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Abstract

Experimenters often collect baseline data to study heterogeneity. I propose
the first valid confidence intervals for the VCATE, the treatment effect variance
explained by observables. Conventional approaches yield incorrect coverage
when the VCATE is zero. As a result, practitioners could be prone to detect
heterogeneity even when none exists. The reason why coverage worsens at
the boundary is that all efficient estimators have a locally-degenerate influence
function and may not be asymptotically normal. I solve the problem for a
broad class of multistep estimators with a predictive first stage. My confidence
intervals account for higher-order terms in the limiting distribution and are fast
to compute. I also find new connections between the VCATE and the problem
of deciding whom to treat. The gains of targeting treatment are (sharply)
bounded by half the square root of the VCATE. Finally, I document excellent
performance in simulation and reanalyze an experiment from Malawi.
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1 Introduction

In recent years, there has been a rapid expansion of experiments to evaluate public

policy programs and corporate initiatives. There is also more evidence that the effec-

tiveness of a program can vary across individuals. For instance, Dizon-Ross (2019)

studies a population of low-income parents in Malawi with large misperceptions about

their children’s school performance. She finds that a simple intervention can bridge

these gaps and that the Conditional Average Treatment Effect (CATE) varies by

children’s initial scores. In practice, even though researchers collect baseline surveys

with many characteristics, the CATE is typically estimated via regressions with one

or two interactions, thus underutilizing the full set of variables. The promise of lever-

aging the vast and readily available baseline data has sparked more applications of

supervised machine learning (Crépon et al., 2021; Davis and Heller, 2020; Deryugina

et al., 2019). Methods such as LASSO, neural networks, random forests, or boosting

are data-driven and allow for more variables and flexibility.

In this paper, I focus on the unconditional variance of the CATE, the VCATE,

which measures the dispersion of treatment effects predicted by a set of baseline char-

acteristics. The VCATE has a clear interpretation, even if the CATE is nonlinear or

depends on many characteristics. Chernozhukov et al. (2022a) and Ding et al. (2019)

separately propose estimators with a misspecification robust interpretation, whereas

Levy et al. (2021) propose an efficient estimator. Despite these recent advances, there

are currently no valid confidence intervals for the VCATE. In fact, Levy et al. (2021)

study the performance of confidence intervals based on the efficient influence func-

tion, i.e., the conventional way. They find that coverage degrades near the boundary,

reaching a low of 32% in simulations. They speculate that poor coverage is due to the

degeneracy of the efficient influence function when the VCATE is zero. As a result,

conventional guarantees for
?
n�asymptotic normality do not apply to this part of the

parameter space. Moreover, a VCATE close to zero is economically meaningful be-

cause it could reflect null effects, low effect heterogeneity, or irrelevant covariates. For

such situations, which are common in practice, conventional approaches to inference

could be misleading.

This paper provides fresh insights regarding the VCATE and proposes a solu-

tion for inference in experiments. I propose (a) novel ways to interpret the VCATE

for decision-making by deriving sharp bounds on the population gains of person-
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alized treatment assignment, (b) novel estimators of the VCATE that are both

misspecification-robust and efficient, combining the best features of previous ap-

proaches, and (c) novel confidence intervals that are shape-adaptive and fast to com-

pute.

I break down why conventional confidence intervals have incorrect size. I show

that the boundary inference problem can manifest even when the CATE is linear and

univariate. I solve the problem for the linear case by proposing adaptive confidence

intervals that meet the high-level conditions outlined in Andrews et al. (2020). I

then show that these can be readily extended to the class of nonlinear models in

Chernozhukov et al. (2022a) that combine regression adjustments and a machine

learning first stage. In addition to providing new confidence intervals, my paper has

novel implications for estimation by showing that only a subset of these multi-step

estimators is efficient. Adaptive inference and regression adjustments work well for

various predictive models under weak assumptions.1 In the fully nonparametric case, I

use a conservative procedure with valid coverage over multiple sample splits.2 I derive

the local power curve for the associated tests of homogeneity and their relationship

to the tests in Crump et al. (2008) and Ding et al. (2019). I also propose confidence

intervals for settings with cluster dependence.

I document excellent root mean square error (RMSE) performance and coverage

in simulations using LASSO, even in high dimensions. I benchmark my multi-step

approach against a two-step debiased machine learning estimator. As predicted by

theory, all approaches are asymptotically normal, efficient, and have good coverage

in highly heterogeneous designs. However, when the VCATE is zero or close to zero,

coverage of two-step alternatives can be as low as 45%. By contrast, my adaptive

intervals produce coverage at the intended 95% level and better RMSE at all regions

of the parameter space. I study the robustness of the multi-step approach in both

the theory and simulations. I consider situations where the predictive component is

1While I specialize my results to the VCATE, my inference approach relies on more general
principles: I use knowledge of the limiting distribution function, conditional on the cross-fitted
estimates. Correct coverage follows from verifying high-level assumptions that can be satisfied by
a wide array of machine learning method used in the first step. In principle, my approach could
extend to other non-standard inference problems.

2This adjustment is in the spirit of (Chernozhukov et al., 2022a), who propose robust t-tests
assuming a conditionally normal distribution. Their results are not directly applicable here due to
the boundary inference problem. However, I apply the principles behind their “median-parameter”
confidence intervals to my adaptive intervals.
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misspecified or slow to converge. I also discuss issues related to uniform vs. pointwise

coverage.

I apply my approach to data from Dizon-Ross (2019), an information experiment

with low-income parents in Malawi who had at least two school-age children. The

intervention redesigned the way in which parents received information about their

children’s school performance. The endline survey measured parental beliefs about

student grades and asked parents to allocate tickets to a scholarship between their chil-

dren. Dizon-Ross (2019) presented graphs with a non-parametric CATE by baseline

test scores, which had an approximately linear shape, and separately tested for signif-

icance using a regression with an interaction. I use LASSO to compute the VCATE

for the two outcomes (parental beliefs and lottery allocations) by different charac-

teristics of students, parents, and households. To make the results interpretable, I

focus on the standard deviation of the CATE, i.e.,
?
V CATE, and normalize it by

the standard deviation of the outcome in the control group.

My approach allows us to quantify the magnitude of effect heterogeneity. I find

that the treatment effect heterogeneity explained by test scores is equivalent to 40%

of the standard deviation (SD) of the beliefs of the control group, and 16% of the

SD of the control group lottery allocation. I also find that the effect heterogeneity

collectively explained by other student variables (grade, age, gender, attendance, and

educational expenditures) is comparable to 11% of the SD of beliefs in the control

group. The VCATE of beliefs by student variables is significant at the 5% level, but

the VCATE of lottery outcomes by student variables is not. The combined VCATE

associated with student scores and 12 other key characteristics has a similar value

to the VCATE with only scores. Despite being conservative, the intervals for the

VCATE are short in length in this empirical example. Using my new welfare bounds

p�|ATE| � ?
V CATE � ATE2q{2, I predict that targeted interventions using the

baseline covariates have a maximum added benefit of 7.9% SD and 7.4% SD (standard

deviations of the outcome for the control group) on beliefs and lottery allocations,

respectively.

Researchers should focus on the VCATE because it is a model-free quantity with

good properties: it is well-defined even if the CATE is continuous or discrete, and it

weakly increases when researchers add more covariates to their analysis. Researchers

can test for homogeneity by evaluating whether confidence intervals for the VCATE

include zero. In addition to testing, by quantifying the VCATE, researchers can
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compare the magnitude of heterogeneity relative to a benchmark, such as the variance

at baseline, the VCATE for different covariates, or experiments in other sites.

1.1 Contribution

My first main contribution is to show that the VCATE provides a bound for the

welfare gains of policy targeting. A policymaker might decide to use the information

from the CATE to design personalized treatment recommendations (Athey and Wa-

ger, 2021; Kitagawa and Tetenov, 2018; Manski, 2004; Mbakop and Tabord-Meehan,

2021). One can measure utilitarian welfare by computing the expected outcome un-

der different policies. Such policies can be further constrained to a class that respects

budget limits, incentive compatibility, or fairness considerations (Sun, 2021; Viviano

and Bradic, 2023). I show that the difference in mean outcomes between a targeted

policy and a non-targeted policy using only the average treatment effect (ATE), is

bounded by
?
V CATE{2. For instance, under homogeneity (V CATE � 0), there are

no gains from targeting. I show that this bound holds in the population regardless of

the choice of policy class and the underlying distribution. Furthermore, the bound is

sharp in the sense that it holds exactly for at least one policy and distribution.

The proposed bound on utilitarian welfare communicates information to practi-

tioners about whether a targeting exercise is even worth pursuing, without needing

to solve the targeting problem itself. The VCATE can be a supplemental quan-

tity reported in regression analyses, or a benchmark for analysts choosing the opti-

mal policy. If the VCATE is very low, practitioners may consider expanding the

set of covariates in the analysis. To derive the bound, I use a constructive ap-

proach to solve the most adversarial distribution. I also prove a more general bound

p�|ATE| � ?
V CATE � ATE2q{2, and show that the distribution that leads to a

maximum welfare gain is one where the CATE has binary support and mean zero.

The gains from targeting easily diminish if the value of the ATE is relatively higher

than the VCATE.

My second contribution is related to efficient estimation and robust inference.

New theory is required here because of a unique feature of the VCATE: the efficient

influence function is degenerate when the CATE is homogeneous (Levy et al., 2021).

Classical results by Newey (1990) show that any regular, efficient estimator can be

decomposed as 1
n

°n
i�1 ϕi � Rn, where n is the sample size, tϕiuni�1 are a set of i.i.d.
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mean-zero influence functions, and Rn is a residual with higher-order terms that are

oppn�1{2q.3 Conventional approaches assume that Vpϕq ¡ 0 and in this case, the

estimation error converges at
?
n to N p0,Vpϕiqq by the CLT. However, when the

VCATE is zero, Vpϕiq � 0 as well. Hence, the limiting distribution is dominated

by the higher terms in Rn, which may not be asymptotically normal. Therefore,

while
?
n�estimation is still possible, t-tests that plug in an estimate of Vpϕq may

have incorrect coverage. By contrast, other common quantities such as the average

treatment effect (ATE) or the local average treatment effect (LATE) do not have this

problem because they satisfy Vpϕiq ¡ 0 uniformly (Chernozhukov et al., 2018).

I start by analyzing a simple two step estimator, assuming that the CATE is

linear in covariates and can be estimated from a regression. I show that the limiting

distribution of the VCATE estimator can be written as a linear combination of a Chi-

square that converges at n-rate and a normal distribution that converges at
?
n�rate.

The weights are determined by the value of the VCATE, which means that the shape

of the distribution changes depending on the region of the parameter space. At the

boundary, it behaves like a rescaled chi-square, is Oppn�1q, and confidence intervals

with normal critical values will have incorrect coverage. For values of the VCATE

bounded away from zero, the distribution is asymptotically normal as in the classical

results.

In the linear case, I construct adaptive confidence intervals that account for the

higher terms of the distribution. I apply the framework of Andrews et al. (2020) to

show that this produces uniform, exact coverage when the linear model is correctly

specified.4 The intervals are fast to compute because the expressions are all analytic.

When there is a single covariate, I also show that a homogeneity test that evaluates

whether zero is contained in the confidence intervals is algebraically identical to (i)

a test of whether the interaction in the regression model is equal to zero, and (ii)

the single-covariate homogeneity test of Crump et al. (2008). The test is also asymp-

totically equivalent to Ding et al. (2019). However, these other tests only apply to

series estimators and are not nested with mine in the multivariate and non-parametric

3Many standard estimators can achieve this property, e.g., the “debiased machine learning”
estimator (Chernozhukov et al., 2018) or the targeted maximum likelihood estimator in Levy et al.
(2021).

4This type of strategy has proven effective to deal with other non-standard problems where the
shape of the limiting distribution depends on an unknown parameter, such as the AR coefficient
in a time series, the effect parameter under weak instruments, or the quasi-likelihood ratio test for
nonlinear regression (Andrews et al., 2020).
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cases.

I extend my results to the class of nonlinear models proposed by Chernozhukov

et al. (2022a). Chernozhukov et al. (2022a) showed that in experiments with known

assignment probabilities, their models produce a meaningful pseudo-VCATE even

if the functional form is misspecified. The pseudo-VCATE is non-negative, weakly

lower than the VCATE, and converges to the true value under mild conditions on the

estimated CATE.5 Chernozhukov et al. (2022a) argue that the pseudo-VCATE might

be of independent interest as a measure of model fit.6 They describe a three-step

estimator with a machine learning/prediction first-stage, a regression second-stage,

and a sample-variance third stage. Related multi-step estimators have also been

considered in other work (Guo et al., 2021).

To the best of my knowledge, there are no existing asymptotic results for the

multi-step VCATE estimator proposed in Chernozhukov et al. (2022a). I fill in that

gap by proving two sets of results. First, I show that all the estimators in their class

converge to the true VCATE at least at
?
n-rate, are oppn�1{2q at the boundary (as

in the simple linear model), and have the convenient property that they are always

non-negative. This builds on the asymptotic expansion for the linear case I intro-

duced above. Second, I prove that only a subset of the Chernozhukov et al. (2022a)

estimators are efficient, i.e. converge at
?
n� to an average of i.i.d. efficient influence

functions. The key ingredient is to prove a novel finite-sample equivalence result.

I find that the first order conditions of the regression step and the bias-correction

component of the VCATE influence function are in fact identical, given a particular

decomposition of the nuisance functions. The asymptotic results follow from fairly

standard assumptions on convergence rates (Belloni et al., 2017; Chernozhukov et al.,

2018). To get the limiting distribution, the only meaningful extra assumption is that

the estimated CATE has bounded kurtosis (thin tails).

I show that extending the adaptive confidence intervals (CIs) to multi-step estima-

tors is straightforward. The procedure randomly splits the data into subsets or folds

and estimates the nuisance functions and the VCATE on different folds. To compute

the confidence intervals for a particular fold, the researcher can treat the second-stage

regression as if the variables were given, and then construct the CIs as in the simple

5This monotonicity property means that in experiments the pseudo-VCATE will not falsely detect
heterogeneity, even if the machine learning stage is misspecified.

6 Ding et al. (2019) also define a similar pseudo-VCATE based on randomization inference.
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case. I construct median confidence intervals (CIs) to aggregate information across

multiple folds. I show that the single fold procedure produces uniform, exact coverage

for the pseudo-VCATE and point-wise, exact coverage for the VCATE for all points

in the parameter space, at a nominal level 1 � α. The multifold CIs have pointwise

conservative coverage.

Furthermore, the probability that the true VCATE is below the confidence interval

bounds is uniformly bounded by α in large samples. This result applies to the single

and multifold CIs and does not require that the first-stage estimates to converge.

Instead it relies on the fact that in experiments the pseudo-VCATE is weakly lower

than the true VCATE. Tests for homogeneity (whether zero is contained in the CI)

belong to this broader class of tests. Having uniform size control for this class of

one-sided tests means that my tests of homogeneity are robust.

This paper is also related to a growing literature on debiased-machine learning

(Belloni et al., 2017, 2014; Chernozhukov et al., 2018, 2022b,c), semiparametric effi-

ciency (Newey, 1990), uniform inference for non-standard problems (Andrews et al.,

2020), and tests of treatment effect homogeneity (Bitler et al., 2017; Crump et al.,

2008; Ding et al., 2019; Heckman et al., 1997). My approach combines results from

these literatures by addressing a boundary inference problem with a machine learning

stage, and applying techniques of uniform inference. A related literature also focuses

on confidence intervals around point-predictions of the CATE (Athey et al., 2019;

Semenova and Chernozhukov, 2021), rather than overall measures of dispersion.

Section 2 provides key definitions, introduces the welfare bound, and presents a

version of the adaptive confidence intervals for the univariate regression case. Section

3 frames the inference problem in a more general setting, and extends the adaptive

confidence intervals for VCATE estimation with a machine learning first stage. Sec-

tion 4 presents the large sample theory. Section 6 introduces the simulations. Section

7 applies my approach to an empirical example from Malawi. Section 8 concludes.

2 Overview of framework

Consider a program evaluation setting in which an individual is assigned to either a

treatment pD � 1q or a control group pD � 0q. The outcome of interest Y depends

on the treatment status. I denote the potential outcome under treatment and control

status as Y1 and Y0, respectively, and the treatment effect as Y1�Y0. The conditional
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average treatment effect (CATE) given covariates X is defined as

τpxq :� ErY1 � Y0 | X � xs,

and the average treatment effect (ATE) is defined as τav :� ErY1 � Y0s. This paper

proposes an estimator of the variance of the CATE (VCATE) defined as

Vτ :� VpτpXqq.

The variance Vτ measures the dispersion of treatment effects that can be attributed to

observable characteristics X. The value of Vτ depends on the choice of covariates. To

understand how different covariates might impact the VCATE, let V 1
τ � VpErY1�Y0 |

X 1sq be the VCATE for a different set of covariates X 1.

Lemma 1. If X is X 1-measurable, then Vτ ¤ V 1
τ ¤ VpY1 � Y0q.

Lemma 1 shows that the VCATE has the following monotonicity property: if the

researcher adds more covariates to the analysis, or breaks down an existing covariate

into more categories, then the VCATE will be weakly larger.

The propensity score, ppxq, is defined as follows

ppxq :� PpD � 1 | X � xq. (1)

I restrict attention to experimental settings where ppxq is known. The CATE can be

identified under further assumptions.

Assumption 1. (i) Stable unit treatment value assumption (SUTVA), Y � Y1D �
p1�DqY0 (ii) Strong overlap, there is a constant δ P p0, 1{2q such that Ppδ   ppXq  
1� δq � 1, (iii) Selection on observables, Y1, Y0 |ù D | X.

Assumption 1.(i) formalizes the idea that the researcher can only observe either Y1

or Y0, but not both, for any particular individual. Assumption (ii) holds in randomized

controlled trials with treatment probabilities bounded away from t0, 1u. Assumption

(iii) states that an individual’s treatment probability depends on X but not their

potential outcomes. Let µdpxq be the conditional mean of Y given X and a fixed

value of d P t0, 1u,
µdpxq :� ErY | D � d,X � xs. (2)
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Under Assumption 1, ErYd | X � xs � µdpxq, and hence τpxq � µ1pxq � µ0pxq. This

means that the VCATE is identified, with Vτ � Vpµ1pXq � µ0pXqq.

2.1 The VCATE and policy targeting

Practitioners can use estimates of τpXq to decide whom to treat in future interven-

tions (Athey and Wager, 2021; Kitagawa and Tetenov, 2018; Manski, 2004). Program

managers can target the treatment recipients based on their initial covariates. How-

ever, whether targeting can substantially improve average outcomes depends on the

dispersion of τpxq. I show that a simple function of the VCATE bounds the marginal

gains of targeting.

Let γ denote the joint distribution of pX, Y1, Y0q, X a set containing the support

of X, τγpxq :� EγrY1�Y0 | X � xs the CATE given γ. A function which maps x to a

probability of treatment πpxq is known as a statistical allocation rule (Manski, 2004).

Furthermore, I denote the set of all possible allocation rules by Π, which contains

all functions tπ : X Ñ r0, 1su. The set Π includes many well-known assignment

rules. For instance, it includes the “non-targeted” policy which assigns everyone

to treatment if EγrY1s ¡ EγrY0s and to the control group otherwise. Moreover,

the average outcome under rule π is EγrπpXqY1 � p1 � πpXqqY0s, and the marginal

benefit compared to the non-targeted policy is defined as Uγpπq :� EγrπpXqY1 �p1�
πpXqqY0s �maxtEγrY1s,EγrY0su.

Theorem 1. Let Γ denote the set of distributions such that VγrτγpXqs � Vτ . For all

γ P Γ and π P Π,

Uγpπq ¤

��� Welfare

Optimal

Targeting

��

loooooooomoooooooon

supπPΠ Eγ rπpXqY1�p1�πpXqqY0s

�

��� Welfare

No

Targeting

��

loooooooomoooooooon
maxtEγ rY1s,Eγ rY0su

¤ 1

2

a
Vτ .

The bound is sharp in the sense that Uγpπq � 1
2

?
Vτ for at least one γ P Γ and π P Π.

Theorem 2. Consider distributions where EγrτγpXqs � τav and VγrτγpXqs � Vτ , then

Uγpπq ¤ 1
2

��|τav| �a
Vτ � τ 2

av

�
. This bound is sharp over this subset of distributions.
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Theorem 1 shows the VCATE provides a welfare bound over the superset of policy

classes. Furthermore, any type of restrictions on Π such as budget constraints or

incentive compatibility will achieve utilitarian welfare gains that are weakly lower

than 1
2

?
Vτ . The bound in Theorem 1 and the generalization in Theorem 2 provide

simple bounds on the prospective gains of targeting, without needing to solve for

πpxq. The bounds are most informative when Vτ is low. For instance, when Vτ � 0

there is no heterogeneity explained by the observables X and therefore there are no

gains from targeting. However, the fact that the bound is sharp does not imply that

it is always achievable for every γ P Γ, and when Vτ is high it is still be necessary to

optimize πpxq to determine whether personalized offers are worthwhile.

