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Abstract

A principal contracts with an agent who can sequentially search over some projects

to generate an award. Crucially, the principal knows only one of the available projects

and evaluates a contract by its worst-case performance. We find that a debt contract is

robustly optimal. When the principal’s known project faces limited downside risk, this

debt contract is also the unique contract that is robustly optimal and socially efficient.

Moreover, linear contracts, although robustly optimal in various settings where the prin-

cipal has partial knowledge about the agent’s technology, are sub-optimal in our setting

as they deter the agent’s search incentive.
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1 Introduction

In many situations, a principal (“she”) contracts with an agent (“he”) who can sequentially

search over some projects to generate a reward, whereas the principal knows only one of

the available projects. Consider the example of a publisher sponsoring the creative work

of a writer (or an artist, an online content creator, etc). The publisher may be aware

of the initial “pitch,” but the exact creative process or alternative ideas are only known

to the writer. With this in mind, the publisher writes a contract that specifies how any

future profits will be divided between the two.

How should the publisher (the principal) write a contract to encourage the writer

(the agent) to search through projects while being robust to unknown alternatives that

the agent may possess? This paper delivers two main findings. First, we construct a

debt contract that maximizes the principal’s worst-case guarantee. Moreover, when the

principal’s known project faces limited downside risk, this debt contract is the sole optimal

and socially efficient contract. This finding provides a rationale for the prevalent use of

advance-against-royalties contracts commonly adopted by publishers. Second, we find

that linear contracts, although known to be robustly optimal in various settings where

the principal has partial knowledge about the agent’s technology (e.g., Carroll, 2015, Dai

& Toikka, 2022, Liu, 2022), fail to provide the principal with her optimal guarantee in

our setting. This is because linear contracts deter the agent’s search incentive.

We study a moral hazard model combining robust contracting and sequential search.

In the model, a principal designs a wage contract for an agent, who can sequentially search

over some projects à la Weitzman (1979) and present a final award to the principal.

Each project is a “Pandora’s box” in the language of Weitzman (1979) — it specifies

a distribution over the project’s realized award and a fixed cost to make that award

collectible. The contracting environment features two frictions. The first one is limited
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liability, i.e., the wage must be non-negative. The second one is asymmetric information

in the sense that the principal only knows one of the projects that the agent can access.

Crucially, we adopt a robustness approach to deal with the second friction — the principal

evaluates a contract by its worst-case performance against the uncertainty about the

projects endowed to the agent.

Theorem 1 constructs a debt contract that is worst-case optimal for the principal. In

this contract, the principal collects the entire award if it is less than a certain amount,

whereas the agent is the residual claimant after the award exceeds that amount. Intu-

itively, the optimality of this debt contract hinges on the following two facts. First, it

preserves the agent’s incentive to search by letting him be the residual claimant for high

realizations of the award. Second, it ensures that the principal can extract the entire

social surplus in the worst-case scenario under this contract.

Naturally, the next question concerns whether this debt contract is uniquely optimal.

Although the answer is no, Theorem 2 fully characterizes the set of worst-case optimal

contracts for the principal. A contract is optimal if and only if it satisfies two conditions.

The first one (Minimum Debt Level condition) says that a minimum level of debt must

be imposed, i.e., the principal collects the entire award up to some certain amount. This

feature is crucial to preserve the agent’s search incentive. The second one (Full Surplus

Extraction condition) says that the principal must be able to fully extract the surplus in

the worst-case scenario.

Given that the debt contract constructed in Theorem 1 is not uniquely optimal, what

makes it special? Theorem 3 answers this question by identifying a unique feature of this

debt contract — among all the robustly optimal contracts, it is the only one that achieves

social efficiency when the known project’s downside risk is not severe. Intuitively, this

result is driven by the fact that debt contracts are order-preserving in the sense that they

induce the agent to search in an order identical to a social planner, regardless of what
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projects are available to him.

The above results combined provide a rationale for the use of debt-like contracts in

practice. In the publishing industry, for instance, it is common for writers to be paid an

advance against any future profits their book would earn.1 Like the debt contract featured

in this paper, the writer starts earning royalty payments only after the book sale exceeds

an agreed threshold. This kind of “earnout” contract encourages the writer to search for

a better publication, as it gives the writer a high residual claim only when the book sells

well.

