - Op(l)'
Part (b): For given {X; =z, D; = d}, W;(0,1,7n,0,1)" = pa(z). Therefore, by
applying Lemma 5, 6,, = (0,1, 7, 40, 1)’
Parts (c): Deﬁne Quw = nlkZieInk)‘ (X)WW’ Quw = B, [M\a(X)WFIWF],
)7

M, (z) = pon(z) + pp(x)7, (). Following similar derivations to Lemma 11,

E. A E M) m)] 00
o — | BN %< (X)) M[A(Xi)éun(&))] - -
0 0 0 V.,

The upper left block has bounded eigenvalues by Assumption 3.(i) and V., is asymp-
totically bounded. Therefore @), is positive definite with bounded eigenvalues. Fur-

thermore, Quw — Quww can be decomposed as:

Z M (X)WEWE =K., [\ (X)W*W*] [ S AX)(WiW, = W, W)

ZEInk ZEInk

(79)
The first term of (79) is an average of mean-zero random variables and bounded vari-
Y 2) = op(n,, 1/ ). To prove that it has bounded variance, apply
Lemma 16, then W] < VA(L + [pon (X)) + [7(X)) < VA1 + 2n(X,)]). Since
pu(x) € [0,1 = 0] and Ay (X;) = [pa(Xi)(1 = pa(X))] 7", then By [N, (X)) WF[P]? <
(1/HE,,, [[|W|*]Y* < (V4/6%) (1 + 2E,, [|n(X,)|*]/*), which is bounded by Assump-

ance, then it is O,(n,
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tion 7.(ii).

To bound the second term of (79), we apply the triangle inequality, [An(X:) (szz’ —
WrWr)| < (1/62)@, where §; := 2[W'| |G + |GI? and & == W, = W7 Our goal
is to show that - ZZEI_nk b = op(ny /4). Let e, be a 4 x 1 vector with one in
the (" entry and zero otherwise. We can further decompose @ = Ankﬁ_nk,l(xi) +
5,nk,2(Xi), into components that map into our assumptions: Ank = (Tnkav — Tnav)s
E—nkz,l(Xi) = ey(D; — pp(X;)) and E—nkQ(Xi) = o1 (Mo (Xi) — M, (X3)) + ea(D; —
(X)) (Tok(X;) — 70(X;)). By construction, |[(_nx1(X;)| < 1. Applying the tri-
angle inequality and grouping terms, QAﬁl < ||Ank||2 + Hﬁnkﬂggﬂ + <ZA5¢2, where Qgil =
2IW | +20C mr2]), and G = IWE] Sk 2(X3) |+ [C 2 (X:)[?). By Assumption
769, Bl < 9B [17-4(5) ~ nOX)FY = ol ). Thereore by
the Cauchy-Schwarz inequality, IE 212 = o(n, ''*) for £ € {1,2}. Then by Lemma
12.(c), [nk DT @é] op(nk ) for £ € {1,2}. Combining terms,

B N X (W — W)

1€ _nk

1 2
< ﬁZnI/ZlHAnk”Z 2 [ Z ¢14] -
/=0

ZEI_nk

Define @wy = %Zidﬂk )\n(Xi)I//[\/iK and Quy = E, [M\(X:)W*Y;]. We can apply
similar arguments as above to show that @wy — Quy = op(n,zl/ Y.

Substituting the definition, 6,, := QL Qu, and rearranging terms, n,lg/ 4 (gnk —0,) =

0 (Qut Quy— i) = Oy 1/4<wa Quy) =1 Qb Quy = Qb Quy)- The first term

is 0,(n; /"), The second term can be rewritten as n)/*(Quk — QuL)Quy = op(n,zm).

To prove this, note that @5l — Qb = 1Quk (Quw — Quuw) Qb | < 1Q5k | 1Quw —
Quol 1Q,L]. The right-hand side is o,(n; /") since Qe has eigenvalues bounded
1/4

away from zero and @ww converges to its true value at rate n,/ . Combining the

results produces n,lc/4(§nk —0,) = Op(nlzl/‘*)_ 0

Lemma 16 (Bound on Operator Norm). Let H be an M x L matriz and let |H| =
SUD{,ere|z|=1; | H 2| be corresponding matriz operator norm. The absolute value of the
individual entries of H is bounded a constant C. Then |H| < LCvVM

Proof of Lemma 16. Let H,, be the m' row and H,,, be the (m, () entry. Then

2
M 2 .
|H| = SUP{ eRL: ||z =1} DYime1 [Hmz]" = SUP{ eRL:|| 2| =1} \/Zm 1 [Zz 1 mﬁzé} . Since

2
M L
2e| <1 and [Hyne| < C, [H| = supg.eprzj—1y \/Zml [Zz:1 | H e |Z€|] < CLvVM.
]
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