Finding the bound in Theorem 1 relies on two important insights. On one

hand, the optimal policy in Π treats an individual if and only if τpxq ¥ 0 (Kita-

gawa and Tetenov, 2018). Substituting the optimal policy, supπPΠ Uγpπq is equal to

EγrmaxtτγpXq, 0us�maxtEγrτγpXqs, 0u. On the other hand, to avoid optimizing over

all γ P Γ, I break the problem down into equivalence classes based on the moments

of the negative, zero, and positive components of the CATE. I use a constructive

approach to derive the most “adversarial” distribution. The upper bound is achieved

when the CATE has a binary support, which is partly why the bounds in Theorems

1 and 2 have simple closed forms.

Corollary 1. Let κ1, κ2 P R and define a new outcome Ỹ � κ1�κ2Y . The maximum

welfare gain for the transformed outcome is |κ2|
2
p�|τav| �

a
Vτ � pτavq2q.

Corollary 1 shows that the welfare bound is invariant to location shifts in the

outcome, and grows linearly with scale shifts. This result implies that transformations

that change the sign, e.g. κ2 � �1, do not change the value of the welfare bound.

Consequently, the bound applies regardless of whether the welfare objective is to

increase a desirable outcome or to decrease an undesirable outcome.

2.2 Inference using regressions

Consider a simple situation where X is real valued, the treatment D is experimentally

assigned with constant probability, and U is a mean zero error term. The researcher

runs the following linear regression,

Y � c1 � c2X � β1D � β2DX � U, Erp1, X,D,DXq1U s � 0. (3)
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Define the auxiliary quantities τ�pxq :� β1 � β2x and Vx :� VpXq. The pseudo-

VCATE is defined as

V �
τ :� Vpτ�pXqq � β2

2Vx. (4)

The pseudo-VCATE has a close connection to the VCATE. If the linear model de-

scribes the conditional mean µdpxq, then τ�pxq � τpxq and Vτ � V �
τ . For instance, in

models with binary X, the functional form is correctly specified and Vτ � V �
τ . For

now, assume that the pseudo-VCATE and the VCATE coincide. In later sections, I

analyze models that allow for misspecification.

Consider a sequence of distributions tγnu8n�1 P Γ8. I index the regression coeffi-

cients and model variances by the sample size n as β2n and pVxn, Vτnq, respectively.

Define an estimator of the VCATE as pVτn � pβ2
2n
pVxn, where pβ2n is the least squares

estimator of (3) and pVxn :� 1
n

°
iX

2
i �

�
1
n

°
iXi

�2
. With some algebraic manipulations

the estimation error can be decomposed as

pVτn�V �
τn � Vxnppβ2n�β2nq2

� pVxn
Vxn

�
�2β2nVxnppβ2n�β2nq

� pVxn
Vxn

�
�β2

2nVxn

� pVxn
Vxn

� 1

�
.

(5)

To derive the asymptotic distribution we can apply the central limit theorem to indi-

vidual components. For generality, I state joint convergence to a normal distribution

as an assumption. This holds as a special case if the observations are i.i.d. and key

moments of the distribution are bounded, but may also hold under other forms of

dependence. I defer stating primitive conditions until Section 3.2.

Assumption 2. There is a sequence of distributions tγnu8n�1 P Γ8 with associated

quantities tVxn, V �
τn, β2n,Ωnu8n�1, which are related by the identity V �

τn � β2
2nVxn, and

satisfy the following properties: (i) Vxn ¡ 0, (ii) V �
τn is contained in a bounded subset

of r0,8q, and (iii) Ωn is a positive definite matrix with eigenvalues bounded way from

zero and a finite upper bound. There is a sequence of estimators tpVxn, pVτn, pβ2n, pΩnu8n�1

which satisfy pVτn � pβ2
2n
pVxn. As nÑ 8, pΩn Ñp Ωn, and

Ω�1{2
n

?
n

�?
Vxnppβ2n � β2nqpVxn

Vxn
� 1

�
Ñd Zn � N p0, I2�2q. (6)

The normalization by Vxn is intended to align with the decomposition in (5). The

2�2 matrix Ωn is an estimator of the covariance matrix. I present Assumption 2 as a
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triangular array because it makes it easier to formalize discussions of uniform coverage

over the parameter space. Assumption 2 allows for cases where V �
τn is arbitrarily close

to or includes zero. Let Ω1{2 denote the Cholesky decomposition of a matrix Ω. The

estimator of the VCATE converges to the empirical process G, defined as

Gpn, V �
τ ,Ω, z, ζq :� pe11Ω1{2zq2

n
� 2ζ

c
Vτ
n

�
pe11Ω1{2zq � V �

τ?
n
pe12Ω1{2zq, (7)

where z P R2, ζ P t�1, 1u, e1 � r1, 0s1 and e2 � r0, 1s1.

Lemma 2. Suppose that Assumption 2 holds, then pVτn�V �
τn � Op

�
max

"
1
n
,
b

V �τn
n

*

,

and there exists a sequence of ζn P t�1, 1u, such that

pVτn � V �
τn � Gpn, V �

τn,Ωn, Zn, ζnq � op

�
1

n



� op

�c
V �
τn

n

�
� op

�
V �
τn?
n



. (8)

Lemma 2 shows that the limiting distribution of pVτn is a linear combination of a

Chi-square and a normal, whose weights depend on the value of V �
τn. The relative

magnitude of V �
τn determines the fit of the normal approximation. In the hetero-

geneous case, V �
τn ¥ δ ¡ 0,

?
nG converges to a normal as n Ñ 8 because the

first term in (7) is asymptotically negligible. However, when V �
τn � 0, only the first

term remains and nG converges to a non-central Chi-Square distribution, which is

asymmetric. Using normal critical values here (even if everything else was known)

would produce distorted coverage. Furthermore, when V �
τn � 0 the rate of conver-

gence is n, which is faster than
?
n, and hence the estimator is “super consistent”

near the boundary. The error is dominated by the first stage sampling uncertainty in

estimating the nuisance parameter β2
2n, which converges at n rate.

In practice, all three components in (7) contribute to the limiting distribution, and

this information can be used for inference. I propose an analytic approach based on

the quantiles of the empirical process that can deliver exact coverage. Let Fn,V �τ ,Ω,ζpvq
be the conditional CDF of the empirical process, defined as

Fn,V �τ ,Ω,ζpvq � PpGpn, V �
τ ,Ω, Z, ζq ¤ vq, Z � N p0, I2�2q, v P R. (9)
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Based on this CDF we can construct a test statistic,

Fn,V �τ ,pΩn,ζppVτn � V �
τ q,

indexed by unknown values of pV �
τ , ζq and substituting the estimated covariance ma-

trix pΩn. By construction, the test statistic is contained in r0, 1s. Similarly, I construct

critical values as functions of the parameters for a nominal level α, as follows

qα{2pn, V �
τ ,Ω, ζq :� min

 
α{2, Fn,V �τ ,Ω,ζp0q

(
q1�α{2pn, V �

τ ,Ω, ζq :� 1� α �min
 
α{2, Fn,V �τ ,Ω,ζp0q

( (10)

The difference in the critical values is p1 � αq to achieve the desired coverage. The

lower critical value is the minimum of the α{2 percentile and 0. This adjustment is

meant to increase the power of tests of homogeneity (see Remark 2). I propose an

adaptive confidence interval by substituting the pΩn, n, and pVτn into the following

formula

xCIαn � "
V �
τ P R�, ζ P t�1, 1u :

Fn,V �τ ,pΩn,ζppVτn � V �
τ q P

�
qα{2pn, V �

τ ,
pΩn, ζq, q1�α{2pn, V �

τ ,
pΩn, ζq

�*
.

(11)

The set xCIαn can be constructed via a grid search between 0 and an arbitrarily

high value, to test whether a particular V �
τ satisfies the inequality constraints. The

procedure achieves correct asymptotic size because the test statistic converges to a

uniform random variable in r0, 1s for each value of V �
τ . In general, the distribution in

(8) depends on the value of ζ and I obtain a conservative interval in (11) by considering

the union of intervals with different values of ζ. Moreover, if the off-diagonal element

of Ωn is zero, then the distribution of the empirical process in (7) does not depend

on the value of ζ. This property is plausible and I introduce primitive conditions

that satisfy it in Section 4. Under those conditions the confidence interval has exact

asymptotic coverage .

The procedure is fast because at each point in the grid the researcher evaluates

the condition in (11), using the same estimate of ppVτn, pΩnq. The critical values can be

computed numerically from the quantiles of a generalized Chi-square with distribution

F , which are available in most statistical software packages.
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Remark 1 (Equivalence of homogeneity test, β2 � 0). Researchers can test for ho-

mogeneity by evaluating whether 0 P xCIαn. By definition, e11pΩ1{2
n Z � a

Ωn,11Z1,

where Ωn,11 is the upper-left entry. Under the null, the test statistic is Fn,0,pΩn,ζpvq �
PppΩn,11Z

2
1{n ¤ vq, which is the CDF of a rescaled Chi-square distribution with

one degree of freedom. Furthermore, the critical values are t0, 1 � αu, given that

Fn,0,pΩn,ζp0q � 0. Neither quantity depends on the choice of ζ. Because of the nor-

malization in (6), we can choose pΩn,11 � pVxnpVppβ2nq, where pVppβ2nq is an estimate of

the asymptotic variance of pβ2n such as the robust sandwich estimator. Therefore,

evaluating Fn,0,pΩn,ζppVτnq P r0, 1 � αs is algebraically equivalent to a test of whether

nppβ2
2n
pVxn{ppVxnpVppβ2nqq � npβ2

2n{pVppβ2nq exceeds the 1�α quantile of a Chi-square with

one degree of freedom. This is identical to a test of β2 � 0 in the regression in (3).

Remark 2 (Adjusting critical values). The critical value qα{2pV �
τ ,Ω, n, ζq in (10) is

constructed to guarantee that pVτn P xCIαn. In this case, pVτn belongs to the CI if

and only if Fn,pVτn,pΩn,ζp0q is contained in the critical region for some ζ P t�1, 1u. The

unadjusted CI with critical values tα{2, 1� α{2u is not guaranteed to contain the

test statistic.7 Another rationale for doing the adjustment in (10), is to increase the

power of the test of homogeneity, 0 P xCIαn, relative to a test based on the unadjusted

CI. The unadjusted test has correct size but the rejection region is discontinuous: it

rejects when the test statistics is very close to zero or when it exceeds a threshold.

Instead, the adjusted test shifts the critical region left and has the form of a Chi-

squared test. It only rejects the null if the test statistic is larger than 1� α, which is

a threshold that is smaller than 1� α{2 for the unadjusted CI.

Remark 3 (Comparison to other tests of homogeneity). Crump et al. (2008) sug-

gest estimating pµdpxq by a series estimator with K terms, for subsamples D �
d P t0, 1u. They propose a bias-corrected Wald statistic, which takes the formpT seriesn :� trpξ1 � pξ0s1rpVppξ1 � pξ0qs�1rpξ1 � pξ0s � pK � 1qu{a2pK � 1q, where ppξ1, pξ0q
are non-intercept coefficients associated with pµ1pxq and pµ0pxq, respectively and K is

the number of covariates. For regressions with univariate X as in (3), K � 2 andpT seriesn � pnpβ2
2n{pVppβ2nq � 1q{?2. Essentially this is just a transformation of the test

statistic proposed above, which will produce the same acceptance/rejection result for

significance level α (using the critical values in their equation 3.11). Ding et al. (2019)

7For example, suppose that pVτn � 0. Then the empirical process has a Chi-square distribution for
Vτ � 0. Since the unadjusted critical value is bounded away from zero, pVτn would not be contained
in the unadjusted CI.

15



study a framework with a fixed population where the only source of randomness is

the experimental assignment of offers. They propose a similar Wald estimator, but

replace estimates of ppξ1, pξ0q and the asymptotic variance with randomization inference

counterparts. In samples with large n, this leads to very similar test statistics, but

may produce slightly different results in small samples.

The approach that I introduce in the following section differs substantially in the

way that I handle multivariate cases. For K ¡ 2, the approaches are non-nested

because I use sample splitting and consider a wider range of methods to estimatepµdpxq than series estimators.

3 Inference for nonparametric CATE

In this section I provide an overview of the inference problems associated with efficient

estimators of the VCATE and how to solve them for the nonlinear/high-dimensional

case. Let tYi, Di, Xiu be i.i.d.. As shown in Newey (1990), efficient estimators can be

decomposed as
?
nppVτn � Vτnq � 1?

n

ņ

i�1

ϕi � Residualnlooooomooooon
opp1q

, (12)

where ϕi is an i.i.d. realization from the efficient influence function with mean zero,

and the residual becomes asymptotically negligible as n Ñ 8. The semiparametric

lower bound is Vpϕiq. Let ηp�q be a set of nuisance functions defined as

ηpxq :� pτpxq, µ0pxq, ppxq, τavq. (13)

Levy et al. (2021) showed that the efficient influence function for the VCATE is equal

to ϕi � ϕpYi, Di, Xi, ηq � Vτn, where ϕ is defined as

ϕpy, d, x, ηq :� pτpxq�τavq2�2pτpxq�τavq
�
dpy � µ0pxq � τpxqq

ppxq � p1� dqpy � µ0pxqq
1� ppxq

�
.

(14)

By (12), all efficient estimators –regardless of their form– are
?
n–asymptotically

equivalent to 1
n

°n
i�1 ϕi. Let ϕi � ϕpYi, Di, Xi, ηpXiqq be a realization of the efficient
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influence function. If Vpϕiq ¡ 0, then

Vpϕiq�1 �?
nppVτn � Vτnq � Vpϕiq�1

�
1?
n

ņ

i�1

ϕi

�
� opp1q Ñp N p0, 1q.

In this case, any confidence interval based on normal critical values and a consistent

estimator of Vpϕiq, produces valid coverage. For common functionals such as the

ATE, Vpϕiq ¡ 0. However, this cannot be guaranteed for the VCATE.

Lemma 3. Let σ2
dpxq :� VpY | D � d,X � xq.

Vpϕiq � VppτpXq � τavq2q � 4E
�
pτpXq � τavq2

�
σ2

1pXq
ppXq � σ2

0pXq
ppXq


�
. (15)

Both of the inner terms in (15) are multiplied by pτpxq� τq. When the VCATE is

zero, τpxq � τ almost surely, and the influence function is degenerate. The condition

that Vpϕiq ¡ 0 does not hold uniformly over all Vτ in the parameter space. In this

case, the distribution of
?
nppVτn � Vτnq is dominated by the higher order terms of

the residual (12), and the CLT cannot be applied to guarantee normality near the

boundary. The linear estimator discussed in the previous section is just one example.

Moreover, if the tails of τpxq are thin, then the value of Vpϕiq is also small near the

boundary.

Corollary 2. If ErpτpXq � τq4s ¤ κ2V 2
τ for κ P R�, then

Vpϕiq ¤ κ2V 2
τ � 4κVτ

d
E
��

σ2
1pXq
ppXq � σ2

0pXq
1� ppXq


�
.

Corollary 2 shows that the variance of the efficient influence function is bounded by

a quantity that scales up or down proportional to the value of Vτ . Consequently, when

Vpϕiq is relatively small, the higher order terms in the residual may still dominate.

3.1 Pseudo-VCATE, regressions, and efficiency

A robust way to introduce nonlinearity is to consider a regression with real-valued

basis functions Mpxq and Spxq. For now, I will leave these unspecified but in the next

section I will show how they can be estimated non-parametrically in a first stage.

17



Y � c0 �MpXqc1 � rD � ppXqsβ1 � rD � ppXqsSpXqβ2loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
W pX,Dq1θ

�U (16)

with weights λpXq :� rppXqp1 � ppXqqs�1, regressors W pX,Dq, and parameters

θ � rc0, c1, β1, β2s. This specification accommodates experiments with heterogeneous

assignment probabilities.8 Consider the following minimizers:

Θ� :� arg min
θPR4

ErλpXqpY �W pX,Dq1θq2s. (17)

Chernozhukov et al. (2022a) showed that if VpSpXqq ¡ 0, ErSpXqs � 0, and the

vector pβ1, β2q are part of the solution to (17), then pβ1, β2q are also the intercept

and slope of the best linear projection of τpXq on SpXq.9 Hence the pseudo-VCATE

has an upper bound, V �
τ � β2

2VpSpXqq ¤ Vτ . Because of this bound, if Vτ � 0,

then the pseudo-VCATE pV �
τ q will not falsely detect heterogeneity even if SpXq is

misspecified. If anything, poor choices of SpXq will possibly understate the amount

of heterogeneity. When τpXq is spanned by SpXq, V �
τ � Vτ and the two notions

coincide.

To obtain a feasible estimator we define pSpxq :� Spxq� 1
n

°n
i�1 SpXiq, and computexW px, dq by substituting pSpxq in (16). Now consider a value of pθn that minimizes

1
n

°n
i�1 λpXiqpYi �xW pXi, Diq1θq2, by solving the first order condition

Qppθnq :� 1

n

ņ

i�1

λpXiqpY �xW pXi, Diq1pθnqxW pXi, Diq1. (18)

The regression parameters can be used to construct the CATE and other nuisance

functions. For a given θ P R4,

η̃θpxq :�

������
τ̃θpxq
µ̃0,θpxq
p̃θpxq
τ̃av,θ

�����
�

������
pxW px, 1q �xW px, 0qq1θxW px, 0q1θ

ppxq
1
n

°n
i�1 τ̃θpXiq

�����
. (19)

8When ppxq � 1{2 this produces exactly the same coefficients as a regression of Y on
p1,MpXq, D,D�SpXqq, but differs when the probabilities are heterogeneous. If MpXq � SpXq � X
as well, this reduces to (3).

9When VpSpXqq � 0, β2 does not have a unique solution in (17), but V �τ � β2
2VpSpXqq � 0 ¤ Vτ

is still the best linear projection, regardless of the value of β2.
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Lemma 4 shows that the sample variance of the estimated CATE can be interpreted

as an estimator that plugs-in (19) to the efficient influence function in (14).

Lemma 4. Define pVxn � 1
n

°n
i�1

pSpXiq2. Let ϕ, η̃θ and Qpθq be defined as in (14),

(18), and (19), respectively. If pθn � ppc1n,pc2n, pβ1n, pβ2nq solves Qppθnq � 0, then pVτn :�pβ2
2n
pVxn � 1

n

°n
i�1 ϕpYi, Di, Xi, η̃pθnq.

Mechanically, the influence function can be decomposed into primary and bias-

correction components. As an intermediate step for Lemma 4, I show that the bias-

correction terms and the fourth component of (18) are proportional to each other.

The optimal pθn implicitly sets the average bias correction to zero. Intuitively, the

linear model minimizes the covariate imbalances between the treatment and control

group in-sample. Lemma 4 suggests that pVτn could be asymptotically efficient if η̃pθn
is sufficiently close to η. In Section 4.1, I show that my proposed semiparametric

estimator can indeed achieve this.

As a preliminary step, it is necessary to determine which Spxq and Mpxq ensure

that η̃θ � η. Not all choices achieve this property.10 However, if they are chosen in

such a way that W px, dq1θ � µdpxq for some θ P R4, then that’s sufficient to guarantee

that ηθ � η. Lemma 5 shows that any θ with this property is also a solution to the

regression problem, and provides guidance on the choice of Spxq and Mpxq.

Lemma 5. Let Θ� be the optimizer set defined in (17). If (i) ErSpXqs � 0 and (ii)

W px, dq1θ � µdpxq for some θ P R4, then θ P Θ�. Conditions (i) can be satisfied

by setting Spxq � τpxq � Erτ s. Condition (ii) can be satisfied by setting Mpxq �
µ0pxq � ppxqτpxq. In this special case, θ � p0, 1,ErτpXqs, 1q1 P Θ�.

Lemma 5 provides efficient choices of Spxq and Mpxq that can be expressed in

terms of conditional moments, and that for this choice, the optimal θ has a known,

simple form. In practice, Spxq and Mpxq can be estimated non-parametrically.

3.2 Multi-step approach

My proposed procedure randomly partitions the observations In :� t1, . . . , nu into K

folds of equal size nk :� n{K. Denote the observations in each fold by Ink, so that

10This point highlights that while all regressions of the form in (16) proposed by Chernozhukov
et al. (2022a) estimate an interpretable V �τ –regardless of the choice of Mpxq–, not every regression
in this class is efficient. The functions Spxq, and Mpxq in particular, both affect efficiency.
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�K
k�1 Ink � In, and let I�nk :� InzInk be the set of observations that are not in fold

k. In a slight abuse of notation, I use I�nk when defining conditional expectations,

to denote the full set of random variables associated with observations not included

in fold k. For simplicity, I also label the fold of observation i P Ink, by ki.

Let pη�kpxq :� ppτ�kpxq, pµ0,�kpxq, ppxq, pτ�k,avq denote a prediction of the nuisance

function ηpxq over the set I�nk, using the researcher’s preferred prediction algorithm.

This could include traditional methods such as linear regression, or more modern

“machine learning” approaches such as LASSO, neural networks, or random forests.