Another main contribution of this paper is to demonstrate how the timing nature of

the agent’s decision affects the feature of the robustly optimal contract. From a modeling

perspective, our only departure from Carroll (2015) is that the agent can sequentially

search over the available projects to find his favorite instead of picking his favorite project

as a static decision. It turns out that linear contracts, which are optimal in Carroll (2015),

are sub-optimal in our setting (Corollary 1). We provide two angles to explain why our

robustly optimal contract differs from Carroll (2015).

First, the agent cares about different statistics of a project. In Carroll (2015), the

agent cares about the expected award of a project, and because of that, linear contracts

are optimal since they well align the principal’s and the agent’s payoffs. In our setting, the

right tail of the award distribution is what guides the agent’s search, as indicated by the

computation of the Weitzman index. Therefore, preserving the agent’s incentives to search

requires not significantly distorting the relative values of the high award realizations. This

is achieved by debt contracts but not by linear contracts (or equivalently, equity contracts).

Second, in a one-shot moral hazard problem à la Carroll (2015), the principal is

primarily concerned about excessively risky projects crowding out others with comparable

expected values. In a sequential search problem, these risky projects are a boon to the

1See, e.g., https://www.booksandsuch.com/blog/sell-in-sell-through/ for the use of contracts
in the publishing industry.
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principal; instead, she must guard against excessively safe projects that would terminate

the agent’s search too early.

Related Literature

First and foremost, this paper contributes to the literature on robust contracting, particu-

larly a strand of the literature that concerns robustness to the agent’s technology (Hurwicz

& Shapiro, 1978; Carroll, 2015). The closest paper to ours is Carroll (2015), with which

we have intensively compared in the introduction.2 Our paper demonstrates how the

timing nature of the agent’s decision affects the feature of robustly optimal contracts.3

See Carroll (2019) for a survey on the literature.

Second, this paper contributes to the literature on delegated search (or contracting

for search), such as Lewis and Ottaviani (2008), Lewis (2012), and Ulbricht (2016).4 A

common feature of those papers is that the agent can exert costly effort to repeatedly

sample awards from the same distribution — to put it in our context, the agent faces

infinitely many homogeneous Pandora’s boxes. Our major departure from the literature

is to consider independently heterogeneous Pandora’s boxes.

Third, this paper is related to the literature on contracting for experimentation (Berge-

mann & Hege, 1998, 2005; Hörner & Samuelson, 2013; Halac, Kartik, & Liu, 2016). The

main difference lies in the format of moral hazard — the agent in those papers pays effort

to learn about a state of the world, while the agent in ours pays effort to learn about a

2Relatedly, followup works of Carroll (2015) include Dai and Toikka (2022) that extends the model to
a team of agents, Liu (2022) that allows the principal to learn about the agent’s technology, Kambhampati
(2023) that analyzes the benefit of random contracts, etc.

3Chassang (2013) also studies robust contracting where the agent makes dynamic decisions. One
crucial difference is that the principal in our paper only observes the final outcome (i.e., the presented
award), whereas the principal in Chassang (2013) can observe the outcomes across time. Another related
paper is Koh and Sanguanmoo (2024), where the agent can learn about his technology over time.

4Relatedly, some papers study sequential contracting with multiple agents (Kleinberg, Waggoner, &
Weyl, 2016; Durandard, 2023; Ben-Porath, Dekel, & Lipman, 2021), which can be cast as sequential
search problems with the principal being the searcher and agents being the boxes.
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project’s award and make it collectible.

Fourth, this paper is related to the literature on delegated project choice (Armstrong

& Vickers, 2010; Nocke & Whinston, 2013; Guo & Shmaya, 2023). The crucial differences

are that (1) we allow for transfers, and (2) the agent in our setting needs to exert costly

effort to discover the award associated with each project.

Finally, this paper is related to the finance-oriented literature on the optimality of

debt contracts. Some previous papers have emphasized the roles of debt contracts in

mitigating the agent’s moral hazard problems in the presence of limited liability (Jensen

& Meckling, 1976; Townsend, 1979; Innes, 1990; Hébert, 2018; etc).5 A common intuition

behind these papers is that a debt contract is closest, among those that satisfy limited

liability, to the “contract” that lets the principal sell the firm to the agent, which is optimal

absent limited liability. Our paper is aligned with this literature as we delineate how debt

contracts can mitigate a specific moral hazard problem where the agent can sequentially

search.

2 Model

A principal (“she”) contracts with an agent (“he”), who can sequentially search through

projects to generate an award. The set of projects available to the agent is denoted

by A = {ai}ni=0, with n being a finite number. Each project ai is described by a pair

(Fi, ci) ∈ ∆(Y ) × R+ where Y := [0, ȳ]. The interpretation is that the agent can exert

a cost of ci to learn project i’s realized award yi, which is a priori distributed according

to Fi. We denote y
i
:= inf yi and ȳi := sup yi according to Fi. Notice that a project is

equivalent to a “Pandora’s box” in the language of Weitzman (1979). Crucially, while the

5Besides mitigating moral hazard, debts are also justified for other reasons such as lowering firms’ tax
burden (Miller, 1977), signaling firms’ positive private information about profitability (Myers & Majluf,
1984), etc. See Tirole (2010) for an overview of the literature on security design and capital structure.
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agent knows A, the principal only knows one of those projects, a0 — putting this formally,

the principal’s only knowledge about the available projects is that A ⊇ A0 := {a0}. Also,

we make a non-triviality assumption that EF0 [y0]− c0 > 0.

After the search process, the agent presents a single award y to the principal.6 His

presented award is set at zero if he did not sample any project. The principal observes

nothing about the agent’s search process except the presented award; in particular, the

principal does not know the identity of the project that generates this award.7 Therefore,

her only incentive tool is a wage contract w : Y → R+, where w(y) is the agent’s monetary

payment when the presented award is y. We assume the contract w satisfies one-sided

limited liability, i.e., w(y) ≥ 0 for any y ∈ Y .8 Both players are risk-neutral.

Given a wage contract w and knowing the set of available projects A, the agent

engages in sequential search (with recall) à la Weitzman (1979). We can describe the

agent’s strategy as a function of two state variables: (1) the set of projects sampled up to

date, denoted by Ã ⊆ A, and (2) the highest collectible monetary award from the sampled

projects, denoted by ỹ. Formally, a strategy is a function σ : 2A × Y → 2A ∪ {∅}, where

σ(Ã, ỹ) = ai means that the agent will sample project ai ∈ A \ Ã next and σ(Ã, ỹ) = ∅

means that he will cease searching and present the award that gives himself the monetary

award ỹ. Let Σ(w,A) denote the set of optimal search strategies for the agent. For a given

strategy σ, we write Eσ to denote the expectation with respect to the induced distribution

over the agent’s search. We abusively write ai ∈ σ to denote the event that the project

ai is sampled according to the strategy σ.

The game proceeds as follows.

6We assume the agent can only present one single award, as it is common in real-world contexts
including the publisher-writer example. That being said, allowing the agent to present more than one
award does not change the paper’s main finding, as to be discussed in Section 4.3.

7In Section 4.4, we discuss the situation with project-specific contracts and show that the paper’s
main results continue to hold.

8The paper’s results remain true if we assume two-sided limited liability. As we will show, the optimal
contract (a debt contract) yields a non-negative payoff to the principal.
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1. The principal sets a contract w.

2. The agent sequentially searches among A, after which he presents an award y.

3. The agent gets payoff w(y)−
∑

i ci1[ai∈σ] and the principal gets payoff y − w(y).

The principal’s objective is to determine a wage contract w that maximizes the worst-

case payoff against all possible realizations of A. Formally, given a realized set of projects

A and a wage contract w, the principal’s payoff is

VP (w | A) := sup
σ∈Σ(w,A)

Eσ[y − w(y)],

where we assume the following: in case the agent has multiple optimal search strategies,

he adopts the one that is most preferred by the principal. The principal evaluates a wage

contract by its payoff guarantee (i.e., her payoff in the worst-case realization of A),

VP (w) := inf
A⊇A0

VP (w | A).

The principal seeks to solve the following problem

sup
w

VP (w) =: VP

where we let VP denote her payoff guarantee under the optimal contract.

3 Main Results

We begin by recalling the solution to the sequential search problem (Weitzman, 1979).

For the project ai = (Fi, ci), we define its reservation value (or index ), ri, as the unique
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solution to

ci =

∫
[yi − ri]

+dFi(yi).

A social planner (one who maximizes the joint welfare of the principal and the agent)

facing the same search problem will (1) sample the projects in descending order of their

reservation values and (2) conclude the search whenever a realized award y is larger than

the reservation values of the remaining unsampled projects.

The agent’s optimal search strategy is similar except that his incentive is potentially

distorted by the wage contract. Given a wage contract w, project ai’s w-induced reserva-

tion value (or w-induced index ), rwi , is the unique solution to

ci =

∫
[w(yi)− rwi ]

+dFi(yi).

He will sample the projects in descending order of rwi and cease searching when his realized

monetary payoff exceeds the w-induced reservation values of the remaining unsampled

projects.