The only function that is known in advance is the propensity score, since I restrict

attention to randomized experiments. Guided by Lemma 5, define

S�kpxq :� pτ�kpxq � Erpτ�kpXiq | I�nks,
M�kpxq :� pµ0,�kpxq � ppxqpτ�kpxq,

λpxq :� rppxqp1� ppxqqs�1,

W 1
i :�

�
1 M�kipXiq pDi � ppXiqq pDi � ppXiqqS�kipXiq

� (20)

Consider a regression with weights λpXiq, parameters θ :� pc1, c2, β1, β2q, and

Yi � W 1
iθnk � Ui, ErWiUi | I�nks � 0 (21)

In practice, Erpτ�kpXiq | I�nks needs to be estimated, and I use a sample analog:

pS�kpxq :� pτ�kpxq � pτnk,av, pτnk,av :� 1

nk

¸
iPInk

pτ�kpXiq,

xW 1
i :�

�
1 M�kipXiq pDi � ppXiqq pDi � ppXiqqpS�kipXiq

�
,

pθnk :�
�

1

n

¸
iPInk

xWi
xW 1
i

��1 �
1

n

¸
iPInk

xWiYi

�
.

(22)

Let pθnk � ppc1nk,pc2nk, pβ1nk, pβ2nkq be the estimator over the subsample Ink. The fold-

specific variance of pS�kipxq is defined as

pVxnk :� 1

nk

¸
iPInk

pS�kipXiq2. (23)
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The estimator of the VCATE for fold k is

pVτnk :� pβ2
2nk

pVxnk. (24)

In this case pVxnk can be viewed as a preliminary estimate of the VCATE using the

data in I�nk, whereas pVτnk is a regression-adjusted estimator that fits the sample Ink.
This adjustment will produce better results, with a pseudo-VCATE interpretation

even if the first step pS�kipxq function is noisy, misspecified, or slow to converge to

τpxq. The estimator in (23) belongs to the class of multi-step estimators defined in

Chernozhukov et al. (2022a). I add a restriction on the choice of M�kpxq, guided by

Lemma 5, to ensure asymptotic efficiency.

To quantify the uncertainty in ppθnk, pVxnkq I compute a robust (sandwich) estimator.

I start by defining two auxiliary residuals, pTi :� pV �1
xnk

pS�kipXiq2 � 1 and pUi :� Yi �xW 1
i
pθnk. Let pΠnk be a 4 � 4 diagonal matrix with diagonal entries p1, 1, 1, pV �1{2

xnk q.
Researchers can compute estimators of the individual components of the sandwich

form pJnk, pHnk, and a selection matrix Υ defined as follows

pJnk :�
�

1
nk

°
iPIk λpXiqpΠnk

xWi
xW 1
i
pΠ1
nk 0

0 1

�
, Υ :�

�
0 0 0 1 0

0 0 0 0 1

�
(25)

pHnk :� 1

nk

¸
iPIk

��λpXiq2
�pU2

i
pΠnk

xWi
xW 1
i
pΠ1
nk

�
λpXiq

�pUipΠnk
xWi

pTi�
λpXiq

�pUixW 1
i
pΠ1
nk
pTi� pT 2

i

�� . (26)

The sandwich covariance estimator is

pΩnk � Υ pJ�1
nk

pHnk
pJ�1
nk Υ1. (27)

The population covariance matrix is

Ωnk � V

��
λpXiqpDi � ppxiqqV �1{2

xnk S�kpXiqUi
V �1
xnkS�kpXiq2

�
| I�nk

�
. (28)

When the VCATE is zero, then pVxnk (as a consistent estimator of Vτn) should con-

verge to zero along the asymptotic sequence. To prevent asymptotic degeneracy, we

need to rescale the estimands along the lines of Assumption 2. The random vari-
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able V
�1{2
xnk S�kpXiq is normalized to (conditionally) have variance one by design, even

if S�kpXiq converges to zero. This requires two much weaker conditions: (i) that

Vxnk ¡ 0, i.e. there is some noise in estimating the CATE;11 (ii) Ωnk has eigenvalues

bounded away from zero. To ensure this, the tails of S�kpXiq need to be thin.12

Assumption 3 (Moment Bounds). Suppose that there exists a constant δ P p0, 1q such

that for each fold k, almost surely, (i) ErM�kpXiq2λpXiq | I�nks � ErM�kpXiqλpXiq |
I�nksErλpXiq | I�nks ¥ δ, (ii) ErM�kpXiq4 | I�nks ¤ 1{δ, (iii) ErU4

i | I�nks ¤ p1{δq,
and (iv) ErS�kpXiq4 | I�nks ¤ p1{δqErS2

�k | I�nks2, (v) Erpτ�kpXq2 | I�nks   1{δ.

Assumption 3.(i) is a rank condition that ensures that the auxiliary regressor

M�kpXiq is not degenerate. Assumption 3.(ii) ensures that the second-moment of the

candidate regressor M�kpXiq is bounded. Assumption 3.(iii) is a standard condition

indicating that the fourth moment of the residuals are bounded. Assumption 3.(iv)

is a bounded kurtosis condition indicating that the out-of-sample, machine learning

predictions of τpxq have thin tails. Finally, Assumption 3.(v) is a bound on the

variance of the first-stage VCATE.

Assumption 4 (Non-degeneracy). The following properties hold almost surely over

sequences of random data realizations tIn1, . . . , InKu8n�1. Conditional on I�nk: (i)

Vxnk ¡ 0, (ii) Vxnk has a finite upper bound, (iii) V �
τnk :� β2

2nkVxnk is contained in

a bounded subset of r0,8q, and (iv) Ωnk defined in (28) is a positive definite matrix

with bounded eigenvalues.

Assumption 5 (Random Sampling). The observations tY0i, Y1i, Di, Xiuni are i.i.d.

across i for fixed n, and drawn from a sequence of data generating processes tγnu8n�1.

Theorem 3 shows how these primitive conditions imply an analog of Assumption

2 for the cross-fitted case.

Theorem 3. Consider a sequence of random data realizations tIn1, . . . , InKu8n�1 with

associated quantities tVxnk, V �
τnk, β2nk,Ωnku8n�1 for each k, as well as a sequence of es-

timators tpβ2nk, pVxnk, pV �
τnk,

pΩnku8n�1 computed from (22), (23), (24), and (27), respec-

11I also propose an extension that allows for Vxnk � 0 in Remark 6.
12One sufficient additional restriction is that ErUi | Xi, Di, I�nks � 0 (the model is correctly

specified), VpUi | Xi, Di | I�nkq is bounded away from zero, and S�kpXiq has bounded kurtosis.
In that case the off-diagonal elements of Ωnk are zero and the diagonals are uniformly bounded.
Positive-definiteness may also hold in a neighborhood where the nuisance functions are close to the
true value and ErUi | Xi, Di, I�nks � 0.
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tively. Suppose that these quantities satisfy Assumptions 1.(ii), 3, 4, and 5. Then as

nk Ñ 8, for all k P t1, . . . , Ku, Conditional on a sequence of I�nk,

(i) Ω
�1{2
nk

?
nk

�?
Vxnkppβ2nk � β2nkqpVxnk

Vxnk
� 1

�
| I�nk Ñ Znk � N p0, I2�2q.

(ii) pΩnk Ñp Ωnk.

Theorem 3 presents a central limit theorem for the components of pV �
τnk � pβ2

2nk
pVxnk,

properly rescaled and conditional on I�nk. This result holds regardless of whether the

nuisance parameters are properly specified and primarily relies on the independence

of the folds. By Lemma 2, conditional on I�nk,

pVτnk � V �
τnk � Gpnk, V �

τnk,Ωnk, Znkq � op

�
1

nk



� op

�c
V �
τnk

nk



� op

�
V �
τnk?
nk



. (29)

Then it is possible to construct adaptive confidence intervals, substituting the sample

size nk and estimated statistics ppVτnk, pΩnkq.

xCIαnk � "
V �
τ P R�, ζ P t�1, 1u :

Fnk,V �τ ,pΩnk,ζppVτnk � V �
τ q P

�
qα{2pnk, V �

τ ,
pΩnk, ζq, q1�α{2pnk, V �

τ ,
pΩnk, ζq

�*
.

(30)

The confidence intervals take the same form as in the regression case in (11), except

that now the inputs are obtained from the cross-fitted regression step. The confidence

interval is fast to compute because ppVτnk, pΩnkq only needs to be computed once. It is

worth noting that because the confidence interval only uses information in fold Ink,
the effective sample size is nk. While this does not affect the nominal asymptotic size

of the confidence interval, it may affect the power of tests against specific alternatives.

3.2.1 Ensemble estimator

We can construct an “ensemble” to aggregate across folds, defined as follows

pVτn :� 1

K

Ķ

k�1

pβ2
2nk

pVxnk. (31)

In Section 4.1, I show that this ensemble estimator is efficient.
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3.2.2 Splitting uncertainty and median intervals

So far in this section we have used the data from a single split or fold of the data.

However, the choice of fold k or the particular split may lead to different values ofpVτnk and hence distinct confidence intervals. Chernozhukov et al. (2022a) propose an

aggregation procedure based on “median parameter” confidence intervals, inspired by

false-discovery rate adjustments. Their proposed conditional t-tests are not directly

applicable here because pVτnk conditionally converges to a generalized Chi-square.

However, I show that the basic idea can still be adapted.

Let K be the total number of folds, obtained across one or more splits of the data.

For instance, a 2-fold sample with 10 splits would have K � 20, Let inf xCIαnk and

sup xCIαnk denote the lower and upper bounds of xCIαnk, respectively, and MedKt� � � u
denote the median over a set indexed by k � t1, . . . , Ku. If K is even then two

quantities might be tied for the median, and in that case I compute their midpoint.

The multifold confidence interval is defined as

xCImultifold

αn �
�
MedK

!
inf xCI α

2
nk

)
,MedK

!
sup xCI α

2
nk

)�
. (32)

Intuitively, the K fold-specific intervals “vote” to include a particular value, and

V �
τ P xCImultifold

αn only if there is a majority vote. The “median” interval xCImultifold

αn

contains values within the median lower bound and the median upper bound across

folds. To control the overall false discovery rate, I adjust the nominal size to α{2.

This adjustment produces a conservative interval because it assumes a worst-case

dependence structure between the folds and the splits, regardless of the size of K.

In some instances, the asymptotic coverage probability may be strictly higher than

p1�αq, particularly when there is a lot of heterogeneity.13 At the boundary, with low

effect heterogeneity or none at all, it is much harder to asses the dependence struc-

ture between the fold-specific estimators. One of the benefits of using a worst-case

approach is that it provides coverage guarantees under weak assumptions. Moreover,

the empirical example illustrates that even though these intervals are conservative,

they may have a short length in practice.

13For instance, given a single split, Theorem 6 implies that the t?nkppVτnk � Vτ quKk�1 are asymp-
totically uncorrelated. However, near the boundary, the estimators converge at a rate faster than?
n and their relative dependence structure at that rate is unclear.
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4 Large Sample Theory

4.1
?
n-Consistency, Efficiency, and Boundary Rates

Let γ P Γ denote a probability distribution over i.i.d observations pY1i, Y0i, Di, Xiq. I

use the notation Eγr�s and Pγp�q to denote the expectation and probability under γ,

respectively. Let S�kpxq be the function defined in (20). The true value of the CATE

and VCATE is given by τγ and Vτ pγq, respectively. The pseudo-VCATE is given by

V �
τ pγ, I�nkq :� Vτ pγq � inf

pβ1,β2qPR2
EγrpτγpXq � β1 � β2S�kpXqq2 | I�nks. (33)

Define the estimation error of the CATE in the L2 norm as

ω pγq :�
b
Eγr}pτ�kpXq � τγpXq}2s. (34)

We can bound the difference between the pseudo-VCATE and its true value:

Theorem 4 (Bias of the pseudo-VCATE). Under the distribution γ P Γ,

Eγr|Vτ pγq � V �
τ pγ, I�nkq|s ¤ min

 
16� ωpγq2, Vτ pγq

(
. (35)

Theorem 4 derives a non-asymptotic bound for the VCATE as the minimum of

two key quantities: (i) the conditional L2 error between the candidate function and

the true CATE, and (ii) the true value of the VCATE. This proof only relies on the

definition in (33). For instance, when Vτ pγq � 0, then Vτ pγq � V �
τ pγ, I�nkq � 0,

regardless of whether pτ�kp�q is properly specified. The difference between the two

quantities is also small if ωpγq is sufficiently close to zero. In the multi-step approach,

ωpγq captures the first-stage uncertainty from estimating the CATE, which decreases

with sample size. I consider the following convergence condition.

Assumption 6 (Convergence CATE).
?
nkωpγnq2 � op1q as nÑ 8.

Assumption 6 imposes an L2 consistency condition on the CATE. A large class of

machine learning models can meet this requirement. For example, Bickel et al. (2009)

and Belloni et al. (2014) evaluate rates of convergence under sparse models, Chen and

White (1999) for neural networks, and Wager and Walther (2015) for regression trees

and random forest.

25



Theorem 5 (Faster than
?
n convergence near boundary). Consider a sequence of

data generating processes tγnu8n�1 where Vτ pγnq Ñ 0 as n Ñ 8 and Assumptions 1,

3, 4, 5 and 6 hold. Define ∆nk :�
�pVτnk � Vτ pγnq

	
for the estimator defined in (24).

Then (i)
?
nk∆nk � opp1q, and (ii) if in addition n

1{2�ρ
k Vτ pγnq � op1q for ρ P r0, 1{2q,

then n
1{2�ρ
k ∆nk � opp1q.

Theorem 5 shows that multi-step estimators of the VCATE converge to zero faster

than
?
nk near the boundary. I formalize “near” by considering sequences of distri-

butions where the VCATE approaches zero. Theorem 5 relies on the non-asymptotic

bound in Theorem 4, the normal approximation in Theorem 3, and the empirical pro-

cess in Lemma 2. There is no requirement on the rate of convergence of pµ�0kp�q (and

consequently on the generated regressor M�kip�q), only an assumption that ppxq is

known and that the CATE is estimated at a sufficiently fast rate. Furthermore, if the

true CATE is nearly flat in the sense that for ρ P r0, 1{2q, then n
1{2�ρ
k Vτ pγnq � op1q

(or even exactly equal to zero), then the estimator has a faster rate guarantee.

To prove efficiency we have the stronger requirement that all the nuisance functions

converge to their true value in the L4 norm and at n
1{4
k rate in the L2 norm.

Assumption 7 (Regularity conditions). Define the residuals Ui � Yi � EγnrYi |
Di, Xis. (i) Eγnr}Yi}4s, Eγnr}Ui}4s, Eγnr}ηpXiq}4s, (ii) Eγnr}pη�kpXiq}4s are uniformly

bounded, (iii) Eγn
�}pη�kpXq � ηpXiq}4

�Ñ 0, (iv)
?
nkEγnr}pη�kpXiq � ηpXiq}2s � op1q

for all k P t1, . . . , Ku.

The next step is to show that the estimation error of the fold-specific VCATE

converges at
?
nk to an average of efficient influence functions.

Theorem 6 (
?
n Consistency and Efficiency). Consider a sequence of data generating

processes tγnu8n�1 where Vτ pγnq Ñ 0 as nÑ 8 and Assumptions 1, 3, 4, 5, 6, and 7

hold. Then ?
nkppVτnk � Vτ pγnqq � 1?

nk

¸
iPInk

ϕi � opp1q.

Theorem 6 shows that the fold-specific estimator converges at
?
nk-rate to an

average of i.i.d influence function. This requires standard regularity conditions. The

proof of Theorem 6 is non-standard due to the multi-step nature of the procedure. I

start by applying Lemma 4, which shows hows to write pVτnk as an average of estimated

influence functions. I break down the proof into sequences where Vτ pγnq converges to
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zero and those where it’s bounded away from zero. For the first part, I leverage (a)

the boundary convergence result in Theorem 5, (b) the bound for Vpϕiq in Lemma 2.

For the second part, I provide a novel decomposition of regression adjusted nuisance

functions. The key is to prove that the regression parameters pθnk converge at n
1{4
k

rate to the values in Lemma 5 for sequences where Vτ pγnq Ñ Vτ ¡ 0. Once in this

form, the rest of the proof relies on a traditional Taylor expansion argument.

The ensemble estimator pVτn combines information from the whole sample. By

definition n � nk � K and K is finite, which means that algebraically
?
nppVτn �

Vτ pγnqq �
?
nk?
K

°K
k�1ppVτnk � Vτ pγnqq, and by Theorem 6,

?
nppVτn � Vτ pγnqq �

�
1?
nkK

Ķ

k�1

¸
iPInk

ϕi � 1?
K

Ķ

k�1

opp1q
�
� 1?

n

ņ

i�1

ϕi � opp1q.

This means that aggregating the estimators restores full efficiency, satisfying the

property described in (12).

4.2 Asymptotic Coverage

I start by showing that the single fold confidence interval has uniform coverage for

the pseudo-VCATE, and exact coverage under an additional assumption.

Assumption 8 (Exact coverage condition). Let Ωnk,12 be the off-diagonal element of

Ωnk. For each t ¡ 0, lim sup
nÑ8

supγPΓ Pγp
a
V �
τ pγ, I�nkq|Ωnk,12| ¡ tq � 0.

Assumption 8 states that the product of the pseudo-VCATE and the off-diagonal

element of the limiting covariance matrix in (28) needs to converge to zero uniformly.

Theorem 7 (Uniform Coverage of Pseudo-VCATE). Let Γ denote a set of distribu-

tions, constrained in such a way that Assumptions 1, 3, 4, and 5 hold. Let xCIαnk and

V �
τ pγ, I�nkq be defined as in (30) and (33), respectively. Then

1� α ¤ lim inf
nÑ8

inf
γPΓ

Pγ
�
V �
τ pγ, I�nkq P xCIαnk	 (36)

If Assumption 8 also holds, then

lim sup
nÑ8

sup
γPΓ

Pγ
�
V �
τ pγ, I�nkq P xCIαnk	 ¤ 1� α. (37)
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Theorem 7 shows that the confidence intervals always have uniform coverage of

the pseudo-VCATE of at least p1 � αq.14 The key is to prove that the confidence

intervals yield coverage under arbitrary sequences of distributions, which includes

cases where V �
τn is either equal to zero or approaches zero as n Ñ 8. The proof

builds on the approximation of Lemma 2 and shows that for every sequence, the

test statistic for a particular ζnk P t�1, 1u converges to a uniform distribution. This

sequential characterization suffices to apply generic results in Andrews et al. (2020),

which guarantee uniform coverage even in non standard cases like this one. Coverage

over the pseudo-VCATE holds regardless of whether the nuisance functions are slow

to converge or even misspecified.

The intervals are in general conservative because we’re not plugging in the un-

known ζ, and instead define a robust confidence interval as the union of CIs with

given ζ P t�1, 1u. However, the key insight is that ζ only affects the coverage when

the pseudo-VCATE is bounded away from zero. If Assumption 8 holds, the value of

ζ doesn’t enter the asymptotic distribution of the estimator. I show that this con-

dition holds automatically if the nuisance functions converge to their true value at a

sufficiently fast rate.

Lemma 6 (Verify Exact Coverage). Let Γ denote a set of distributions that satisfy

Assumptions 1, 3, 4, 5, 6, and 7. Then Assumption 8 also holds.

As a special case, when the model is correctly specified, i.e. W 1
iθ � µdpxq for some

θ P R4, then Ωnk,12 � 0 by construction. Lemma 6 states that we only need a model

that is correctly specified asymptotically, given the rates in Assumptions 6 and 7.

Then for non-boundary cases, Ωnk converges to the population analog under correct

specification. These conditions also imply point-wise coverage of the true VCATE.

Theorem 8 (Pointwise, Exact Coverage of VCATE). Let Γ denote a set of distribu-

tions that satisfy Assumptions 1, 3, 4, 5, 6, and 7. Then

inf
γPΓ

lim inf
nÑ8

Pγ
�
Vτ pγq P xCIαnk	 � sup

γPΓ
lim sup
nÑ8

Pγ
�
Vτ pγq P xCIαnk	 � 1� α.

Theorem 8 shows that if the nuisance functions converge at a sufficiently fast

rate, then the proposed intervals achieve point-wise exact coverage. The confidence

14The theorem only uses Assumptions 1, 3, 4, and 5 to verify normality in Assumption 2. A broad
class of confidence intervals of the form in (11) constructed from regression adjusted estimators will
satisfy these uniformity properties.
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intervals provide correct size coverage for all regions of the parameter space, including

Vτ pγq � 0.

Proving uniform coverage of the VCATE (rather than the pseudo-VCATE) is

more challenging in the non-parametric case without much stronger conditions on

the convergence rates of the nuisance functions. The lack of uniformity stems from

a difficulty in controlling the ratio
?
nkωpγnq{

a
Vτ pγnq, which measures the relative

error in estimating the CATE vs. the overall level of the VCATE. By the bound in (4),

this ratio is easy to control when nkVτ pγnq � op1q (near homogeneity) or Vτ pγnq Ñ
Vτ ¡ 0 (strong heterogeneity). However, it is possible to construct sequences, e.g.,

nkVτ pγnq Ñ v ¡ 0, where ppVτnk � V �
τ pγn, I�nkqq converges to zero at a faster or

comparable rate to the error of the pseudo-VCATE. There may be distortions in

coverage in smaller samples. I illustrate this issue in the simulations.

Remark 4 (Uniform inference for one-sided tests). Uniform inference is only chal-

lenging for two-sided tests. If instead, the researcher is only interested in left-sided

tests, then uniform inference is still possible. To do so, we can make explicit use of

the inequality V �
τ pγ, I�nkq ¤ Vτ pγq. If Vτ pγq   infV �τ

xCIαnk (the lower bound of the

CI), then V �
τ pγ, I�nkq R xCIαnk. Therefore, for all γ P Γ,

Pγ
�
Vτ pγq ¥ inf xCIαnk	 ¤ Pγ

�
V �
τ pγ, I�nkq R xCIαnk	 . (38)

I prove a weaker uniformity result for one-sided tests building on Theorem 7.