Having specified the agent’s optimal search strategy, we return to the principal’s prob-

lem. Define a contract w as a z−debt contract if w(y) = [y − z]+. In such a contract,

the principal collects all the returns up to the debt level z, after which the agent is the

residual claimant and collects the rest. We are now ready to state the main result. Let

w0 denote the r0-debt contract where r0 is the index of the project a0.

Theorem 1. The contract w0 is optimal for the principal. Moreover, VP = EF0 [y0]− c0.

Proof. See Appendix A.1.

The optimality of w0 is best explained by the following: for any contract w, we have

VP (w0) = VP (w0|A0) ≥ VP (w|A0) ≥ VP (w). (1)

9



The equality of (1) says that A = A0 is the worst-case scenario for the principal under

the debt contract w0, as will be shown in Appendix A.1. The first inequality of (1) holds

because when A = A0, the contract w0 attains the highest social surplus while leaving

zero payoff to the agent. The second inequality of (1) comes directly from the definition

of VP (w).

Theorem 1 leads to a natural question: is w0 uniquely worst-case optimal for the

principal? Unfortunately, not quite, as the following theorem shows. Recall that VP is

the principal’s payoff guarantee under the optimal contract.

Theorem 2. A contract w is optimal if and only if the following two conditions hold.

1. Minimum Debt Level condition (MDL henceforth):

w(y)


= 0 if y ≤ VP

≤ y − VP if y > VP .

2. Full Surplus Extraction condition (FSE henceforth):

EF0 [w(y0)] = c0.

Proof. See Appendix A.2.

Theorem 2 identifies the key properties of robustly optimal contracts. The MDL

condition indicates that any robustly optimal contract w must impose a minimum debt

level of VP — specifically, the principal collects the entire return if the presented award is

below VP , whereas her payoff y − w(y) is at least VP if the presented award exceeds VP .

In other words, some level of debt (although not necessarily as high as r0) is inevitable

in any optimal contract. The FSE condition ensures that the principal fully extracts the

social surplus when A = A0.
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Although the debt contract w0 is not uniquely optimal for the principal, it strictly

outperforms any other optimal contract in terms of efficiency in some situations, as the

next theorem shows.

Definition 1. Let VS(w,A) := supσ∈Σ(w,A)[VP (w|A)+VA(w|A)] denote the social surplus

induced by the contract w when the realized set of projects is A. The contract w is efficient

if it maximizes VS(w,A) for any A.

Theorem 3. If the project a0’s downside risk is bounded by r0 (i.e., y
0
≥ r0), the contract

w0 is the only optimal contract that is efficient.

Proof. See Appendix A.3.

As will be clear in the proof, Theorem 3 is driven by the fact that debt contracts

are the only contracts that are order-preserving, i.e., the agent’s search order among any

set of projects under such a contract is the same as the social planner’s. The condition

y
0
≥ r0 is satisfied as long as the known project a0 is not exposed to severe downside risk;

for example, it holds in the special case where a0 is a riskless project (i.e., F0 = δc0+r0).

Under this condition, the social planner would not have sampled any project whose index

is lower than r0. Hence, the social planner will sample the projects in descending order of

their indexes until the project a0, and it is not difficult to see that the agent will do the

same under the debt contract w0 because it is order-preserving.

It is also worth noticing that the limited liability assumption plays an important role

in Theorem 3. Without this assumption, the principal can simply charge the agent a fixed

fee and let her keep the entire award — a contract that is socially efficient and robustly

optimal for the principal but violates limited liability.
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3.1 Sub-optimality of Linear Contracts

Our major departure from Carroll (2015) is that we allow the agent to select his favorite

project dynamically (via sequential search) instead of statically. To highlight how such

dynamics of moral hazard bring a difference to the optimal contract, it is useful to study

how the linear contracts, known to be optimal in Carroll (2015), perform in our setting.

Corollary 1. No linear contract is optimal for the principal.

Proof. All the linear contracts violate the MDL condition in Theorem 2, i.e., they do not

contain a debt level of at least VP .

To see why the violation of MDL makes a linear contract sub-optimal, we consider the

linear contract wlin(y) = αy with α = c0
EF0

[y0]
so that the FSE condition is satisfied. The

wlin-induced index for a0 solves

c0 =

∫
[wlin(y0)− rwlin

0 ]+dF0(y0).

Plugging in the expression for α, we see that rwlin
0 = 0. Now consider the alternative

project (δx, 0), where δx is a Dirac mass on some x > 0. This project has a strictly

positive index and αx > 0. Therefore, under wlin, the agent will search (δx, 0) and never

proceed to a0. Since this is true regardless of x, we get VP (wlin) = infx>0(1− α)x = 0.