Corollary 3. If Assumptions 1, 3, 4, and 5 hold, then

lim sup
nÑ8

sup
γPΓ

Pγ
�
Vτ pγq   inf xCIαnk	 ¤ lim sup

nÑ8
sup
γPΓ

Pγ
�
V �
τ pγ, I�nkq R xCIαnk	 ¤ α.

Corollary 3 is empirically relevant for interpreting confidence intervals that do not

include zero. It states that the asymptotic probability of having Vτ pγq P
�
0, inf xCIαnk	

is uniformly less than α. Tests of homogeneity belong to this class and therefore have

the correct size when Vτ pγq � 0. Moreover, the result in Corollary 3 is much stronger

because it guarantees that a broader class of one-sided tests also has the correct

size. It is important to emphasize that I do not impose any assumptions on rates

of convergence of ppη�kpxq � ηpxqq, but only the inequality on the pseudo-VCATE.

Consequently, while estimating µpxq and τpxq may be important for increasing the

power of tests of homogeneity, it is not necessary for controlling their size.
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4.3 Multifold Coverage

The multi-fold confidence interval covers the VCATE asymptotically.

Theorem 9. Let Γ be a set of distributions that satisfy Assumptions 1, 3, 4, 5. Then

lim sup
nÑ8

sup
γPΓ

Pγ
�
Vτ pγq   inf xCImultifoldαnk

	
¤ α.

If Assumptions 6, and 7 also hold, then

sup
γPΓ

lim sup
nÑ8

Pγ
�
Vτ pγq R xCImultifold

αn

	
¤ α.

The first part of Theorem 9 shows that the multifold CI uniformly controls the

size of one-sided tests. The second part shows that if the nuisance functions converge

to their true value asymptotically, then the multifold confidence interval provides

point-wise size-control for two-sided tests. Coverage of the true parameter will be

weakly larger that p1� αq asymptotically.

4.4 Power

The test of homogeneity has power against local alternatives.

Lemma 7. Consider a sequence of distributions tγnu8n�1 and tI�nku8n�1, where Ωnk Ñ
Ω8 and nkV

�
τ pγn, I�nkq � v � op1q, for v P r0,8q. Assume that 1, 3, 4, and 5 hold.

Let Ω8,11 be the upper-left entry of Ω8, Φp�q be the standard normal CDF, and z1�α
be the p1� αq�quantile. Then

lim
nÑ8

Pγnp0 R xCIαnk | I�nkq � 1� Φ

�
z1�α �

?
va

Ω8,11

�
� Φ

�
�

?
va

Ω8,11

�
.

Lemma 7 computes the power curve for a sequence of local alternatives. When

v � 0 the power is equal to α, whereas when v Ñ 8 the power tends to one. This

shows that tests of homogeneity have local power the null. When the pseudo-VCATE

is bounded away from zero, the test rejects with probability approaching one.
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5 Extensions

Remark 5 (Clustered Standard Errors). In some cases, assuming that units i are

independent may be strong. For example, in Dizon-Ross (2019) units are randomized

at the household level, and it is reasonable to expects that units within a household

have correlated outcomes and covariates. To deal with this dependence structure,

suppose that the sample can be partitioned into C clusters, c P t1, . . . , Cu, which

are independent and identically distributed. The researcher can compute pβ2nk, pVτnk
and xCIαnk via cross-fitting by randomly partitioning entire clusters rather than the

individual observations.

Lemma 8. Let trnku8n�1 be a sequence of positive scalars. Suppose that Vxnk ¡ 0,

Ωnk is positive definite with positive eigenvalues, and that conditional on a sequence

tI�nku8n�1, r�1
nk
pΩnk Ñp Ωnk, nk{rnk Ñ 8, and

Ω
�1{2
nk

c
nk
rnk

�?
Vxnppβ2nk � β2nkqpVxnk

Vxnk
� 1

�
| I�nk Ñd Zn � N p0, I2�2q. (39)

Then xCIαnk, substituting the arguments pnk, pVτnk, pΩnkq, satisfies Theorem 7.

Lemma 8 proposes high-level conditions that ensure that confidence intervals have

correct coverage. The quantity
a
nk{rnk is the effective rate of convergence, which

features prominently in problems with cluster dependence (MacKinnon et al., 2022).

For example, if the observations are fully correlated within clusters and the clusters

have equal size, then rnk is the cluster size, nk{rnk � C, and the estimators in (8)

converge at
?
C rate (the total number of clusters). The analyst does not need to

specify the quantity rnk to apply the procedure, but merely specify an estimator of

the covariance matrix that meets the rate requirement. Under minor modifications

to the existing proofs, we can also prove analogs of Theorems 8 and 9.

We can construct estimators that satisfy Lemma 8. Let Inkc be the set of units in

fold k and cluster c, and let Cnk be the indexes of the clusters selected for fold k.

pHcluster
nk :� 1

nk

¸
cPCnk

� ¸
iPInkc

�
λpXiqpUixWipTi

��� ¸
iPInkc

�
λpXiqpUixWipTi

��1

.

The clustered standard errors are pΩcluster
nk � pΥnk

pJ�1
nk

pHcluster
nk

pJ�1
nk

pΥ1
nk, where pJnk, pΥnk

are computed as outlined in (25).

31



Remark 6 (Confidence intervals when Vxnk � 0). When the conditional mean is

constant, i.e. µdpxq � ErYds, prediction models with corner solutions like LASSO

may estimate a constant conditional mean, i.e. pµd,�kpxq � pµd,av, pτ�kpxq � pµ1,�kpxq �pµ0,�kpxq is constant, and consequently Vxnk � 0.15 This violates Assumption 4.(i),

and it is challenging to construct a confidence interval with exact coverage. One

alternative is to construct an ensemble of sparse and non-sparse estimators of the

CATE in the first-stage. Another alternative is to use degenerate confidence intervals:

xCI0

αnk �
$&%xCIαnk if Vxnk � 0,

r0, 0s if Vxnk � 0.
(40)

The confidence intervals collapse to zero when the pτ�kpxq prediction is degenerate.

For example, in LASSO researchers can check whether the coefficients are zero, in

tree-based methods when there are no splits, or whether pVxnk � 0. We can also define

an analogous multifold confidence interval.

xCI0,multifold

αn �
�
MedK

!
inf xCI α

2
nk

)
,MedK

!
sup xCI α

2
nk

)�
. (41)

I study the asymptotic properties of these confidence intervals.

Lemma 9. Let Γ denote a set of distributions that satisfy Assumptions 1, 3, and 5.

Suppose that Assumption 4 holds, except for the requirement that Vxnk � 0. Then (i)

lim inf
nÑ8

inf
γPΓ

Pγ
�
V �
τ pγ, I�nkq P xCI0

αnk

	
¥ 1� α (42)

(ii) If Assumptions 6, and 7 also hold, then

inf
γPΓ

lim inf
nÑ8

Pγ
�
Vτ pγq P xCI0

αnk

	
¥ 1� α (43)

inf
γPΓ

lim inf
nÑ8

Pγ
�
Vτ pγq P xCI0,multifold

αnk

	
¥ 1� α. (44)

To prove this result I focus on the coverage for subsequences where Vxnk � 0 and

Vxnk ¡ 0, and apply the results for conservative coverage results in Andrews et al.

(2020). In subsequences where Vxnk � 0, then V �
τ pγ, I�nkq � 0 which means that

coverage of the pseudo-VCATE is equal to one. In subsequences where Vxnk ¡ 0

15It is still possible to have Vxnk ¡ 0 almost surely even if Vτ � 0, as long as µ0pxq is not constant.
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and assuming that Ωnk has eigenvalues bounded away from zero, then we can apply

similar arguments as before to prove 1 � α coverage. To prove point-wise coverage,

I separate the cases where Vτ pγq � 0 and Vτ pγq ¡ 0. In the latter case, I show

that Vxnk is point-wise bounded away from zero, though not uniformly. The proof of

Lemma 9 does not rely on the i.i.d. assumption, and can also accommodate cluster

dependence. In the empirical example, I compute confidence intervals with clustered

standard errors and degenerate CATE predictions.

When there’s more heterogeneity and the nuisance functions are estimated accu-

rately, then Vxnk ¡ 0 with high probability. However, when Vτn � 0 and Vpµ0pXqq �
0, then procedures like LASSO may imply Vxnk � 0 (Fu and Knight, 2000), which

means that marginally heterogeneous CATEs could be estimated as homogeneous.

This could be impact the power of tests of homogeneity. The size for two-sided tests

is not uniformly bounded. Furthermore, the multifold confidence interval allows for

some quantification of uncertainty across folds/splits: the CI is degenerate only if

more than half the fold/split-specific CIs are degenerate.

Furthermore, the degenerate CI has correct size control for one-sided tests.

Corollary 4. Under the assumptions of Lemma 9.(i),

lim sup
nÑ8

sup
γPΓ

Pγ
�
Vτ pγq   inf xCI0

αnk

	
¤ α. (45)

lim sup
nÑ8

sup
γPΓ

Pγ
�
Vτ pγq   inf xCI0,multifold

αnk

	
¤ α. (46)

The tests of homogeneity have the correct size when Vτ pγq � 0. Corollary 4

guarantees that the probability of falsely rejecting a class of one-sided test is uniformly

bounded in large samples.

Remark 7 (Monotonic Transformations). It may be useful to report the standard

deviation of the CATE, which is
?
V CATE. I propose the following confidence

interval: xCI0,multifold,sqrt

αn �
!a

V �
τ : V �

τ P xCI0,multifold

αn

)
. (47)

Since the square root is a strictly increasing transformation and the VCATE is non-

negative, then
a
Vτ pγq P xCI0,multifold,sqrt

αn if and only Vτ pγq P xCI0,multifold

αn . Since

the events are equivalent, the transformed confidence interval preserves the coverage

probabilities and will have valid coverage by Lemma 9.
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6 Simulations

I use a simulation design to study the properties of the VCATE estimators. The

baseline covariates are distributed as rX0, X1s P N p0,Σxq, where ρ � 0.5 and

Σx �
�
IJ�J ρIJ�J
ρIJ�J IJ�J

�
.

The random variables X0 and X1 are standard normal vectors of dimension J . The

covariance between pairs of components X0j and X1j1 is equal to ρ � 0.5 for when

j � j1, but zero otherwise. The outcome is generated from a model where Y �
DY0 � p1�Dq, D is generated by a Bernoulli draw with probability 0.5, and

Y0 � c� β10X0 � U0

b
σ̃2

0 � κ10X0X 1
0κ0

Y1 � pc� τq � β10X0 � β1τX1 � U1

b
σ̃2

1 � κ11X1X 1
1κ1,

(48)

where c, τ P R, β0, βτ , κ0, κ1 P Rp. The errors pU0, U1q are independent of the covari-

ates pU0, U1q |ù pX0, X1q, and distributed as standard normals rU0, U1s1 P N p02�1, I2q.
The key model quantities have closed-form expressions. The conditional means at

baseline and the CATE are given by µ1pxq � α � β10x0 and τpxq � τ � β1τZ1, re-

spectively. The conditional variances are σ2
dpxq � κ1dxdx

1
dκd for d P t0, 1u. This

formulation incorporates heteroskedasticity. Covariates that influence the outcomes

at baseline may also affect the treatment effects.

The regressors are constructed in such a way that ErXdX
1
ds � Ip for d P t0, 1u.

This implies simple expressions for the variances of the model, VpUdq � σ̃2
d � κ1dκd,

Vτ � β1τβτ , VpY0q � β10β0 � σ̃2
d � κ10κ0,

VpY1q � β10β0 � β1τβτ � 2p1� ρqβ10βτ � σ̃2
1 � κ11κ1,

I choose an approximately sparse specification for (48) where the coefficients

decay exponentially at a rate of decay of λ � 0.7. Let `j �
b�

1�λ
1�λJ

�
λ1�j be

a geometric sequence, which satisfies
°J
j�1

�
1�λ

1�λJ
�
λ1�j � 1. Given user-specified

parameters pVµ, Vτ , σ2
0, σ

2
1q, the coefficients for the entries j P t1, . . . , Ju are deter-

mined by β0,j � `j
a
Vµ, βτ,j � `j

?
Vτ , κd,j � `j

a
σ2
d � σ̃2

d, for d P t0, 1u. Since°J
j�1

�
1�λ

1�λJ
�
λ1�j � 1, then β10β0 � Vµ, βτβτ � Vτ , and β10βτ �

a
VµVτ . We can
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Figure 1: (Density of estimators) The figure shows the distributions of pVτn (multi-step) and pV two-step
τn , defined

in (31) and (49), respectively, for n � 2500, K � 2 folds, and a single split. The horizontal panels show designs with
homogeneity (Vτ � 0, left), moderate heterogeneity (Vτ � 0.5, middle) and high-heterogeneity (Vτ � 1, right). The
vertical panels have a low dimension case with 2J � 10 (top), and a high-dimension case with 2J � 40 (bottom).

obtain analogous expressions for the variances of the unobserved components, so that

σ̃2
d � κ10κ0 � σ2

d for d P t0, 1u.
I choose an average effect size of τ � 0.15, that is coherent with the recent meta-

analyses of economic experiments in Vivalt (2015). To make sure that the magnitudes

are interpretable, I normalize the coefficients so that the variance for the control group

is VpY0q � 1, by setting set c � 1, σd � 0.7, σ̃d � 0.21, and Vµ � 0.3. The design

is easy to scale for different values of Vτ and J . My design is similar to that in

Belloni et al. (2014) but I choose Σx and the sparsity structure in such a way that Vτ

has a closed form expression. I use LASSO to estimate µ1pxq and µ0pxq, tuned via

cross-validation. The coefficients of this model are consistent given this sparse linear

structure, even in high dimensions. I randomly simulate 2000 datasets to compute

each of the estimators, and split them into K � 2 folds.

Figure 1 considers a simulation with n � 2500. The figure displays a density plot

for the multi-step estimator, pVτn defined in (31), and a two-step debiased machine

learning estimator computed as:

pV two-step
τn :� 1

n

ņ

i�1

ϕpYi, Di, Xi, pη�kipXiqq, (49)

where pη�kpxq � ppτ�kpxq, pµ0,�kpxq, ppxq, pτn,avq and pτn,av � 1
n

°n
i�1 pτ�kipXiq. When
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Figure 2: (Root Mean Square Error) The figure shows the root mean-square error of pVτn (multi-step) andpV two-step
τn , defined in (31) and (49), respectively, for different sample sizes, K � 2 folds, and a single split. The

‘oracle” estimator is constructed by substituting pη�kpXiq � ηpXiq in (49). The horizontal panels show designs with
homogeneity (Vτ � 0, left), moderate heterogeneity (Vτ � 0.5, middle) and high-heterogeneity (Vτ � 1, right). The
vertical panels have a low dimension case with 2J � 10 (top), and a high-dimension case with 2J � 40 (bottom).

Vτ ¡ 0 the efficient influence function is non-degenerate. In high-heterogeneity

regimes both converge to the same limiting distribution.16 However, when Vτ � 0,

the influence function is degenerate and they may converge at different rates. We

see that the multi-step approach is much more precise. This can be explained by the

fast boundary convergence rates derived in Theorem 5. The two step approach can

also produce negative estimates of Vτ , which is an undesirable feature, whereas the

multi-step estimator is always non-negative. Both estimators have higher bias when

the dimension increases because there is more first-stage noise.

Figure 2 plots the root mean-square error (RMSE) of pVτn and pV two�step
τn for different

sample sizes. I compute the semiparametric efficiency bound by computing the RMSE

of an “oracle” estimator that substitutes pη�kpXiq � ηpXiq in (49). The results show

that as the sample size increases, both estimators achieve a higher level of accuracy

and their variance approaches the semi-parametric lower bound (the RMSE of the

oracle). As expected by Corollary 2, the semiparametric lower bound is zero at the

boundary. The differences in RMSE shorten with higher Vτ and in lower dimensional

16This is shown in Theorem 6 for the multistep approach and can be shown for the two-step using
standard arguments, e.g. Chernozhukov et al. (2018).
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Figure 3: (Coverage of Vτ ) The figure shows the 95% coverage probabilities at different sample sizes, for
the multi-fold CIs and single fold confidence intervals defined in (40) and (41), respectively, for K � 2 folds, single

split. The two-step CIs are constructed as p1{nq°ni�1 pϕi � 1.96
apVϕ{n, where pϕi is the summand in (49) and pVϕ

is an estimate of its sample variance. The horizontal panels show a regime with homogeneity (Vτ � 0), moderate
heterogeneity pVτ � 0.5q and high-heterogeneity pVτ � 1q. The vertical panels show low dimension case with 2J � 10
(top), a high-dimension case with 2J � 40 (bottom). The dotted vertical lines denote the true value of the VCATE.

settings p2J � 10q (which have lower first-stage noise).

Figure 3 shows the coverage of Vτ for the different proposed confidence inter-

vals (CIs). For the multi-step approach, I consider the single splits CIs in (40) and

the conservative multi-fold CIs from and (41). The two-step CIs are constructed as

1
n

°n
i�1 pϕi� 1.96

bpVϕ{n, where pϕi is the summand in (49) and pVϕ is an estimate of its

sample variance. The coverage of the two-step approach is very low under homogene-

ity, and there is no improvement as sample size increases when Vτ � 0. The coverage

of the two-step estimator only improves with higher n, in high heterogeneity designs.

By contrast, both multi-step approaches cover the parameter at the intended level,

and coverage improves with higher sample size. For fixed n, coverage degrades for

both cases when the number of covariates is higher.

Figure 4 explores the differences in covering the VCATE vs the pseudo-VCATE

when n � 2500 and 2J � 10 for a fine-grained set of values of Vτ . Panel (a) reflects

a dip in coverage close to the boundary. My theory predicts that the multistep CIs

have exact coverage when Vτ � 0, but may not cover uniformly close to the boundary

(see discussion after Theorem 8). The mulit-fold CIs have conservative coverage.

Conversely, Figure 4, Panel (b) shows the multi-step CIs always uniformly cover the

pseudo-VCATE, as predicted by theory. This provides a robustness guarantee for
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how to interpret the CIs. The two-step approach has much lower coverage and no

guarantees when Vτ � 0 in either panel.

Figure 4: (Coverage of Vτ vs V �τ ) The figure shows the coverage of the VCATE (left) and the fold-specific
pseudo-VCATE (right) for a set of fine-grained values of the true Vτ , given n � 2500, K � 2, single split, and 2J � 10.
The multi-fold CIs and single fold CIS, defined in (40) and (41), respectively. The two-step CIs are constructed as

p1{nq°ni�1 pϕi � 1.96
apVϕ{n, where pϕi is the summand in (49) and pVϕ is an estimate of its sample variance. For the

multi-fold and two-step approaches in the right panel, I report coverage of the median V �τnk across folds.

Figure 5.(left) shows the power of tests of homogeneity in a simulation with n �
2500. The multi-step, single fold approach has correct size control and has local power,

in line with the result of Lemma 7. The power of the test using the multifold approach

is similar to using a single fold. The right panel shows the probability that the VCATE

is strictly below the CI bounds. As predicted by theory, this probability is uniformly

bounded by α � 0.05 for the single and multifold approaches (see Corollaries 3 and

4, and Theorem 9). The two-step approach has a non-monotonic power curve with

incorrect size. The size of one-sided tests in the right panel is uniformly bounded by

α � 0.05, though this may be partly the fact that pV two�step
τn can take negative values

and has a negative bias (see Figure 1).

7 Empirical Example

In this section, I illustrate my approach using data from a large-scale information

experiment conducted by Dizon-Ross (2019). The study, which covered 39 school

districts, involved an intervention to provide low-income parents of at least two chil-

dren with information about their children’s school performance. Half the house-

holds where assigned to the information intervention and the rest were assigned to
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Figure 5: (Power and size) Panel(a) shows the power of tests of homogeneity (whether zero is contained in the
confidence interval) for a set of fine-grained values of the true Vτ , given n � 2500, K � 2, single split, and 2J � 10.
Panel (b) shows the size of one-sided tests, i.e., the probability that the VCATE is strictly below the CI bounds.
The multi-fold CIs and single fold CIs are defined in (40) and (41), respectively. The two-step CIs are constructed as

p1{nq°ni�1 pϕi � 1.96
apVϕ{n, where pϕi is the summand in (49) and pVϕ estimates its sample variance.

the control group. Dizon-Ross (2019) showed that, at baseline, parents faced large

information gaps regarding their children’s grades and class ranking. Even though

schools produced a report card, 60% of parents were unaware of their child’s perfor-

mance. Many parents reported that they did not receive the report card (children

either lost them or did not take them home), or had trouble interpreting the report

card structure, primarily due to low literacy levels.

The intervention was designed to present details of their children’s school perfor-

mance in an easily accessible way. Dizon-Ross (2019) showed that the information

gaps (the difference between believed and true test scores) went down as a result of

the intervention, and the amount of updating varied depending on students’ initial

test scores. Dizon-Ross (2019) also introduced a real-stakes scenario where parents

received a series of lottery tickets for a scholarship paying for four years of high school.

Parents had to decide how to allocate tickets between two siblings. If there were more

than two siblings residing in the household, the survey team selected two at random.

The results showed that parents allocated tickets towards their better performing

child.

To test for heterogeneity, Dizon-Ross (2019) ran a linear regression of parental

beliefs on initial scores, treatment, and an interaction as in (3), and reported estimates

X̄ � 46.8 (on a scale of 100) and ppβ1, pβ2q � p�25.9, 0.40q in their Tables 1 and 2,

respectively. The coefficient pβ2 captures how much the treatment effects vary (on a
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0 to 100 scale) for a each additional point in students initial scores. The VCATE

combines information about the coefficient and the initial variability in scores. From

the data, I also estimate the variance of the control pVx � 305.53, and estimate the

VCATE as pβ2
2
pVx � 48.89. Taking the square root and normalizing by the standard

deviation of the outcome for the control group (pVpY |D�0q � 311.72), produces 0.40.

This means that the magnitude of treatment effect heterogeneity explained by scores

is comparable to 40% of the standard deviation of beliefs in the control group.

The VCATE can also help us understand the magnitude of treatment effect het-

erogeneity in the experiment using multiple covariates. I use LASSO for the first-stage

predictions, two folds per split with 20 splits, and estimate tpΩnkuKk�1 using clustered

standard errors at the household level and the formulas for the confidence intervals

defined in (41). The results are not very sensitive to the number of splits. For ease

of exposition, I report point-estimates and CIs for
b

Vτ
VpY0q , which is the standard

deviation of the CATE divided by the standard deviation of the outcome for the con-

trol group. I compute confidence intervals for the square root via the transformation

proposed in (47).

Table 1 computes the ATE and the
?
V CATE for two outcomes (parental beliefs

and lottery allocations) and 8 different sets of covariates. Panel (a) shows that, on

average, parents downgrade their beliefs about test scores by 42% of the standard

deviation (SD) of the beliefs of the control group. The treatment effect heterogeneity

explained by test scores is equivalent to 40% of the standard deviation (SD) of the

beliefs of the control group. This is statistically significant at the 5% level and has

a comparable magnitude to the ATE. The confidence intervals are relatively short in

length. However, applying the bounds from Theorem 2 and Corollary 1 shows that

differentiating treatment offers based on scores could further lower beliefs by at most

8.1% SDs of the beliefs in the control group. In this case the ATE is already fairly

high compared to
?
Vτ , so in spite of the large heterogeneity, the marginals gains from

targeting would be modest. Panel (b) presents the results for the secondary school

lottery. The ATE is estimated precisely at zero, because the lottery tickets had to

be divided as a zero sum between the siblings. The VCATE measures how much the

dispersion in the allocation depends on the covariates. The standard deviation of

the VCATE explained by initial scores is 16% of the SD of the control group lottery

allocation, and the maximum welfare gains are around 7.8% SD.

The student variables (grade, age, gender, attendance, and educational expen-
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N Clusters Estimate 95 Welfare Bounds

(HH)
a
Vτ {VpY0q % C.I. Thm. 1 Thm. 2

Panel (a): Endline Beliefs. ATE?
VpY0q

: -0.42 (0.03)

Scores 5244 2626 0.40 [0.32, 0.48] 0.201 0.081
Parent Years of Education 5208 2608 0.05 [0.00, 0.13] 0.023 0.001
Scores + Parents’ Education 5208 2608 0.40 [0.32, 0.48] 0.199 0.079
Above Median Educ. Expenses 5244 2626 0.06 [0.00, 0.15] 0.028 0.002
Respondent Variables 4722 2365 0.03 [0.00, 0.12] 0.015 0.001
Household Variables 5244 2626 0.02 [0.00, 0.10] 0.009 0.000
Student Variables 4959 2532 0.11 [0.04, 0.20] 0.057 0.007
All variables 4464 2278 0.40 [0.31, 0.48] 0.199 0.079

Panel (b): Secondary School Lottery. ATE?
VpY0q

: 0.00 (0.00)

Scores 5258 2629 0.16 [0.07, 0.24] 0.078 0.078
Parent Years of Education 5222 2611 0.00 [0.00, 0.00] 0.000 0.000
Scores + Parents’ Education 5222 2611 0.16 [0.07, 0.24] 0.078 0.078
Above Median Educ. Expenses 5258 2629 0.03 [0.00, 0.07] 0.015 0.015
Respondent Variables 4736 2368 0.00 [0.00, 0.00] 0.000 0.000
Household Variables 5258 2629 0.00 [0.00, 0.00] 0.000 0.000
Student Variables 4971 2535 0.06 [0.00, 0.15] 0.029 0.027
All variables 4476 2281 0.15 [0.05, 0.24] 0.076 0.074

Table 1: (Empirical Estimates) Each panel computes the ATE and VCATE normalized by the standard
deviation of each outcome for the control group. The N varies depending on the missing values for the covariates and
the outcome. Each line within panels (a) and (b) considers 8 different sets of covariates measured at baseline which
include test scores, years of parental education, an indicator for whether annual educational expenditures the previous
year (uniforms, fees, school supplies) are above the median, other respondent variables (gender, age, is literate, is
farmer), household variables (number of kids, single-parent), and student variables (grade, age, gender, attendance).
I estimated clustered covariance matrices at the household level. The function µdpxq is computed using LASSO with
10-fold cross-validation, and the estimates are computed using 2-fold cross-fitting with 20 splits. The point estimates
are the median values of rVτn across splits. I compute the bound in Column 7, using the ATE from the corresponding
subsample.

ditures) collectively explain 11% of the SD of parental beliefs. This is statistically

significant at the 5% level. The magnitude is around a fourth of the variation for test

scores, and the maximum welfare gain from targeting is 0.7% of the SD of parental

beliefs in the control group. I find that other subsets of covariates do not produce

statistically significant estimates of the VCATE at the 5% level. The added welfare

of personalizing treatment assignment using these covariates is also very low.

The estimates that use all the covariates are computed over a smaller subsample

with non-missing values across all variables. Despite the large number of variables

and the smaller sample, the estimates of the VCATE remain relatively stable across
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specifications. The VCATE computed from a rich set of respondent, household, and

student covariates has a comparable magnitude to the VCATE that only includes stu-

dent scores. The confidence intervals are also similar. The estimates of the maximum

welfare gains from targeting using all covariates are 7.9% SD for beliefs and 7.4% SD

for lottery outcomes, respectively, which are similar to the welfare gains computed

using only scores.

8 Conclusion

I propose an efficient estimator of the variance of treatment effects that can be at-

tributed to baseline characteristics and propose novel adaptive confidence intervals

that produce valid coverage. I analyze issues of non-standard inference that arise

in this context, and how to address them. I also explore the economic significance

of the VCATE for policymakers and researchers, by showing that the
?
V CATE{2

bounds the marginal gains of targeted policies. Overall, this paper proposes a broadly

applicable approach to measure treatment effect heterogeneity in experiments.
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Online Appendix

A Critical Values

Define the correlation ρ � Ω12{
?

Ω11Ω22. By definition of the Cholesky decomposition,

pe11Ω1{2Zq � ?
Ω11Z1, and pe12Ω1{2Zq � a

Ω22p1� ρ2qZ2 � ρ
?

Ω22Z1. Substituting

these terms into the expression for G

Gpn, V �
τ ,Ω, Z, ζq

� Ω11

nloomoon
ν1

Z2
1 � 2

�
ζ

c
V �
τ Ω11

n
� V �

τ

2
?
n
ρ
a

Ω22

�
loooooooooooooooooomoooooooooooooooooon

κ1

Z1 � V �
τ?
n

�a
Ω22p1� ρ2q

�
looooooooooomooooooooooon

κ2

Z2.

This has a quadratic form, Gpn, V �
τ ,Ω, z, ζq � ν1

�
Z1 � κ1

2ν1

	2

� κ2Z2 � κ2
1

4ν1
, which fits

the form of a generalized chi-square (Das and Geisler, 2021). To compute critical

values we compute feasible analogs ppν1, pκ1, pκ2q from an estimate of Ω.

B Proofs Main Document

Proof of Lemma 1. Define τ̃pX 1q :� ErY1 � Y0 | X 1s. Since X is X 1-measurable,

then by the law of iterated expectations, Erτ̃pX 1q | Xs � τpXq. By the law of total

variance V 1
τ � VpτpXqq � ErVpτ̃pX 1q | Xqs ¥ Vτ . We can prove the upper bound by

setting X 1 � Y1 � Y0.

Proof of Theorem 1. The result is a special case of Theorem 2. The most adver-

sarial distribution is one where τav � 0.

Proof of Theorem 2. Our goal is to find R :� supγPΓ supπPΠ Uγpπq, and to prove

that Uγpπq � R for at least one γ P Γ and π P Π.

Define two random variables T :� EγrY1 � Y0 | X � xs and M :� 1tT ¡ 0u. By

adding/subtracting EγrY0s and applying the law of iterated expectations, Uγpπq �
EγrπpXqT s � maxt0,EγrT su. The optimal policy π�pXq � 1tT ¥ 0u, which be-

longs to Π, i.e. the “first-best” (Kitagawa and Tetenov, 2018). This means that

R � supγPΓ Eγrmaxt0, T us �maxt0,EγrT su.
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Step 1: (Problem Equivalence) The set of distributions Γ is very large.

Instead I focus on the problem over a set of equivalence classes. For m P t0, 1u, define

the moments pm � PγpM � mq, τm � EγrT | M � ms, and ωm � VγpT | M � mq.
By definition, Uγpπ�q � p1τ1 � maxt0, τavu, where p1τ1 is the proportion of people

that benefit from treatment times their conditional mean. Let ∆ :� τ1 � τ0 be the

mean difference between those that benefit from the program and those that do not.

By definition ∆ ¡ 0 because τ1 ¡ 0 and τ0 ¤ 0. The conditional treatment effect

is EγrT | M s � τ0 � M∆, and τav � τ0 � p1∆. Rearranging these expressions,

τ1 � τav � p1 � p1q∆ and Uγpπ�q � p1pτav � p1 � p1q∆q � maxt0, τavu. By definition

VγpEγrT | M sq � ∆2p1p1 � p1q. By applying the law of total variance Vτ � p1ω
2
1 �

p1� p1qω2
0 �∆2pp1qp1� p1q. Then

R � sup
tp1,τ0,∆,ω2

0 ,ω
2
1u
p1τav � p1p1� p1q∆�maxt0, τavu,

s.t. p1 P r0, 1s, τ0 ¤ 0, τ0 �∆ ¡ 0,∆ ¡ 0, ω2
1, ω

2
0 ¥ 0, τ0 � p1∆ � τav,

p1ω
2
1 � p1� p1qω2

0 � p1p1� p1q∆2 � Vτ .

(50)

The values of τav and Vτ impose the following constraints on the feasible set:

Vτ � 0 Vτ ¡ 0
τav ¤ 0 p1 � 0, τ0 � τav, ω0 � 0 p1 P r0, 1q
τav ¡ 0 p1 � 1, τ1 � τav, ω1 � 0 p1 P p0, 1s

By the form of the objective, if p1 P t0, 1u then R � 0. Therefore, if Vτ � 0, then

R � 0 and the result of the theorem holds. Any value of the remaining parameters

that satisfies the sign constraints will be feasible. Without loss, we focus on Vτ ¡ 0.

Step 2: (Optimum has binary support) Consider a situation where pp1, ω
2
1, ω

2
0q

are fixed and p1 P p0, 1q. From the variance equation, ∆� �
b

Vτ�p1ω2
1�p1�p1qω2

0

p1p1�p1q , and

from the mean τ�0 � τav � p1∆� and τ�1 � τav � p1� p1q∆�.

A solution is feasible as long as ω2
1, ω

2
0 ¥ 0, p1ω

2
1�p1�p1qω2

0 ¤ Vτ , τ
�
0 ¤ 0, τ�1 ¡ 0,

and ∆� � τ�1 � τ�0 ¡ 0. The optimal τ�0 is strictly increasing in pω2
1, ω

2
0q and τ�1 is

strictly decreasing. If a given value of pω2
1, ω

2
0q is feasible, then another candidate

which shrinks it to zero will still satisfy the constraints. Moreover, the objective

function is strictly increasing in ∆�, which in turn is strictly decreasing in pω2
1, ω

2
0q.

Therefore the optimum is pω2
1, ω

2
0q � p0, 0q, i.e. binary support for the CATE, ∆� �
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a
Vτ{p1p1� p1q, τ�0 � τav �

a
p1{p1� p1q

?
Vτ , and τ�1 � τav �

ap1� p1q{p1

?
Vτ .

Only some values of p1 are feasible, i.e. satisfy the constraints ∆� ¡ 0, τ�0 ¤ 0,

and τ�1 ¡ 0. The function p1{p1�p1q is strictly increasing in p with a range in p0,8q.
The feasible values depend on the sign of τav. If (i) τav ¤ 0, then p1 P

�
0, Vτ

τ2
av�Vτ

�
. If

(ii) τav ¡ 0, p1 P
�

τ2
av

τ2
av�Vτ , 1

	
.

Step 3: (Solve points of support) For case (i) the objective function is R �
max

p1P
�
0, Vτ
τ2�Vτ

� p1τav �
a
p1p1� p1q

?
Vτ . The unique solution to the FOC is p�1 �

p1{2q�p1{2qaτ 2
av{pτ 2

av � Vτ q, and is interior because
a
τ 2
av{pτ 2

av � Vτ q ¥ τ 2
av{pτ 2

av�Vτ q.
By strict concavity, it is a global optimum, and R � τav{2�pτav|τav|q{p2

a
τ 2
av � Vτ q�

Vτ{p2
a
τ 2
av � Vτ q. Since τav ¤ 0, this can be simplified to 1

2
p�|τav| �

a
τ 2
av � Vτ q. For

case (ii), τav ¡ 0, the objective function is pp1 � 1qτav �
a
p1p1� p1q

?
V τ , subject to

1 ¥ p1 ¥ τ2
av

τ2
av�Vτ . The unique solution to the FOC is p�1 � p1{2q�p1{2qaτ 2

av{pτ 2
av � Vτ q,

it is interior because p�1 ¥ 1
2
� 1

2
τ2
av

τ2
av�Vτ ¥

τ2
av

τ2
av�Vτ , and produces the desired R.

Proof of Corollary 1. The potential outcomes under a linear transformation are

κ1 � κ2Y0 and κ1 � κ2Y1, respectively. The treatment effect is κ2pY1 � Y0q, which

does not depend on κ1, and the transformed CATE is κ2τpxq. The ATE is κ2τav and

the VCATE is κ2Vτ . The result follows from substituting the transformed values into

Theorem 2 and factorizing |κ2|.

Proof of Lemma 2 . We decompose pVτn � pβ2
2n
pVxn into components that map into

those of Assumption 2, by centering the key terms.

pVτn � V �
τn � pβ2

2n
pVxn � β2

2nVxn � ppβ2n � β2n � β2nq2Vxn
Vxn

ppVxn � Vxn � Vxnq � β2
2nVxn

� r
?
V xnppβ2n � β2nqs2 � 2r

a
Vxnβ2nsr

?
V xnppβ2n � β2nqs � rVxnβ2

2s
� pVxn
Vxn

� 1

�

� r
a
Vxnppβ2n � β2nqs2

� pVxn
Vxn

� 1

�
� 2r

a
Vxnβ2nsr

a
Vxnppβ2n � β2nkqs

� pVxn
Vxn

� 1

�
.

(51)

Let pZn � n1{2Ω
�1{2
n r?V xnppβ2n � β2nq, pVxn{Vxn � 1s1 be a normalized statistic, and

let e1 � r1, 0s1, e2 � r0, 1s1 be vectors that select the first and second coordinates,
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respectively. We can always find a ζn P t�1, 1u that solves ζn
?
Vτn � β2n

?
Vxn. If

Vτn ¡ 0 this is the sign of β2n but otherwise any ζn P t�1, 1u will solve the equation.

By substituting the definition of pZn, Vτn � β2
2nVxn, and

pVτn � V �
τn �

pe11Ωn
pZnq2

n
� 2ζn

a
V �
τn

�
e11Ω

1{2
n

pZn?
n

�
� V �

τn

e12Ω
1{2
n

pZn?
n

� pe11Ω
1{2
n

pZnq2pe12Ω
1{2
n

pZnq
n3{2 � 2ζn

a
V �
τn

pe11Ω
1{2
n

pZnqpe12Ω
1{2
n

pZnq
n

.

(52)

By Assumption 2, pZn Ñ Zn � opp1q. Moreover, since Ωn has bounded eigenvalues,

Ω
1{2
n

pZn � Ω
1{2
n Zn � opp1q. This means that

pVτn � V �
τn �

pe11Ω
1{2
n Znq2
n

� 2ζn

c
V �
τn

n
e11Ω1{2

n Zn � V �
τn?
n
e12Ω1{2

n Zn � Residualn, (53)

where the residual is op pn�1q�op
�a

V �
τn{n

	
�op pV �

τn{
?
nq�Oppn�3{2q�oppn�1

a
V �
τnq.

The fourth and fifth terms of the residual are oppn�1q and oppn�1{2aV �
τnq, and hence

asymptotically negligible. The leading term in (53) is Op

�
max

!
1{n,aV �

τn{n
)	

.

Proof of Lemma 3. Let ϕi � ϕpYi, Di, Xi, ηq be a realization of the influence func-

tion in (14) and compute Vrϕi | Di � d,Xi � xs � 4pτpxq � τavq2
�
dσ2

1pxq
ppxq2 � p1�dqσ2

0pxq
p1�ppxqq2

�
and Erϕi | Di � d,Xi � xs � pτpxq � τavq2.

By the law of iterated expectations Erϕi | Xi � xs � pτpxq � τavq2. By ap-

plying the law of total variance recursively, Vpϕiq � VpErϕi | Xisq � ErErVpϕi |
Di, Xiq | Xss�ErVpErϕi | Di, Xis | Xiqs. This produces, Vpϕiq � VppτpXiq� τavq2q�
4E

�
pτpXiq � τavq2

�
σ2

1pXiq
ppXiq �

σ2
0pXiq

p1�ppXiqq

	�
.

Proof of Corollary 2. VppτpXiq � τavq2q ¤ ErpτpXiq � τavq4s ¤ κ2Vτ . By the

Cauchy-Schwarz inequality, the term E
�
pτpXiq � τavq2

�
σ2

1pXiq
ppXiq �

σ2
0pXiq

p1�ppXiqq

	�
is bounded

by κVτ

d
E
��

σ2
1pXiq
ppXiq �

σ2
0pXiq

p1�ppXiqq

	2
�

.

Proof of Lemma 4. Let Qpθq be the Jacobian of the least squares problem, de-

fined in (18). Substituting xW pXi, Diq1e4 � pDi�ppXiqqpSpXiq and λpXiq � rppXiqp1�
ppXiqqs�1 into the definition, β2Qpθqe4 � 1

n

°n
i�1

rDi�ppXiqs
ppXiqp1�ppXiqqβ2

pSpXiqpYi�xW pXi, Diqq.
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By the definition of the nuisance functions in η̃θpxq in (19), xW pXi, Diq1θ � µ̃0,θpXiq�
Diτ̃θpXiq, τ̃θpxq � β1�β2

pSpXiq, and τ̃θ � β1�
�

1
n

°n
i�1

pSpXiq
�
β2. Furthermore, since

1
n

°n
i�1

pSpXiq � 0, then β2
pSpXiq � τ̃θpXiq � τ̃av,θ and

β2Qpθqe4 � 1

n

ņ

i�1

rDi � ppXiqs
ppXiqp1� ppXiqqβ2

pSpXiqpYi � µ̃0,θpXiq �Diτ̃θpXiqq.

Notice that Di�ppXiq � Dip1�ppXiqq�ppXiqp1�Diq. This implies that Di�ppXiq
ppXiq �

Di
ppXiq �

p1�Diq
1�ppXiq . The next step is to substitute the estimated parameters. Then

1
n

°n
i�1 ϕpYi, Di, Xi, η̃pθnq � 1

n

°n
i�1pτ̃pθnpXiq � τ̃av,pθnq2 � pβ2nQppθnqe4. The first term

simplifies to pβ2
2n

�
1
n

°n
i�1

pSpXiq2
�
� pβ2

2n
pVxn. Finally, Qppθnq � 0 implies that the sec-

ond term is zero.

Proof of Lemma 5. The parameter θ � pα1, α2, β1, β2q P Θ� solves

E rλpXqW pX,DqY s � E rλpXqW pX,DqW pX,Dq1s θ � 04�1. (54)

If there exists a θ P R4 such that ErY | D � d,X � xs � µdpxq � W px, dq1θ, then by

the law of iterated expectations E rλpXqW pX,DqY s � ErλpXqW pX,DqW pX,Dq1θs.
Such a θ would automatically satisfy (54). Now suppose that Spxq � τpxq � τav,

Mpxq � µ0pxq � ppxqτpxq, and θ � p0, 1, τav, 1q. For this choice, W px, dq1θ � 0 �
pµ0pxq�ppxqτpxqq�pd�ppxqqτav�pd�ppxqqpτpxq�τavq. This simplifies to W px, dq1θ �
µ0pxq � dτpxq � µdpxq and θ solves (54).