We provide two angles to explain why our optimal contract differs from Carroll (2015).

First, the agent cares about different statistics of a project. In Carroll (2015), the agent

cares about the expected award of a project, and because of that, linear contracts are

optimal since they well align the principal’s and the agent’s payoffs. In our setting, the

right tail of the award distribution is what guides the agent’s search, as indicated by the

computation of the Weitzman index. Therefore, preserving the agent’s incentives to search

requires not significantly distorting the relative values of the high award realizations.
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This is achieved by debt contracts, but not by linear contracts (or equivalently, equity

contracts).

Second, in a one-shot moral hazard problem à la Carroll (2015), the principal is

primarily concerned about excessively risky projects crowding out others with comparable

expected values. In a sequential search problem, these risky projects are a boon to the

principal; instead, she must guard against excessively safe projects that would terminate

the agent’s search too early.

4 Discussion

4.1 Multiple Agents

Consider a variation of the model with m agents indexed by k = 1, 2, ...,m. Each agent

k has access to a set of projects denoted by Ak, whereas the principal only knows one

project available to each agent, which we denote by ak0 ∈ Ak. The principal can sponsor

any agent at any time. Upon being sponsored, an agent searches over his available projects

and presents one single award to the principal. The principal can only adopt one presented

award, regardless of how many awards are presented (e.g., the publisher can only publish

one book among those presented by several writers). The principal’s realized payoff is the

utility of the adopted award minus the wage payment to all the sponsored agents.

This setting features two layers of sequential search — the principal can explore among

agents, whereas the agents can explore among available projects. The principal needs to

make two decisions: (1) the sponsoring strategy, i.e., which agents to sponsor, in what

order, and when to stop; (2) the contracting strategy, i.e., what wage contract to provide

each sponsored agent. In principle, the wage payment to an agent can depend on all the

presented awards, including those presented by others. But as we will show, such richness

does not benefit the principal — she can already achieve her optimal payoff guarantee
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by providing each sponsored agent a simple wage contract that only depends on his own

presented award (notably, regardless of whether that award is adopted or not).

Let rk0 denote the index of agent k’s project ak0. Without loss of generality, we assume

r10 ≥ r20 ≥ ... ≥ rm0 .

Proposition 1. The principal’s robustly optimal strategy can be described by the following

dynamic process. In round k ∈ {1, 2, ...,m}, the principal sponsors agent k and offers

him a rk0-debt contract. In each round k, after seeing agent k’s presented award yk, the

principal stops and adopts the highest up-to-date presented award, max{y1, y2, ..., yk}, if

it is higher than rk+1
0 ; otherwise, she continues to the next round.

Proof. We begin by identifying an upper bound for the principal’s payoff guarantee. Con-

sider the possible scenario where there are no available projects other than the known one

for each agent. In this scenario, the principal’s payoff cannot exceed the highest possible

social surplus, which can be computed by analyzing a social planner’s optimal search

strategy when facing m projects {ak0}mk=1. As in Weitzman (1979), the social planner will

explore the projects in descending order of their indexes and stop when the highest up-

to-date award is higher than all the unexplored projects’ indexes. By doing so, the social

planner’s expected payoff is denoted by V ∗
S . This is an upper bound for the principal’s

payoff guarantee.

Next, we show that the strategy specified in Proposition 1 achieves a payoff guarantee

that attains the above upper bound. It suffices to prove the following two arguments.

The first argument resembles the equality in (1), and the second one resembles the first

inequality in (1).

First, under this strategy, the principal’s worst-case scenario is exactly the afore-

mentioned one where each agent only has access to his known project. The proof of this

argument is the same as that in Theorem 1 — under a debt contract, having more projects

induces the agent to present a weakly better award in the first-order stochastic dominance
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sense.

Second, in the principal’s worst-case scenario, the strategy specified in Proposition 1

achieves the socially efficient outcome, as the order of search among the projects {ak0}mk=1

and the stopping rule under this strategy is identical to that of the social planner’s optimal

strategy. Meanwhile, this strategy leaves no surplus for all the sponsored agents since they

each face a debt contract that satisfies the FSE condition. Hence, the principal’s expected

payoff in this scenario is also V ∗
S , the entire social surplus.

4.2 Screening

This paper features not only moral hazard but also adverse selection. Yet, the baseline

model assumes that the principal offers a single contract w and does not screen the

agent’s private information about A. Can the principal benefit from screening the agent

by providing a more general mechanism? We find that the answer is no.