Proof of Theorem 3.(i). Define a vector Y nk P Rnk with the outcomes in fold Ink,
W nk be an nk � 4 matrix of regressors, Unk P Rnk be a vector of errors, and Λnk be

a nk � nk diagonal matrix with entries tλpXiqu. Let xW nk be an nk � 4 matrix of

generated regressors defined in (22), and let Πnk be a 4� 4 diagonal matrix with en-

tries p1, 1, 1, V �1{2
xnk q. Let θ�nk :� pα1nk, α2nk, β1nk,

?
V xnkβ2nkq, and define an infeasible

estimator rθ�nk :� Π�1
nk
rθnk :� pΠ1

nkW
1
nkΛnkW nkΠnk{nkq�1 pΠ1

nkW
1
nkΛnkYnk{nkq.
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Define Qww,nk :� ErλpXiqWiW
1
i | I�nks. By Lemma 11,

Π1
nkQww,nkΠnk �

������
ErλpXiq | I�nks ErλpXiqM�kpXiq | I�nks 0 0

ErλpXiqM�kpXiq | I�nks ErλpXiqM�kpXiq2 | I�nks 0 0

0 0 1 0

0 0 0 1

�����
.
(55)

By Assumptions 1.(ii), 3.(i) and (ii), Π1
nkQww,nkΠnk has bounded eigenvalues. Alge-

braically,
Π1

nkW
1

nkΛnkWnkΠnk
nk

� 1
nk

°
iPInk Π1

nkλpXiqWiW
1
iΠnk. Since the terms are con-

ditionally i.i.d, it converges to (55). By Assumptions 3.(iii) and (iv) λpXiqΠnkWiUi

is bounded in the L2 norm, and
?
nkppθ�nk � θnkq � pΠ1

nkQww,nkΠnkq�1 Π1

nkW
1

nkΛnkUnk?
nk

�
opp1q. Also, V �1

xnk
pVxnk� 1 � 1

nk

°
iPInkrV �1

xnkS�kpXiq2� 1s�
�

1
nk

°
iPInk V

�1{2
xnk S�kpXiq

�2

.

The second term is Oppn�1q because the summand has mean zero and unit variance.

Ai :�
�
λpXiqΠnkWiUi

V �1
xnkS�kpXiq � 1

�
, J�nk :�

�
pΠ1

nkQww,nkΠnkq�1 04

014 1

�
.

By (55), pΠ1
nkQww,nkΠnkq�1 has a block-diagonal structure, with a one in the bottom-

right cell, and hence ΥrJ�nks�1 � Υ. This means that

?
nkΥ

� rθ�n � θ�n
V �1
xnk

pVxnk � 1

�
� Υ rJ�nks�1

�
1?
nk

¸
iPInk

Ai

�
� opp1q

� 1?
nk

¸
iPInk

�
V
�1{2
xnk λpXiqpDi � ppXiqqS�kpXiqUi

V
�1{2
xnk S�kpXiq2 � 1

�
� opp1q.

(56)

Define pτnk,av :� 1
nk

°
iPInk pτ�nkpXiq and τnk,av :� Erpτ�nkpXiq | I�nks. Alge-

braically, xW nk � W nkpI4�4 � ∆nkq, where ∆nk � r04, 04, 04, e3ppτnk,av � τnk,avqs and

e3 � r0, 0, 1, 0s1. The bias in centering the fourth column of xWnk is a scalar times the

third regressor. Substituting xW nk � W nkΠnkΠ
�1
nk pI �∆nkq,

pθ�nk � �
Π�1
nk pI �∆nkqΠnk

��1 pΠ1
nkW

1
nkΛnkW nkΠnkq�1 pΠ1

nkW
1
nkΛnkY nkq , (57)

which simplifies to pθ�nk � �
Π�1
nk pI �∆nkqΠnk

��1
θ̃�nk. Since ∆nk∆nk � 04�4, then
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�
Π�1
nk pI �∆nkqΠnk

��1 �
�
I � V

�1{2
xnk ∆nk

	�1

� I � V
�1{2
xnk ∆nk, and

� pβ�2n
V �1
xnk

pVxnk
�

:� Υ

���
Π�1
nk

r∆nkΠnk

	�1

04�1

01�4 1

�
� rθ�nk
V �1
xnk

pVxnk
�
� Υ

� rθ�nk
V �1
xnk

pVxnk
�
. (58)

The second equality follows from the fact that the selection matrix Υ only extracts the

fourth and fifth rows of the vector. We can plug-in (58) and the identity Υrθ�1nk, 1s1 �
rβ�2nk, 1s1 into (56). By Assumptions 4 and 5, the observations are conditionally i.i.d.

given I�nk, and Ωnk has bounded eigenvalues. Then by the Lindeberg-Feller CLT,

?
nkΩ

�1{2
nk

� pβ�2nk � β�2nk
V �1
xnk

pVxnk � 1

�
| I�nk Ñd N p02�1, I2�2q. (59)

Proof of Theorem 3.(ii). Let ∆̃nk � I � ∆nk, where the non-zero term in ∆nk is

an average with mean zero and variance Vxnk. Under the assumptions of part (a),pΠnkΠnk � I � opp1q and Πnk∆̃nkΠ
�1
nk � I � V

�1{2
xnk ∆nk � I � opp1q. DecomposingpΠnk

xW 1
nkΛnk

xW nk
pΠnk in a similar way to (57),

ppΠnk∆̃
1
nkΠ

�1
nk qpΠ1

nkW
1
nkΛnkW nkΠnkqpΠ�1

nk ∆̃nk
pΠnkq � Π1

nkQww,nkΠnk � opp1q

. Hence pJnk � J�nk � opp1q. Substituting xW nk, into the upper-left block of pHnk,

ppΠnk∆̃
1
nkΠ

�1
nk q

�
1

nk

¸
iPI�nk

pU2
i λpXiq2Π1

nkWiW
1
iΠnk

�
pΠ�1

nk ∆̃nk
pΠnkq. (60)

As before the outer terms are I � opp1q. For the inner terms we apply (57), pUi �
Yi�xW 1

i
pθnk � Yi�W 1

i ∆̃nk
pθnk � Yi�W 1

iΠnkΠ
�1
nk ∆̃nkΠnkΠ

�1
nk
pθnk � Yi�W 1

iΠ
1
nk
pθ�nk � Ui�

W 1
iΠnkppθ�nk � θ�nkq. The inner term of (60) is ErU2

i λpXiq2Π1
nkWiW

1
iΠnk | I�nks � opp1q

under Assumption 1.(ii) (overlap) and 3 (bounds on moments of Ui and ΠnkWi). In

particular, 3.(iv) ensures that Er}ΠnkWi}4 | I�nks is uniformly bounded.

Define S̄nk :� 1
nk

°
iPI�nk S�kpXiq and pS�kpXiq � pτ�kpXiq � 1

nk

°
iPI�nk pτ�kpXiq.

Adding/subtracting the mean, pS�kpXiq � S�kpXiq�S̄nk. Algebraically, 1
nk

°
iPInk

pT 2
i �pV �2

xnk

�
1
nk

°
iPInkrpS�kpXiq2 � pVxnks2	 � pV �2

xnk

�
1
nk

°
iPInk

pS�kpXiq4 � pV 2
xnk

	
. This simpli-
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fies to pV �2
xnk

�
1
nk

°
iPInkrS�kpXiq � S̄nks4

	
� 1. By a binomial expansion,

1

nk

¸
iPInk

S�kpXiq4pV 2
xnk

�
�
VxnkpVxnk


2

loooomoooon
Ñp1

4̧

`�1

�
4

`



p�1q` S̄`nk

V
`{2
xnkloomoon
opp1q

�
1

nk

¸
iPInk

V
2�`{2
xnk S�kpXiq4�`

�
looooooooooooooooomooooooooooooooooon

Opp1q

�1.

By Assumption 3.(iv), the bound on Vxnk, and the moment bounds for V
�1{2
xnk S�kpXiq,

then for ` P t1, 2, 3, 4u,
�

1
nk

°
iPInk V

2�`{2
xnk S�kpXiq4�`

�
is Opp1q. By the weak law of

large number, V
�1{2
xnk S̄nk � opp1q and by (59), pVxnk{Vxnk Ñp 1. Hence 1

nk

°
iPInk

pT 2
i �

ErV �1
xnkS�kpXiq4 | I�nks � 1 � opp1q � VpV �1{2

xnk S�kpXiq2q � opp1q. This shows that

the diagonals of pHnk converge to their population analogs. The proof of convergence

for the off-diagonals is similar. By the form of Qww,nk in (55), ΥJ�1
nk � Υ. Hence

Υ pJ�1
nk

pHnk
pJnkΥ1 � ΥJ

��1
nk HnkJ

�
nkΥ

1 � opp1q � ΥHnkΥ
1 � opp1q � Ωnk � opp1q.

Proof of Lemma 4. We start by proving that }Vτ pγq � V �
τ pγ, I�nkq} ¤ Vτ . Since

the second term of (33) is always non-negative, V �
τ pγ, I�nkq ¤ Vτ pγq. Also, since

β1 � τγ,av and β2 � 0 are part of the feasible set, then the second term is at most

Vτ pγq � EγrpτγpXq � τγ,avq2s. This shows that V �
τ pγ, I�nkq ¥ 0.

To prove the second bound, we examine the solution to the best linear projection.

Since the folds are independent, conditioning on I�nk is only important to be able

to handle S�kpxq as a deterministic function. For ease of exposition, let F denote

the conditional distribution of γ given I�nk, and let }g}F,2 �
a
EF r}gpXq}2s denote

the L2 norm. Since EF rS�kpXqs � 0, the optimal solution is β�1F � τF,av. When

VF pS�kpXqq � 0, the optimal β�2F is indeterminate, and V �
τ pγ, I�nkq � 0. Otherwise,

pβ�2F � 1q � CovF pS�kpXq, τF pXqq
VF pS�kpXqq � 1 � CovF pS�kpXq, τF pXq � S�kpXqq

VF pS�kpXqq .

By the Cauchy-Schwarz inequality, pβ�2F � 1q2VF pS�kpXqq ¤ EF rpτγpXq � τF,av �
S�kpXqq2s. Rearranging (33) and substituting the optimum:

Vτ � V �
τ � EF rpτγpXq � τav � S�kpXq � pβ�2 � 1qS�kpXqq2s.

53



By the triangle inequality for the L2 norm, and the above Cauchy-Schwartz bound,

Vτ pγq � V �
τ pγ, I�nkq ¤ r2}τF pXq � τF,av � S�kpXq}F,2s2 . (61)

Substituting S�kpxq � pτ�kpxq � EF rpτ�kpXqs, (61) can be rewritten as 4}pτγpXq �pτ�kpXqq � pEF rτγpXqs � EF rpτ�kpXqsq}2 ¤ 16}pτ�k � τγ}2
F,2. By the law of iterated

expectations ωpγq :� Eγr}pτ�kpXq � τγpXq}2s � Eγr}pτ�k � τγ}2
F,2s. Combining the two

bounds and applying Jensen’s inequality,

Eγr|Vτ pγq � V �
τ pγ, I�nkq|s ¤ Eγrmint16}pτ�k � τ}2

F,2, Vτ pγqus ¤ mint16ωpγq, Vτ pγqu.

Proof of Theorem 5 . Decompose ∆nk � ∆nk1 � ∆nk2, where ∆nk1 :� Vτ pγnq �
V �
τ pγn, I�nkq, and ∆nk2 :� pVτnk � V �

τ pγn, I�nkq. First, by Lemma 4 and Assumption

6, Eγnr}∆nk1}s ¤ mint16ωpγnq2, Vτ pγnqu � opn�1{2
k q. By Markov’s inequality, ∆nk1 �

oppn�1{2
k q. Second, conditional on a sequence tI�nku8n�1, by Theorem 3 and Lemma 2,

}∆nk2} � Op

�
max

!
1
nk
,
a
V �
τ pγn, I�nkq{

?
nk

)	
. Since V �

τ pγn, I�nkq ¤ Vτ pγnq � op1q,
then almost surely, for all ε ¡ 0, ψn,εpI�nkq :� Pγnpn1{2

k }∆nk2} ¡ ε | I�nkq Ñ 0. By it-

erated expectations and the bounded convergence theorem, limnkÑ8 Pγnpn1{2
k }∆nk2}  

εq � limnkÑ8 Eγnrψn,εpI�nkqs � EγnrlimnkÑ8 ψn,εpI�nkqs � 0.

If, in addition, n
1{2�ρ
k Vτ pγnq Ñ 0 for ρ P r0, 1{2q, then n

1{2�ρ
k ∆nk1 � opp1q (the

second bound dominates). Since nρkVτ pγnq Ñ 0 as well and ρ   1{2, then conditional

on I�nk, n1{2�ρ
k ∆nk2 � opp1q. We can apply the bounded convergence theorem once

again to show that Pγnpn1{2�ρ
k }∆nk2}   εq � op1q.

Proof of Theorem 6. Consider a sequence of distributions tγnu8n�1, with associated

nuisance functions pτnpxq, µ0npxq, pnpxq, τn,avq.
Case 1 (Near Homogeneity): Vτ pγnq Ñ 0. By the triangle inequality,

?
nk

�����pVτnk � 1

nk

¸
iPInk

ϕi

����� ¤ ?
nk

���pVτnk � Vτ pγnq
���looooooooooomooooooooooon

ξn1

�?nk
����� 1

nk

¸
iPInk

ϕi � Vτ pγnq
�����looooooooooooooomooooooooooooooon

ξn2

.

(62)
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By Theorem 5, ξn1 � opp1q. Since the ϕi are i.i.d with mean Vτ pγnq, then Eγnrξ2
n2s �

Vγnpϕiq. Let σ2
dnpxq � VγnpYi | Xi � x,Di � dq and pnpxq � PγnpDi | Xi � xq. By

Lemma 3 and Corollary 2, Vγnpϕiq ¤ κ2Vτ pγnq2�4κVτ pγnq
c
Eγn

��
σ2

1npXiq
pnpXiq �

σ2
0npXiq

1�pnpXiq

	�
.

Since Vτ pγnq Ñ 0 as nÑ 8, then Erξ2
n2s Ñ 0 and hence ξn2 � opp1q.

Case 2 (Strong Heterogeneity): Vτ pγnq Ñ Vτ P p0,8q. For fixed px, dq,
the cross-fitted regressors are xW px, dq � r1, pµ0,�kpxq � pnpxqpτ�kpxq, pd � pnpxqq, pd �
ppxqqpS�kpxqs. Let e` be a 4 � 1 vector with a one in the `th coordinate and zero

otherwise. Analogous to (19), define the regression adjusted nuisance functions as

pη�k,pθnkpxq � re1pxW px, 1q �xW px, 0qq1 � e2
xW px, 0q1spθnk � e3pnpxq � e4pτnk,av. (63)

By applying Lemma 4 to the subsample in i P Ink,

pVτnk � 1

nk

¸
iPIk

ϕpYi, Di, Xi, pη�k,pθnkq,
where η�k,pθnk,rpxq :� ηpxq�rpη�k,pθnkpxq�ηpxqq. The true nuisance function η depends

on the distribution indexed by n, but we drop the subscript to simplify the notation.

By a second-order term in the Taylor expansion around r � 0, for some r̃ P p0, 1q,

?
nkppVτnk � Vτ pγnqq � 1?

nk

¸
iPInk

rϕpYi, Di, Xi, ηq � Vτ pγnqs

� 1?
nk

¸
iPInk

BϕpYi, Di, Xi, ηq
Bη1 pη�k,pθnkpXiq � ηpXiqq

� 1

nk

ņ

i�1

?
nkpη�k,pθnkpXiq � ηpXiqq1

B2ϕpYi, Di, Xi, η�k,pθnk,r̃q
Bη1 pη�k,pθnkpXiq � ηpXiqq.

(64)

Our ultimate goal is to show that the second and third terms of the expansion are

opp1q. To keep the notation concise, let ϕipηq :� ϕpYi, Di, Xi, ηq. One of the main

challenges is that the nuisance functions are estimated in multiple steps, combining in-

formation from the Ink and I�nk subsamples. The key is to decompose these different

sources of uncertainty. Define ppλnk�λnkq :� rppθnk�θnq, pτnk,avppθnk�θnq, ppτnk,av�τn,avqs1,
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where θn � p0, 1, τn,av, 1q. By Lemma 14, there exist matrices Ψ�nkpxq and ∆�nkpxq
that are px, I�nkq-measurable, such that for all x P X ,

pη�k,pθnkpxq � ηpxq � Ψ�nkpxqppλnk � λnkq �∆�nkpxq. (65)

Let e` be a 4�1 elementary basis vector. Lemma 14 shows that e13rpη�k,pθnkpxq�ηpxqs �
0 and e13∆�nkpxq � 0 because the experimental propensity scores are known. Lemma

14 also shows that e14∆�nkpxq � 0 by construction. Substituting (65),

1?
nk

¸
iPInk

Bϕipηq
Bη1 pη�k,pθnkpXiq � ηpXiqq � 1?

nk

¸
iPInk

4̧

`�1

Bϕipηq
Bη` e1`pη�k,pθnkpXiq � ηpXiqq

�
�

1?
nk

¸
iPInk

¸
`�3

Bϕipηq
Bη` e1`Ψ�nkpXiq

�
looooooooooooooooooooomooooooooooooooooooooon

Λ1nk

ppλnk � λnkq �
�

1?
nk

¸
iPInk

2̧

`�1

Bϕipηq
Bη` e1`∆�nkpXiq

�
looooooooooooooooooooomooooooooooooooooooooon

Λ2nk

.

Lemma 15 implies that pλnk � λnk � opp1q.

(i) Prove that Λ1nk � Opp1q: By Lemma 13.(a) the conditional mean of Bϕipηq
Bpη1,η2,η4q1

given px, I�nkq is r0, 0,�2pτpxq � τn,avqs and by Lemma 14, e14Ψ�nk � c1. Also,

EγnrτnpXiq | I�nks � EγnrτnpXiqs � τn,av by fold independence. By the law of

iterated expectations, Eγn
�
Bϕipηq
Bη` e1`Ψ�nkpXiq | I�nk

�
� 0 for ` P t1, 2, 4u. By As-

sumption 7, Eγnr}ηpXiq}4s and Eγn
�}Ui}4

�
are uniformly bounded by a constant

C   8. By Assumption 1.(ii), pnpxq is contained in rδ, 1 � δs. Applying Lemma

13.(b), Eγn
�}Bϕipηq{Bη`}4

�1{4 ¤ p16{δqC   8. By Lemma 14.(d), and the triangle

inequality, Eγn
�}e1`Ψ�nkpXiq}4

�1{4 ¤ Cr1 � Eγnr}pη�kpXiq}4s1{4s. By the bound in As-

sumption 7.(iii) and the Cauchy-Schwartz inequality, Eγn
�
}BϕipηqBη` e1`Ψ�nkpXiq}

�
  8.

We can combine these moment bounds to apply Lemma 12.(a), hence Λ1nk � Opp1q.

(ii) Prove that Λ2nk � opp1q: By Lemma 13.(a), Eγn
�
Bϕipηq
Bη` e1`∆�nkpXiq | I�nk

�
� 0

for ` P t1, 2u. Using similar arguments Eγn
�}Bϕipηq{Bη`}4

�   C. By Lemma 14.(b),

}∆nkpxq} ¤ C�}pη�kpxq�ηpxq}. By Assumption 7.(ii), Eγn r}pη�kpxq � ηpxq}4s � op1q,
which means that Eγn

����BϕipηqBη` e1`Ψ�nkpXiq
���2
�

is op1q. By Lemma 12.(b), Λ2nk � opp1q.

Let Ξ � re1, e2, e4s be a 4 � 3 matrix such that }Ξ} ¤ 1. Let Λ3nk be the second-
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order on the right-hand side of (64). Since the propensity score is known,

Λ3nk :�
1

nk

¸
iPInk

?
nkpη�k,pθnkpXiq � ηpXiqq1Ξ

B2ϕipη�k,pθnk,r̃q
Bpη1, η2, η4qBpη1, η2, η4q1Ξ

1pη�k,pθnkpXiq � ηpXiqq.

(iii) Prove that Λ3nk � opp1q: By Lemma 13.(d),

���� B2ϕipη�k,pθnk,r̃q
Bpη1,η2,η4qBpη1,η2,η4q1

���� ¤ 18�?3{δ. For

scalars, a, b P R, pa� bq2 ¤ 4pa2 � b2q. By (65) and the triangle inequality, }Λ3nk} ¤
4 � 18

?
3

δ

�?
nk}pλnk � λnk}2

�
1
nk

°
iPInk }Ψ�nkpXiq}2

�
�
�

1
nk

°
iPInk

?
nk}∆�nkpXiq}2

�	
.

By Lemma 15,
?
nk}pλnk � λnk}2 � opp1q. By Lemma 14.(d), }Ψ�nkpxq} ¤ Cr1 �

2}pη�kpxq}s. By the moment bound in Assumption 7.(i) and Markov’s inequality, then
1
nk

°
iPInk }Ψ�nkpXiq}2 � Opp1q. By Lemma 14.(e), }∆�nkpxq} ¤ C � }pη�kpxq � ηpxq}.

By Assumption 7.(iii),
?
nkEγnr}pη�kpXiq � ηpXiq}2s � op1q, then by Lemma 12.(c),

1
nk

°
iPInk

?
nk}∆�nkpXiq}2 � opp1q. Combining these results, Λ3nk � opp1q.

Proof of Theorem 7. Let ρpγ, I�nkq � PγpV �
τ pγ, I�nkq P xCIαnk | I�nkq denote

the conditional probability that the pseudo-VCATE is contained in the confidence

interval. Let Fpγq be the support of I�nk, and let Fpγ, tq � Fpγq. Almost surely,

inf
I�nkPFpγq

ρpγ, I�nkq ¤ Eγrρpγ, I�nkqs ¤ sup
I�nkPFpγ,tq

ρpγ, I�nkq � PγpI�nk R Fpγ, tqq.

(66)

The left inequality considers the worst-case coverage. The right inequality applies

the law of iterated expectations by the event I�nk P F�pγ, tq, then bounds PγpI�nk P
Fpγ, tqq ¤ 1 and ρpγ, I�nkq ¤ 1 to simplify the expressions. Applying limits,

lim inf
nÑ8

inf
γPΓ

inf
I�nkPFpγq

ρpγ, I�nkq ¤ lim inf
nÑ8

inf
γPΓ

Pγ
�
V �
τ pγ, I�nkq P xCIαnk	 , (67)

and an analogous result for the upper bound. The data in I�nk only affects fold

k through the estimated nuisance functions pη�kpxq. To prove uniform coverage we

will derive the bounds for a class of distributions where the pYi, Di, Xiq in fold k is

distributed as γ and the plug-in nuisance functions are deterministic. We will define

Fpγ, tq as the set where |V �
τ pγ, I�nkqΩnk,12| ¤ t for some fixed t ¡ 0.
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Let tγnu8n�1 and tI�nku8n�1 denote a sequence of distributions and data realizations,

respectively. Theorem 3 verifies that under Assumptions 1, 3, 4, and 5, the conditional

CDFs tFγn|I�nku8n�1 satisfy the high-level Assumption 2, almost surely. Furthermore,xCIαnk satisfies the form in (11), substituting ppVτnk, pΩnkq. Therefore, Lemma 10.(a)

shows that the uniform lower bound on the asymptotic coverage probability is p1�αq.
If Assumption 8 also holds, then for all t ¡ 0, lim sup

nÑ8
supγPΓ PγpI�nk R F�pγ, tqq � 0.

Hence by Lemma 10.(ii), the upper bound is p1 � αq plus a term that can be made

arbitrarily small by choosing t close to zero.

Proof of Lemma 6. Consider an arbitrary sequence of distributions tγnu8n�1 P Γ8

and a convergent subsequence where Vτ pγn`q Ñ Vτ . Since V �
τ pγn` , I�n`kq ¤ Vτn` and

Ωn`k has bounded eigenvalues, if Vτ � 0 then lim`Ñ8 Pγn` p
a
V �
τ pγn` , I�n`kq|Ωn`k,12| ¡

tq � 0. Now suppose that Vτ ¡ 0. By Assumption 6, the nuisance functions con-

verge to their true value. Then pτ�kpxq converges point-wise to τpxq, and by the mo-

ment bound in 3.(v) and the dominated convergence theorem, Vxn`k � Vγn`
ppτ�kpXq |

I�n`kq � Vτ pγn`q � opp1q ¥ Vτ � opp1q. By (28),

Ωn`k � Vγn`

��
λn`pXiqpDi � pn`pxiqqV �1{2

xn`k
S�kpXiqUi

V �1
xn`k

S�kpXiq2
�
| I�n`k

�
, (68)

where Uin` � Yi �W 1
iθn`k. By Assumption 7, for fixed tDi � d,Xi � xu, W 1

i point-

wise converges to W �1
i :� r1, µ0n`pxq � pnpxqτn`pxq, pd � pn`pxqq, pd � pn`pxqqτn`pxqs.

By Lemma 15, θn`k Ñ θn` :� r0, 1, τn`,av, 1s. By Lemma 5, W �1
i θn` � µd,n`pxq, and

hence U�
in`

:� Yi�W �1
i θn` . Since Ωn`k is almost surely bounded by Assumption 3 over

random partitions I�n`k, then applying the dominated convergence theorem,

Ωn`k � Vγn`

��
λn`pXiqpDi � pn`pxiqqV �1{2

τ pτn`pXiq � τn`,avqU�
in`

V �1
τ pτn`pXiq � τn`,avq2

�
| I�n`k

�
� opp1q,

(69)

Since EγnrU�
in`

| Di � d,Xi � x, I�n`ks � 0 and the second component of (69) only

depends on Xi. By iterated expectations, Ωn`k,12 � opp1q and the limiting probability

is lim`Ñ8 Pγn` p
a
V �
τ pγn` , I�n`kq|Ωn`k,12| ¡ tq � 0. Hence we verified Assumption B�

in Andrews et al. (2020). Uniform consistency follows from their Corollary 2.1.
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Proof of Theorem 8. We break-down the proof into cases.

Case (i): When Vτ pγq � 0, then Vτ pγ, I�nkq � 0 almost surely. Therefore,

nkppVτnk � V �
τ pγn, I�nkqq � nkppV �

τnk � Vτ pγqq. Define ρpγ, I�nkq as in Theorem 7.

Then lim inf
nÑ8

infI�nkPFpγq ρpγ, I�nkq ¤ lim inf
nÑ8

Pγ
�
V �
τ pγ, I�nkq P xCIαnk	. We can prove

an analogous upper bound. This implies that we only need to derive coverage bounds

under sequences of conditional distributions where V �
τ pγn, I�nkq � 0. Exact coverage

follows from the proof of the near-homogeneity case in Lemma 10.

Case (ii) When Vτ pγq ¡ 0. By Assumption 6,
?
nkωpγq2 Ñ 0 as nk Ñ 8. Then by

Lemma 4,
?
nk|Vτ pγq�V �

τ pγ, I�nkq| � opp1q, and by the continuous mapping theorem,a
V �
τ pγ, I�nkq Ñp

a
Vτ pγq ¡ 0. By (69) in the proof of Lemma 6 and for fixed γn � γ,

Ωnk � Ω� opp1q, where Ω is a population covariance matrix that does not depend on

I�nk. By applying similar limits to the mild heterogeneity case in Lemma 10 we can

show that ppVτnk � Vτ pγqq is
?
nk asymptotically equivalent to an empirical process

indexed by the oracle Vτ pγq. We obtain exact coverage due to Lemma 6.

Proof of Corollary 3. By the first part of Theorem 7,

lim sup
nÑ8

sup
γPΓ

Pγ
�
V �
τ pγ, I�nkq R xCIαnk	 � 1� lim inf

nÑ8
inf
γPΓ

Pγ
�
V �
τ pγ, I�nkq P xCIαnk	 ¤ α.

The result follows taking limits on either side of the inequality in (38).

Proof of Theorem 9 . By the definition in (32),

Vτ pγq ¥ inf xCImultifold

αn ðñ 1

K

Ķ

k�1

1

!
Vτ pγq ¥ inf xCIαnk) ¥ 1

2
.

By negating the statement, computing expectations, and applying Markov’s inquality,

PγpVτ pγq   inf xCImultifold

αn q � Eγ

�
1

#�
1

K

¸
k

1tVτ pγq   inf xCI α
2
nku

�
¡ 1{2

+�
¤ 2

1

K

¸
k

Eγr1tVτ pγq   inf xCI α
2
nkus

¤ 2Pγ
�
Vτ pγq   inf xCI α

2
nk

	
¤ 2Pγ

�
Vτ pγ, I��nkq R xCI α

2
nk

	
The last line follows from the fact that the folds are split at random and the in-

equality in (38) holds almost surely. By Theorem 7 the asymptotic size is uniformly
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bounded by 2pα{2q � α. By construction, PγpVτ pγq R xCImultifold

αn q � PγpVτ pγq  
inf xCImultifold

αn q � PγpVτ pγq ¡ sup xCImultifold

αn q. Applying similar arguments as before,

PγpVτ pγq R inf xCImultifold

αn q ¤ 2Pγ
�
Vτ pγq R xCI α

2
nk

	
. If Assumptions 6, and 7 also hold,

then Theorem 8 implies that the right-hand side is point-wise bounded by α.

Proof of Lemma 7. Under the null hypothesis, Gpnk, 0, pΩnk, Z, ζq � pe11pΩ1{2
nk Zq2{nk,

where pΩ1{2
nk,11Z, where Z � N p0, 1q. The adjusted critical values are qα{2pnk, 0, pΩnk, ζq �

0 and q1�α{2pnk, 0, pΩnk, ζq � pΩnk,11z
2
1�α{nk. Then 0 P xCIαnk if and only if 0 ¤pVτnk � 0 ¤ pΩnk,11z

2
1�α{nk. Following similar steps to the “near homogeneity” regime

in Theorem 7, nkppVτnk � V �
τ pγn, I�nkqq � pΩ1{2

8,11Znk �
?
vq2 � v � opp1q, where

Znk � N p0, 1q. Consequently, nk pVτnk � pΩ1{2
8,11Znk �

?
vq2 � opp1q. Then

Pγnp0 P xCIαnk | I�nkq � Pγn
�

0 ¤ nk pVτnk ¤ pΩnk,11z
2
1�α

	
� Pγn

�
0 ¤ pΩ1{2

8,11Znk �
?
vq2 ¤ Ω8,11z

2
1�α

	
� op1q

� Pγn

�
�

?
va

Ω8,11

¤ Znk � opp1q ¤ z1�α �
?
va

Ω8,11

�
� op1q.

and hence limnÑ8 Pγnp0 P xCIαnk | I�nkq � Φ
�
z1�α �

?
v{aΩ8,11

��Φ
��?v{aΩ8,11

�
.

The final result is obtained by 1� Pγnp0 P xCIαnk | I�nkq.
Proof of Lemma 8. The first part of the proof is identical to that of Theorem 7 in

terms of setting up the problem, and defining a sequence the conditional distributions

tFγn|I�nku8n�1. By equation (39) this sequence satisfies Assumption 2 almost surely

with an effective sample size ñ � n{rn and a particular choice of covariance estimator.

To complete the proof, we develop a modified version of Lemma 10 to prove uniform

coverage under cluster dependence. Consider a sequence of distributions tγnu8n�1 P Γ8

and a subsequence tn`u8`�1, where n`
rn`
V �
τn`

Ñp v P r0,8q, V �
τn`

Ñp 0, and Ωn` Ñ Ω as

n` Ñ 8. Applying Lemma 2 , and factorizing terms as in Lemma 10,

n`
rn`

ppV �
τn`

� V �
τn`
q � pe11Ω1{2Zn` �

?
vq2 � v � opp1q. (70)

Now we need to show that the quantiles of the empirical process converge to the same
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limit. The quantity n`
rn`
Gpn`, V �

τn`
, pΩn` , Zq is equal to

n`
pe11r�1{2

n`
pΩ1{2
n` Zq2

n`
� 2

d
n`V �

τn`

rn`
pe11r�1{2

n`
pΩ1{2
n`
Zq �

d
n`V �

τn`

rn`

b
V �
τn`
pe12r�1{2

n`
pΩ1{2
n`
Zq. (71)

In the first term the n` components cancel out and r�1
n`
pΩn` Ñp Ω. Similarly, since

n`
rn`
V �
τn`

Ñp v the second term of (71) converges to 2
?
ve11Ω1{2Z, and a suitable fac-

torization with the first and second the expression in (70). Since n`{rn` Ñ 8 by

assumption, then V �
τn`

Ñ 0 and the third term of (71) is opp1q. Therefore the es-

timated quantiles are consistent. Proving consistency of the quantiles for the mild

hereterogeneity proceeds analogously. Once we prove that the quantiles are asymp-

totically correct, the rest of the proof is the same as in Lemma 10.

Proof of Theorem 9 . The first part of the proof is identical to that of Theorem 7 in

terms of setting up the problem. In this case the sequence of conditional distributions

tFγn|I�nku8n�1 only satisfies Assumption 2 for subsequences where Vxnk � 0. Instead, I

will modify the first part of the proof of Lemma 10.(i) for a class of regression-adjusted

CIs with possible degeneracy. Consider a sequence of distributions tγnu8n�1 P Γ8 and

let hn :� pnV �
τn, V

�
τn, vecpΩnq, ζn, Vxnq be a sequence of parameters where Vxn is the

variance of S�kpXiq. Our goal is to show that for h P H and all subsequences tn`u8`�1

where hn` Ñ h P H,

lim
n`Ñ8

Pγn`
�
V �
τn`

P xCI0

αnk

	
¥ 1� α.

Partition the subsequences in such a way that hn` either has Vxn` � 0 or Vxn` ¡ 0.

When Vxn` � 0, then pV �
τn`

is exactly degenerate and the confidence interval (40)

covers the pseudo-VCATE with probability one. For the sequences where Vxn` ¡ 0,

we can apply the remaining cases from Lemma 10 which have coverage 1 � α. This

satisfies Assumption B in Andrews et al. (2020) and we can prove uniform conservative

coverage of the pseudo-VCATE applying their Corollary 2.1

We prove point-wise coverage by cases. When Vτ pγq � 0, then V �
τ pγ, I�nkq �

0 almost surely. By applying the result above and the near homogeneity case in

Theorem 7 we find that coverage is at least p1 � αq. Now consider the case where

Vτ pγq is bounded away from zero. By Assumption 6, the nuisance functions converge

to their true value. Then pτ�kpxq converges point-wise to τpxq, and by the moment

bound in 3.(v) and the dominated convergence theorem, Vγnppτ�kpXqq � Vτ pγq�op1q,
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which is bounded away from zero. Then we can apply the mild heterogeneity results

in Theorem 7 to prove (43). The proof of (44) is identical to that of Theorem 9,

substituting the confidence intervals xCI0

αnk instead of xCIαnk. Point-wise coverage of

the fold-specific confidence intervals holds by (43).

Proof of Corollary 4. The proof of (45) and (46) follows a similar structure to

Corollary 3 and Theorem 9, respectively. In each case the only thing that changes

is that we apply the uniformity result for degenerate CIs in (42) (Lemma 9), rather

than the non-degenerate uniformity result in Theorem 7.

C Supporting Lemmas and Proofs

Lemma 10. Suppose that Γ is a set of distributions constrained in such a way that

Assumption 2 holds. Let V �
τ pγq � β2pγq2Vxpγq and Ωpγq be the pseudo-VCATE and

covariance matrix associated with γ, respectively. If xCIαn is a confidence interval

obtained by substituting ppVτn, pΩnq into (11), then

(i) 1� α ¤ lim inf
nÑ8

infγPΓ Pγ
�
V �
τ pγq P xCIαnk	

(ii) If in addition, Ω12pγqVτ pγq ¤ t, then lim sup
nÑ8

supγPΓ Pγ
�
V �
τ pγ, I�nkq P xCIαnk	 ¤

p1� αq � α̃ptq, where α̃ptq ¥ 0 and limtÑ0 α̃ptq � 0.

Proof. Let tγn P Γ : n P Nu denote a sequence of distributions. Our goal is to verify

that the confidence interval satisfies the assumptions of Corollary 2.1(c) in Andrews

et al. (2020). Define a sequence of parameters, hn :� pnV �
τn, V

�
τn, vecpΩnq, ζnq. By

Assumption 2, each element is contained in H, a subset of the extended Euclidean

space in which Ωn is positive-definite with bounded eigenvalues. The quantity nV �
τn is

positive but unbounded, and can converge to �8. Assumption B in Andrews et al.

(2020) is stated in terms of subsequences and the first step is to write the problem in

this way. We show that for h P H and all subsequences tn`u8`�1 where hn` Ñ h P H,

1� α ¤ lim
n`Ñ8

Pγn`
�
V �
τn`

P xCIαn	 ¤ p1� αq � α̃ptq, α̃ptq ¥ 0, α P r0, 1s

We break down the proof by cases. (a) Near homogeneity case: Suppose that

n`V
�
τn`

Ñp v P r0,8q, V �
τn`

Ñp 0, ζn` Ñ ζ� P t0, 1u and Ωn` Ñ Ω as n Ñ 8,
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where Ω is positive-definite. For this case,
?
n`V

�
τn`

� op1q. By applying Lemma 2,

n`ppV �
τn`

� V �
τn`
q � pe11Ω1{2Zn`q2 � 2ζ�

?
ve11Ω1{2Zn` � opp1q

� pe11Ω1{2Zn` � ζ�
?
vq2 � v � opp1q.

Let Z � N p0, I2�2q (independent of n`). Since pΩn` � Ω � opp1q, then the estimated

empirical process at V �
τn`

has the same limiting distribution as the estimator. For a

fixed ζ P t�1, 1u (that may differ from ζ�),

n`Gpn, V �
τn`
, pΩn` , Z, ζq � pe11Ω1{2Z � ζ

?
vq2 � v � opp1q.

Define the limiting CDF as HΩ,v,ζpṽq :� Pγn`
�pe11Ω1{2Z � ζ

?
vq2 � v ¤ ṽ

�
, where

Z � N p0, I2�2q. Since Z has mean zero, HΩ,v,ζ�1pṽq � HΩ,v,ζ��1pṽq � HΩ,νpṽq, which

does not depend on ζ. Since Ω is positive-definite, the function HΩ,vpṽq is continu-

ous and strictly increasing. Let rFn`,V �τn` ,pΩn`,ζn` pṽq � Fn`,V �τn` ,pΩn` ,ζn` pṽ{n`q Ñ HΩ,vpṽq.
Since HΩ,v is continuous, then (Lehmann, 1999, Theorem 2.6.1) implies that this

convergence is uniform in ṽ, and since the limiting CDF is strictly increasing,

Fn`,V �τ ,pΩn,ζppVτn` � V �
τ q � F̃n`,V �τn` ,pΩn,ζpn`ppVτn` � V �

τ qq Ñd Un` ,

for all ζ P t�1, 1u where Un` �� Uniformr0, 1s. The test statistic converges to

a fixed distribution regardless of the choice of ζ. Similarly, qα{2pn`, V �
τn`
,Ω, ζq Ñp

mintα{2, HΩ,vp0qu. Define a random variable, pRn`,ζ :� Fn`,V �τ ,pΩn,ζppVτn` � V �
τn`
q �

qα{2pn`, V �
τn`
, pΩn` , ζq Ñd Un` � mintα{2, HΩ,vp0qu. By definition, V �

τn`
P xCIαn ðñ�

ζPt�1,1u
! pRn`,ζ P r0, 1� αs

)
. As n` Ñ 8,

Pγn`
�
V �
τn`

P xCIαnk	 ¥ max
ζPt�1,1u

Pγn`
� pRn`,ζ P r0, 1� αs

	
¥ Pγn`

� pRn`,ζn`
P r0, 1� αs

	
� Pγn` p0 ¤ Un` �mintα{2, HΩ,vp0qu ¤ 1� αq � op1q
� p1� αq � op1q.

Since the limiting distribution doesn’t depend on ζ, we can apply the continuous

mapping theorem to show that pRmax
n`

:� minζPt�1,1u pRn`,ζ and pRmin
n`

:� maxζPt�1,1u pRn`,ζ
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both converge to the same limit, Un` �mintα{2, HΩ,vp0qu. As n` Ñ 8,

Pγn`k
�
V �
τn`

P xCIαnk	 ¤ Pγn`
�

0 ¤ pRmax
n`

, pRmin
n`

¤ 1� α
	
� p1� αq � op1q. (72)

For this class of subsequences the confidence interval produces exact coverage.

Mild heterogeneity case: Suppose that n`V
�
τn`

Ñ 8 and V �
τn`

Ñ V �
τ , where Vτ P

r0,8q, ζn` Ñ ζ�, and Ωn` Ñ Ω. Then we can rescale by
b
n`{V �

τn`
.

c
n`
V �
τn`

ppV �
τn`

� V �
τn`
q � pe11Ω

1{2
n` Zn`q2a
n`V �

τn`

� 2ζn`e
1
1pΩ1{2

n`
Zn`q �

b
V �
τn`
pe12Ω1{2

n`
Zn`q � opp1q

� 2ζ�pe11Ω1{2Zn`q �
a
V �
τ pe12Ω1{2Zn`q � opp1q.

The limiting distribution is normal. For convenience, we write this as
b
n`{V �

τn`
ppV �

τn`
�

V �
τn`
q � σpζ�qZ̃n` � opp1q, where Z̃n` � N p0, 1q and σpζq2 :� Ω11�V �

τ Ω22� ζ
a
V �
τ Ω12

for ζ P t1,�1u. Since the norm of r1, ζaV �
τ s1 is larger than one, it follows that

σpζq2 ¥ λmin, where λmin is the smallest eigenvalue of Ω. In this case, the limiting

CDF is HΩ,V �τ ,ζpṽq :� Φpṽ{σpζqq where Φp�q is the CDF of a standard normal. Let

zα � Φ�1pαq denote the α�quantile, and φp�q the marginal of a standard normal.

Pγn` p pRn`,ζ P r0, 1� αsq � P
�
�α{2 ¤ Φ

�
σpζ�q
σpζq Z̃n`



¤ 1� α{2



� op1q

� Φ

�
σpζ�q
σpζq z1�α{2



� Φ

�
σpζ�q
σpζq z�α{2



looooooooooooooooooooooomooooooooooooooooooooooon

κpσpζq,σpζ�qq

�op1q. (73)

To obtain the lower bound,Pγn`
�
V �
τn`

P xCIαnk	 ¥ Pγn`
� pRn`,ζ� P r0, 1� αs

	
� p1 �

αq � op1q. To obtain the upper bound, I write down a Taylor expansion. There is a

σ̃ ¥ ?
λmin between σpζ�q and σpζq such that

}κpσζ , σζ�q � p1� αq} ¤
�����φ� σ̃z1�α{2

σpζq


z1�α{2 � φ

�
σ̃z�α{2
σpζq



z�α{2

� rσpζ�q � σpζqs
σpζq

����
¤ |z�α{2|?