By the taxation principle, any mechanism is equivalent to a menu of contracts.

Proposition 2. The singleton menu {w0} achieves the principal’s optimal payoff guar-

antee among all mechanisms.

Proof. Slightly abusing the notation, for any menu of contracts M, we have

VP ({w0}) = VP ({w0} | A0) ≥ VP (M | A0) ≥ VP (M) .

The equality and the second inequality remain true as in Theorem 1. The first inequality

holds for the following reason: when the agent’s type is A0, the contract w0 already

maximizes the social surplus while leaving no surplus for the agent; in other words, no

menu can improve the principal’s payoff when A = A0.
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4.3 Multiple Presented Awards

We consider a variation of the model where the agent can present more than one award.

We maintain the assumption that the principal can only adopt one award. Let the set of

presented awards be denoted by y = {y(1), y(2), ..., y(k)} with k ≤ n+1, and the principal’s

selected award be denoted by ŷ ∈ y. The principal can use a general wage contract w(y, ŷ)

that conditions the agent’s wage on both the number of presented awards and their values.

Moreover, the principal will select ŷ ∈ y to maximize ŷ − w(y, ŷ). Viewed in that light,

our problem resembles the project choice problem studied by Guo and Shmaya (2023),

with two key differences. First, we allow for transfers. Second, the agent needs to exert

effort to “discover” the award associated with each project.

These two differences turn out to drastically change the structure of the optimal mech-

anism. Contrary to Guo and Shmaya (2023), the principal cannot gain from incentivizing

the agent to disclose multiple awards. The contract w0 remains robustly optimal for the

principal, since (1) continues to hold. In particular, the equality of (1) still holds because

it only concerns the specific contract w0. The first inequality remains true because in the

scenario where A = A0, the generalization of the contract space has no bites. The second

inequality still holds by definition.

Why doesn’t the principal benefit from incentivizing the agent to propose multiple

projects in our setting? Intuitively, this is because the transfer allows the principal to fully

separate incentive provision from project selection. Unlike in Guo and Shmaya (2023),

where the principal incentivizes the disclosure of multiple projects to hedge strategic risks

and improve her fallback option, in our problem, the principal can always pick her favorite

award. The debt contract w0 not only motivates search but also aligns the agent’s and

principal’s interests in selecting the best project. As a result, the principal does not need

to compensate the agent to disclose the best available project, which is then implemented.
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Moreover, linear contracts as defined in Carroll (2015) remain sub-optimal in this

setting, where the contract space is enlarged.

4.4 Project-Specific Contracts

Another way to generalize the contract space is to let the wage depend on the identity

of the project that generates the presented award. Such a contract can be written as

w(yi, ai).

Similarly, this generalization does not affect the optimality of the debt contract w0

since (1) remains true for the same reason as Section 4.3. Intuitively, A = A0 is established

as the worst-case scenario when the contract w0 is used, while this generalization of the

contract space is irrelevant under this worst-case scenario.

As before, linear contracts remain sub-optimal in this generalized setting.

4.5 Resampling of Projects

In our baseline model, the agent can only sample each project once. This paper’s results

remain valid if we allow for finite resampling, i.e., each project can be sampled for finite

times. This is because multiple samplings of the same project can be regarded as one-time

sampling of multiple projects with identical (Fi, ci).

This is also true if we allow for infinite resampling. In particular, w0 remains optimal

because A = A0 is still the worst-case scenario for the principal under the debt contract

w0. In particular, under a debt contract under which the agent is willing to sample the

project a0, the agent always samples until getting some positive payoff, which means that

the principal has already collected r0 in full.
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A Proofs

A.1 Proof of Theorem 1

As we mentioned in the explanation following Theorem 1, it suffices to show the following

two statements. First, VP (w0|A0) ≥ VP (w|A0). This is because

EF0 [w0(y0)]− c0 = EF0 [(y0 − r0)
+]− c0 = 0.

In other words, when a0 is the only available project, the contract w0 maximizes social

surplus (because the agent is still willing to sample the project a0) while leaving zero

expected payoff to the agent.

Second, VP (w0) = VP (w0|A0); that is, when using the contract w0, the principal’s

worst-case scenario is A = A0. To show this, fix the realized awards {yi}ni=0 and the

agent’s optimal search strategy. The realized search process must belong to one of the

two following cases.

Suppose the project a0 is not sampled by the agent under the realized search process.

It must be that the agent has sampled another project ai whose award yi satisfies w0(yi) >

rw0
0 = 0. This implies that the agent has surpassed the debt level, so the principal surely

collects a payoff of r0, which is the best situation for the principal under the r0-debt

contract.

Suppose the project a0 is sampled by the agent under the realized search process. Since

the contract w0 is weakly increasing, the agent always reports the maximal sampled award

at the end of the process. The distribution of the maximal sampled award max{w0(yi)}i∈σ

under any A ⫌ A0 must first-order stochastically dominate that under A0. Since y−w(y)

is weakly increasing, the principal’s expected payoff attains the minimum under A0.

Having shown the optimality of w0, it is immediate that the principal’s payoff guar-

18



antee is the social surplus of the project a0, i.e., VP = VP (w0|A0) = EF0 [y0]− c0.

A.2 Proof of Theorem 2

Part 1: MDL & FSE → w is optimal. We directly show that VP (w) = VP if the

contract w satisfies MDL and FSE. Fix the realized award {yi}ni=0 and the agent’s optimal

search strategy, and then we consider two cases of the realized search process.

Suppose a0 is not sampled, then the agent must have sampled a project whose award

is higher than VP . This ensures that the principal will attain at least VP according to the

MDL condition.

Suppose a0 is sampled, then it is also the last project sampled by the agent because

a0’s w-induced reservation value is exactly zero according to the FSE condition. Hence,

the principal’s expected payoff in this case is VP .

Part 2: w is optimal → MDL & FSE. We prove by contradiction. First, suppose a

contract w violates FSE. We have the following:

VP = VP (w0|A0) > VP (w|A0) ≥ VP (w),

where the equality is proved in Theorem 1, the first inequality holds strictly because

FSE is violated, and the second inequality holds by the definition of VP (w). Hence, the

contract w is not robustly optimal as VP (w) < VP .

Second, suppose a contract w satisfies FSE but violates MDL for some y′ ≤ VP ,

i.e., w(y′) > 0. We consider the counterexample where A = {a0, a1} with a1 = (δy′ , 0)

being a riskless project. The agent will only search project a1 because the w-induced

reservation value of the project a0 is zero due to FSE. The principal’s corresponding

payoff, y′ − w(y′), is strictly smaller than y′, which is weakly smaller than VP . In other

words, VP > VP (w|{a0, a1}) ≥ VP (w).
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Third, suppose a contract w satisfies FSE but violates MDL for some y′ > VP , i.e.,

w(y′) > y′ − VP . We consider the counterexample where A = {a0, a1} with a1 = (δy′ , 0)

being a riskless project. The agent will only search project a1 because the w-induced

reservation value of the project a0 is zero due to FSE. The principal’s corresponding

payoff, y′ − w(y′), is strictly smaller than VP because MDL is violated. In other words,

VP > VP (w|{a0, a1}) ≥ VP (w).

A.3 Proof of Theorem 3

Part 1: w0 is efficient. The condition y
0
≥ r0 ensures that the social planner’s search

process will not continue after sampling the project a0, which is also true for the agent

when he faces the debt contract w0. Hence, as we mentioned in the explanation following

Theorem 3, it suffices to show that under w0, the agent’s search order among the projects

whose indexes are weakly higher than r0 is identical to that of the social planner’s.

Intuitively, this is because the agent is the full residual claimant under a debt contract.

To see this formally, notice that rw0
i = ri− r0 if ri ≥ r0, which is true because [yi − ri]

+ =

[(yi − r0)
+ − (ri − r0)]

+ when ri ≥ r0, making
∫
[yi − ri]

+dFi(yi) =
∫
[(yi − r0)

+ − (ri −

r0)]
+dFi(yi).

Part 2: Any other optimal contract is not efficient. First, to ensure that the agent’s

search order among projects with indexes higher than r0 is the same as the social planner’s

for any realization of A, we need w(y′) − w(y′′) = y′ − y′′ for any y′ > y′′ ≥ r0, i.e., the

agent needs to be the full residual claimant. If this condition is violated, we can construct

the following counter-examples.

Suppose w(y′) − w(y′′) > y′ − y′′. Let a1 = (δy′ , y
′ − y′′ + ϵ), a2 = (δy′′ , 0), and

A = {a0, a1, a2}, where ϵ is positive but arbitrarily small. In this case, the social planner

will first sample project a2 whereas the agent will first sample a1.