2πλmin
}σpζ�q � σpζq}.

By another Taylor expansion, }σpζ�q�σpζq} ¤ 1
2
?
λmin

}σpζ�q2�σpζq2}. If in addition,

}?Vτ�Ω12} ¤ t, then }σpζ�q � σpζq} ¤ t and we can define a non-negative function
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α̃ptq � t}z�α{2}{p2λmin

?
2πq, which satisfies limtÑ0 α̃ptq � 0. Therefore we have

bounded the coverage over an exhaustive class of subsequences of distributions. This

satisfies Assumption B in Andrews et al. (2020). By their Corollary 2.1,

1�α ¤ lim inf
nÑ8

inf
γPΓ

Pγ
�
V �
τ pγq P xCIαn	 � lim sup

nÑ8
sup
γPΓ

Pγ
�
V �
τ pγq P xCIαn	 ¤ 1�α�α̃ptq.

Lemma 11. Let pS�kpXiq,M�kpXiq,Wiq and λpXiq be the set of regressors and

weights, respectively, that were defined in (20). Define Qww,nk :� ErλpXiqWiW
1
i |

I�nks and let Πnk be a 4 � 4 diagonal matrix with entries p1, 1, 1, V �1{2
xnk q. If pXi, Diq

are independent of the data in I�nk, then Π1
nkQww,nkΠnk has the form in (55).

Proof of Lemma 11. Let Vi � pDi � ppXiqq. By definition, λpXiqWiW
1
i is

λpXiq

������
1 M�kpXiq Vi ViS�kpXiq

M�kpXiq M�kpXiq2 M�kpXiqVi M�kpXiqViS�kpXiq
Vi M�kpXiqVi V 2

i V 2
i S�kpXiq

ViS�kpXiq M�kpXiqViS�kpXiq V 2
i S�kpXiq V 2

i S�kpXiq2

�����
. (74)

Since pXi, Diq are independent of the data in I�nk, then ErVi | Xi � x, I�nks does

not depend on I�nk and is equal to ErVi | Xi � xs � ErDi | X � xs � ppxq � 0. By

a similar reasoning, ErV 2
i | Xi � x, I�nks � ppXiqp1 � ppXiqq � λpXiq�1. Using both

conditional moment results, we can show that ErλpXiqWiW
1
i | Xi, I�nks is equal to

Qww,nk � E

������
λpXiq λpXiqM�kpXiq 0 0

λpXiqM�kpXiq λpXiqM�kpXiq2 0 0

0 0 1 S�kpXiq
0 0 S�kpXiq S�kpXiq2

����������
I�nk

������ .

We substitute ErS�kpXiq | I�nks � 0 and ErS�kpXiq2 | I�nks � Vxnk. Finally,

Π1
nkQww,nkΠnk only normalizes the lower right corner to 1.

Lemma 12 (Convergence of cross-fitted sums). Consider a sequence of distributions

tγnu8n�1 over a collection of random matrices tZi1, . . . , ZiLuiPInk where L is a finite

constant, Zi` P RM �RB. Define pζnk :� °
iPI�nk

°L
`�1 Zi`. If for all ` P t1, . . . , Lu, (i)
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the observations are i.i.d. conditional on I�nk, (ii) EγnrZi` | I�nks � 0M�B, and (iii)

Eγnr}Zi`}2s has a uniform upper bound and γn, then as nk Ñ 8, (a) n
�1{2
k

pζnk � Opp1q,
(b) If in addition, Eγnr}Zi`}2s � op1q, then n

�1{2
k

pζnk � opp1q, (c) Now suppose (ii)

and (iii) do not necessarily hold, but instead nrkEγnr}Zi`}s � op1q for all ` and some

r ¡ 0, then nr�1
k

pζnk � opp1q.

Proof. Since M,L,B are all finite, it suffices to consider pζnk`mb :� °
iPI�nk Zi`mb,

where Zi`mb is the coordinate pm, bq of Zi`. By the law of iterated expectations,

Rnk`mb :� Eγnrppζnk`mb�Eγnrpζnk`mb | I�nksq2s is equal to EγnrEγnrppζnk`mb�Eγnrpζnk`mb |
I�nksq2 | I�nkss. Substituting the definition of conditional variance,

Rnk`mb � Eγn
�
Vγnrpζnk`mb | I�nks � Eγnrpζnk`mb | I�nks2� . (75)

The first term of (75) is Opn�1
k q. By Assumption (i), pζnk`mb is a sum of nk variables

that are i.i.d. conditional on I�nk, and hence Vγnrpζnk`mb | I�nks � nkVγn pZi`mb | Inkq �
nkEγn rZ2

i`mb | Inks. By the law of iterated expectations, Eγn
�
Vγnrpζnk`mb | I�nks� �

nkEγn rZ2
i`mbs. The second term of (75) is zero by Assumption (ii).

To prove (a), we apply Chebyshev’s inequality Ppn�1
k
pζnk`mb ¡ tq ¤ EγnrZ2

i`mbs{t2
for some t ¡ 0. This shows that n

�1{2
k

pζnk`mb � Opp1q. To prove part (b), we use

the condition that EγnrZ2
i`mbs � op1q to show that n

�1{2
k

pζnk`mb � opp1q. To prove (c),

we apply the triangle inequality, }nr�1
k

pζnk`mb} ¤ nr�1
k

°
iPI�nk }Zi`mb}. By Markov’s

inequality, Pp}nr�1
k

pζnk`mb} ¡ tq ¤ nrkEr}Zi`mb}s{t � op1q, hence nr�1
k

pζnk`mb � opp1q.

Lemma 13 (Derivatives of Influence Function). Let ϕipηq :� ϕpYi, Di, Xi, ηq, for

i P Ink, and Ui � Yi � ErYi | Di, Xis. Suppose that tYi, Di, XiuiPInk is independent of

tYi, Di, XiuiPI�nk for all k P t1, . . . , Ku, and consider a set of η P T where the propen-

sity score is bounded in rδ, 1�δs for δ P p0, 1{2s. Then (a) E
�

Bϕipηq
Bpη1,η2,η4q1 | X � x, I�nk

�
�

r0, 0,�2pτpxq � τavqs almost surely, (b) E
�}Bϕipηq{Bη`}4

�1{4 ¤ p8{δqpEr}ηpXiq}4s1{4 �
E
�}Ui}4

�1{4q, and (c)
��� B2ϕipη̃q
Bpη1,η2,η4qBpη1,η2,η4q1

��� ¤ 18�?
3{δ almost surely, for η̃ P T .
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Proof. Part (a): The jacobian of ϕipηq, Bϕipηq
Bpη1,η2,η4q is�����

2pτpXiq � τavq
�
1� Di

ppXiq

�
� 2

�
DipYi�µ0pXiq�DiτpXiqq

ppXiq � p1�DiqpYi�µ0pXiqq
1�ppXiq

�
2pτpXiq � τavq

�
� Di
ppXiq � 1�Di

1�ppXiq

�
�2pτpXiq � τavq � 2

�
DipYi�µ0pXiq�DiτpXiqq

ppXiq � p1�DiqpYi�µ0pXiqq
1�ppXiq

�
����


Part (a): Substituting ErDi | Xi � x, I�nls � ppxq and ErDiYi | X � x, I�nks �
ppxqpµ0pxq � τpxqq, then E rBϕipηq{Bpη1, η2, η4q1 | X � x, I�nks � r0, 0,�2pτpxq � τqs1.

Part (b): By construction, Ui � Yi � µ0pXiq � DiτpXiq. Then the jacobian

simplifies to Bϕipηq{Bpη1, η2, η4q1 � G1i � G2i, where G1i :� 2pτpXiq � τavq � rp1 �
Di{ppXiqq, p�Di{ppXiq � p1 � Dq{p1 � ppXiqqq,�1s and G2i :� 2pDi{ppXiq � p1 �
Diq{p1 � ppXiqqq � rUi, 0,�Uis. Since ppxq P rδ, 1 � δs, }G1i} ¤ p4{δq}τpXiq �
τav} ¤ p8{δq}ηpxq} and }G2i} ¤ p8{δq}Ui}. Therefore, by the triangle inequality,

E
�}Bϕipηq{Bη`}4

�1{4 ¤ p8{δqpEr}ηpXiq}4s1{4 � E
�}Ui}4

�q.
Part (c): The hessian of ϕipη̃q, which I denote by Hpη̃q, is symmetric and

B2ϕipη̃q
Bpη1, η2, η4qBpη1, η2, η4q1 �

�����
2
�
1� Di

p̃pXiq

�
� 2 Di

p̃pXiq � �
2
�
� Di
p̃pXiq � 1�Di

1�p̃pXiq

�
0 �

2
�
1� Di

p̃pXiq

�
�2

�
Di
p̃pXiq �

p1�Diq
1�p̃pXiq

�
�2

����

Since p̃pxq P rδ, 1� δs, then }Di{p̃pXiq} ¤ 1{δ, }1�Di{p̃pXiq} ¤ p1� 1{δq ¤ 2{δ, and

}Di{p̃pXiq� p1�Diq{p1� p̃pXiqq} ¤ 2{δ. This means that each of the entries of Hpη̃q
is bounded by 6{δ. By Lemma 16, }Hpη̃q} ¤ 3� p6{δq � ?

3 � 18�?
3{δ.

Lemma 14 (Decomposition of Nuisance Functions). Define pη�k,pθnkpxq as in (63),

θn :� p0, 1, τn,av, 1q, ppλnk�λnkq :� rppθnk�θnq, pτnk,avppθnk�θnq, ppτnk,av� τn,avqs1, and let

teju4
j�1 be 4 � 1 vectors with 1 in the jth coordinate and zero otherwise. Then there

exist px, I�nkq�measurable matrices Ψ�nkpxq, ∆�nkpxq, such that

pη�k,pθnkpxq � ηpxq � Ψ�nkpxqppλnk � λnkq �∆�nkpxq, (76)

and for some constant C   8, (a) e13rpη�k,pθnkpxq � ηpxqs � 0, (b) e13∆�nkpxq �
e14∆�nkpxq � 0, (c) e14Ψ�nk � c, for c P R9, (d) }Ψ�nkpxq} ¤ C � r1� 2}pη�kpxq}s
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a.s., (e) }∆�nkpxq} ¤ C � }pη�kpxq � ηpxq} a.s.

Proof of Lemma 14. Define pBpxq :� re1pxW px, 1q �xW px, 0qq1 � e2
xW px, 0q1s.

pη�k,pθnkpxq1 � pBpxq � e3pnpxq � e4pτnk,av,pη�k,θnpxq � pBpxqθn � e3pnpxq � e4pτnk,av,
ηpxq � e1τnpxq � e2µ0npxq � e3pnpxq � e4τn,av.

The estimation error can be decomposed as

pη�k,pθnkpxq�ηpxq � pBpxqppθnk� θnq� e4rpτnk,av� τn,avs� r pBpxq1θn� e1τnpxq� e2µ0npxqs.
(77)

By definition pBpxq � Ψ1,�nkpxq � pτnk,avΨ2,�nkpxq, with auxiliary matrices Ψ1,�nk :�
e1r0, 0, 1, pτ�kpxqs�e2r1,M�kpXq,�pnpxq,�pnpxqpτ�kpxqs and Ψ2,�nk :� e1r0, 0, 0,�1s�
e2r0, 0, 0, pnpxqs. Substituting the parameter θn :� p0, 1, τn,av, 1q and grouping com-

mon terms, pBpxq1θn � e1τnpxq � e2µ0npxq � e1rppτ�kpxq � τnpxqq � pτn,av � pτnk,avqs �
e2rM�kpxq�µ0npxq� pnpxqpτ�kpxq� pnpxqppτnk,av� τn,avqs. We can simplify the second

term of this expression by substituting M�kpxq � pµ0,�kpxq � pnpxqpτ�kpxq, which pro-

duces e2rppµ0npxq�µ0npxqq�pnpxqppτnk,av�τn,avqs. Consequently, the second and third

terms of (77) can be written as Ψ3,�nkpxqppτnk,av�τn,avq�∆�nkpxq, where Ψ3,�nkpxq :�
�e1 � e2pnpxq � e4 and ∆�nkpxq :� e1pτ�kpxq � τnpxqq � e2ppµ�kpxq � µ0npxqq.

Define Ψ�nkpxq :� rΨ1,�nlpxq,Ψ2,�nkpxq,Ψ3,�nkpxqs and the parameter error as

ppλnk � λnkq :� rppθnk � θnq1, pτnk,avppθnk � θnq1, ppτnk,av � τn,avqs1. Combining the results,

pη�k,pθnkpxq � ηpxq � Ψ�nkpxqppλnk � λnkq �∆�nkpxq.

Measurability with respect to px, I�nkq can be verified by inspection. Property (a)

follows from the fact that the propensity score is known, and (b) because Ψ�nkpxq
and ∆�nkpxq depend on vectors e1, e2, which are orthogonal to e3, e4. Property (c)

follows by the fact that e14Ψ�nk � r01�8, 1s. To prove part (d), we apply Lemma 16 to

show that Ψ�nkpxq is bounded by 9
?

4 times the largest absolute value of the matrix.

Since pnpxq ¤ 1, then the largest value is bounded by 1�}pµ0,�kpxq}� }pτ�kpxq} which

is less than 1 � 2}pη�kpxq}. This means that }Ψ�nkpxq} ¤ 12 �?
4 � r1� 2}pη�kpxq}s.

To prove, part (e) we once again apply Lemma 16. The quantity ∆�nkpxq is a 4 � 1

vector, whose individual entries are bounded by }pµ0,�k � µ0npxq} � }pτ�kpxq � τnpxq},
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which is weakly less than 2}pη�kpxq � ηpxq}.

Lemma 15 (Convergence of regression parameters). Consider a sequence of distri-

butions tγnu8n�1 that satisfy Assumptions 1, 3, 4, 5, 6, and 7, and that Vτn Ñ Vτ ¡
0. Define oracle regressors, W �

i :� r1, µ0npXiq � pnpXiqτnpXiq, pDi � pnpxiqq, pDi �
pnpXiqqpτnpXiq� τav,nqs1 and θn :� EγnrλnpXiqW �

i W
�1
i s�1EγnrλnpXiqW �

i Yis. Then (a)pτnk,av � τn,av � oppn�1{4
k q, (b) θn � p0, 1, τn,av, 1q1, and (c) pθnk � θn � oppn�1{4

k q.

Proof. Part (a): Decompose, n
1{4
k ppτnk,av�τav,nq � n

�1{4
k

�
1?
nk

°
iPInk τnpXiq � τn,av

�
�

n
1{4�1
k

°
iPInkrpτ�kpXiq � τnpXiqs. The first term is a centered random variable that is

opp1q. By Assumption 7.(iv), and the Cauchy-Schwartz inequality, Eγnrn1{4
k }pτ�kpXiq�

τnpXiqs} ¤ Eγnrn1{2
k }pη�kpXiq � ηpXiq}2s1{2 Ñ op1q. By applying Lemma 12.(c),

n
1{4
k ppτnk,av � τav,nq � opp1q.

Part (b): For given tXi � x,Di � du, W �1
i p0, 1, τnav, 1q1 � µdpxq. Therefore, by

applying Lemma 5, θn � p0, 1, τn,av, 1q1.
Parts (c): Define pQww :� 1

nk

°
iPInk λnpXiqxWi

xW 1
i , Qww :� EγnrλnpXiqW �

i W
�1
i s,

Mnpxq � µ0npxq � pnpxqτnpxq. Following similar derivations to Lemma 11,

Qww �

������
EγnrλpXiqs EγnrλpXiqpµnpXiqqs 0 0

EγnrλpXiqpµnpXiqqs EγnrλpXiqpµnpXiqq2s 0 0

0 0 1 0

0 0 0 Vτn

�����
. (78)

The upper left block has bounded eigenvalues by Assumption 3.(i) and Vτn is asymp-

totically bounded. Therefore Qww is positive definite with bounded eigenvalues. Fur-

thermore, pQww �Qww can be decomposed as:�
1

nk

¸
iPInk

λnpXiqW �
i W

�1
i � EγnrλnpXiqW �

i W
�1
i s

�
�
�

1

nk

¸
iPInk

λnpXiqpxWi
xW 1
i � xWi

�xW �1
i q

�
.

(79)

The first term of (79) is an average of mean-zero random variables and bounded vari-

ance, then it is Oppn�1{2
k q � oppn�1{4

k q. To prove that it has bounded variance, apply

Lemma 16, then }W �
i } ¤

?
4p1 � }µ0npXiq} � }τnpXiq}q ¤

?
4p1 � 2}ηpXiq}q. Since

pnpxq P rδ, 1 � δs and λnpXiq � rpnpXiqp1 � pnpXiqqs�1, then Eγnr}λnpXiqW �
i }2s1{2 ¤

p1{δ2qEγnr}W �
i }4s1{4 ¤ p?4{δ2qp1� 2Eγnr}ηpXiq}4s1{4q, which is bounded by Assump-
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tion 7.(ii).

To bound the second term of (79), we apply the triangle inequality, }λnpXiqpxWi
xW 1
i�

W �
i W

�1
i q} ¤ p1{δ2qpφi, where pφi :� 2}W �1

i } }pζi} � }pζi}2 and pζi :� xWi �W �
i . Our goal

is to show that 1
nk

°
iPI�nk

pφi � oppn�1{4
k q. Let e` be a 4 � 1 vector with one in

the `th entry and zero otherwise. We can further decompose pζi � p∆nk
pζ�nk,1pXiq �pζ�nk,2pXiq, into components that map into our assumptions: p∆nk :� ppτnk,av � τn,avq,pζ�nk,1pXiq :� e4pDi � pnpXiqq and pζ�nk,2pXiq :� e1pM�kpXiq �MnpXiqq � e2pDi �

pnpXiqqppτ�kpXiq � τnpXiqq. By construction, }ζ�nk,1pXiq} ¤ 1. Applying the tri-

angle inequality and grouping terms, pφi ¤ }p∆nk}2 � }p∆nk}pφi1 � pφi2, where pφi1 :�
p2}W �

i }�2}pζ�nk,2}q, and pφi2 :� p2}W �
i } }pζ�nk,2pXiq}�}pζ�nk,2pXiq}2q. By Assumption

7.(iv), Eγnr}pζ�nk,2pXiq}2s1{2 ¤ 3Eγnr}pη�kpXiq � ηpXiq}2s1{2 � opn�1{4
k q. Therefore, by

the Cauchy-Schwarz inequality, Eγnrpφ2
i`s1{2 � opn�1{4

k q for ` P t1, 2u. Then by Lemma

12.(c),
�

1
nk

°
iPI�nk

pφi`� � oppn�1{4
k q for ` P t1, 2u. Combining terms,

�����n1{4
k

nk

¸
iPI�nk

λnpXiqpxWi
xW 1
i � xWi

�xW �1
i q

����� ¤ 1

δ2

2̧

`�0

n
1{4
k }p∆nk}`�2

�
1

nk

¸
iPI�nk

pφi`
�
� opp1q.

Define pQwy :� 1
nk

°
iPInk λnpXiqxWiYi and Qwy :� EγnrλnpXiqW �

i Yis. We can apply

similar arguments as above to show that pQwy �Qwy � oppn�1{4
k q.

Substituting the definition, θn :� Q�1
wwQwy and rearranging terms, n

1{4
k ppθnk�θnq �

n
1{4
k p pQ�1

ww
pQwy�θnkq � pQ�1

wwn
1{4
k p pQwy�Qwyq�n1{4

k pQ�1
wwQwy� pQ�1

wwQwyq. The first term

is oppn�1{4
k q. The second term can be rewritten as n

1{4
k pQ�1

ww � pQ�1
wwqQwy � oppn�1{4

k q.
To prove this, note that }Q�1

ww � pQ�1
ww} � }Q�1

wwp pQww � Qwwq pQ�1
ww} ¤ }Q�1

ww} } pQww �
Qww} } pQ�1

ww}. The right-hand side is oppn�1{4
k q since Qww has eigenvalues bounded

away from zero and pQww converges to its true value at rate n
1{4
k . Combining the

results produces n
1{4
k ppθnk � θnq � oppn�1{4

k q.
Lemma 16 (Bound on Operator Norm). Let H be an M � L matrix and let }H} �
suptzPRL:}z}�1u }Hz} be corresponding matrix operator norm. The absolute value of the

individual entries of H is bounded a constant C. Then }H} ¤ LC
?
M .

Proof of Lemma 16. Let Hm be the mth row and Hm` be the pm, `q entry. Then

}H} � suptzPRL:}z}�1u

b°M
m�1 rHmzs2 � suptzPRL:}z}�1u

c°M
m�1

�°L
`�1Hm`z`

�2

. Since

|z`| ¤ 1 and }Hm`} ¤ C, }H} � suptzPRL:}z}�1u

c°M
m�1

�°L
`�1 |Hm`| |z`|

�2

¤ CL
?
M .
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