Suppose w(y′) − w(y′′) < y′ − y′′. Let a1 = (δy′ , y
′ − y′′), a2 = (δy′′ , ϵ), and A =
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{a0, a1, a2}, where ϵ is positive but arbitrarily small. In this case, the social planner will

first sample project a1 whereas the agent will first sample a2.

Hence, an efficient contract must satisfy w(y′)−w(y′′) = y′ − y′′ for any y′ > y′′ ≥ r0.

Combining this condition, the FSE condition specified in Theorem 2, and the limited lia-

bility assumption, we conclude that an efficient and optimal contract must satisfy w(y) = 0

if y ≤ r0.

21



References

Armstrong, M., & Vickers, J. (2010). A model of delegated project choice. Econometrica,

78 (1), 213–244.

Ben-Porath, E., Dekel, E., & Lipman, B. L. (2021). Mechanism design for acquisition of

stochastic evidence.

Bergemann, D., & Hege, U. (1998). Venture capital financing, moral hazard, and learning.

Journal of Banking & Finance, 22 (6-8), 703–735.

Bergemann, D., & Hege, U. (2005). The financing of innovation: Learning and stopping.

RAND Journal of Economics , 719–752.

Carroll, G. (2015). Robustness and linear contracts. American Economic Review , 105 (2),

536–63.

Carroll, G. (2019). Robustness in mechanism design and contracting. Annual Review of

Economics , 11 (1), 139–166.

Chassang, S. (2013). Calibrated incentive contracts. Econometrica, 81 (5), 1935–1971.

Dai, T., & Toikka, J. (2022). Robust incentives for teams. Econometrica, 90 (4), 1583–

1613.

Durandard, T. (2023). Dynamic delegation in promotion contests. arXiv:2308.05668 .

Guo, Y., & Shmaya, E. (2023). Regret-minimizing project choice. Econometrica, 91 (5),

1567–1593.

Halac, M., Kartik, N., & Liu, Q. (2016). Optimal contracts for experimentation. The

Review of Economic Studies , 83 (3), 1040–1091.

Hébert, B. (2018). Moral hazard and the optimality of debt. The Review of Economic

Studies , 85 (4), 2214–2252.

Hörner, J., & Samuelson, L. (2013). Incentives for experimenting agents. The RAND

Journal of Economics , 44 (4), 632–663.

22



Hurwicz, L., & Shapiro, L. (1978). Incentive structures maximizing residual gain under

incomplete information. The Bell Journal of Economics , 180–191.

Innes, R. D. (1990). Limited liability and incentive contracting with ex-ante action

choices. Journal of economic theory , 52 (1), 45–67.

Jensen, M., & Meckling, W. (1976). Theory of the firm: Managerial behavior, agency

costs and ownership structure. Journal of Financial Economics , 3 (4), 305–360.

Kambhampati, A. (2023). Randomization is optimal in the robust principal-agent prob-

lem. Journal of Economic Theory , 207 , 105585.

Kleinberg, R., Waggoner, B., & Weyl, E. G. (2016). Descending price optimally coordi-

nates search. arXiv:1603.07682 .

Koh, A., & Sanguanmoo, S. (2024). Robust technology regulation. arXiv:2408.17398 .

Lewis, T. R. (2012). A theory of delegated search for the best alternative. The RAND

Journal of Economics , 43 (3), 391–416.

Lewis, T. R., & Ottaviani, M. (2008). Search agency. Mimeo, Northwestern University..

Liu, C. (2022). Robust contracts with exploration. arXiv:2212.00157 .

Miller, M. H. (1977). Debt and taxes. the Journal of Finance, 32 (2), 261–275.

Myers, S., & Majluf, N. (1984). Corporate financing and investment decisions when firms

have information that investors do not have. Journal of Financial Economics , 13 ,

187–221.

Nocke, V., & Whinston, M. D. (2013). Merger policy with merger choice. American

Economic Review , 103 (2), 1006–1033.

Tirole, J. (2010). The theory of corporate finance. Princeton university press.

Townsend, R. M. (1979). Optimal contracts and competitive markets with costly state

verification. Journal of Economic theory , 21 (2), 265–293.

Ulbricht, R. (2016). Optimal delegated search with adverse selection and moral hazard.

Theoretical Economics , 11 (1), 253–278.

23



Weitzman, M. L. (1979). Optimal Search for the Best Alternative. Econometrica, 47 (3),

641.

24


	Introduction
	Model
	Main Results
	Sub-optimality of Linear Contracts

	Discussion
	Multiple Agents
	Screening
	Multiple Presented Awards
	Project-Specific Contracts
	Resampling of Projects

	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3


