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Abstract

An agent learns dynamically about the profitability of a project and decides when

to make an irreversible investment. The agent seeks to maximize his reputation for

learning. Equilibrium strategies are dictated by the prior belief about the project’s

quality: a high-ability agent plays a dynamic cutoff strategy, where the cutoffs are

bounded below by the prior. Agents are reputationally rewarded for both speed and

accuracy, but accuracy becomes less consequential for reputation over time. Compared

to a benchmark where the agent has no reputational motive, investment timing may be

either premature or delayed. For projects with a large downside potential, reputation

induces premature investment. Meanwhile, when projects have a positive net present

value ex-ante, reputation induces delayed investment.
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1. Introduction

A firm’s success can hinge on its ability to identify and invest in profitable new projects
and technologies. This entails making investments that are at least in part irreversible. The
question of when to optimally time an irreversible investment is a well-studied problem
(Pindyck, 1991), but investment in R&D has two key features beyond irreversibility. First,
firms will often not know whether a project will be successful when they invest. This
means firms are not just deciding when to invest, but also whether to do so. Not
only are R&D failures pervasive (Van der Panne, Van Beers, and Kleinknecht, 2003), for
certain firms R&D investment may have a net negative effect on firm growth (Demirel
and Mazzucato, 2012). Second, in practice such investment decisions are often made by
CEOs and other managers who face career concerns. Indeed, the influence of CEO career
concerns, and more specifically reputational concerns, on corporate investment decisions
is well-documented empirically (Graham, Harvey, and Rajgopal (2005), Nadeem, Zaman,
Suleman, and Atawnah (2021)).

In this paper, I study a reputation-driven agent who decides if and when to invest an a
project of unknown quality. The agent learns dynamically whether the project is profitable
and wishes to maximize his reputation for learning. My objective is two-fold. First, I
aim to characterize the agent’s investment behavior at a qualitative level. This will entail
understanding the equilibrium relationship between an agent’s investment behavior and
reputation. Second, I ask how reputational motives can introduce inefficiencies in the
timing of investment.

To this end, I present a model of irreversible investment under reputational concerns. In
this model, an agent (e.g., CEO or manager) learns dynamically about a project’s quality
and decides if and when to make an irreversible investment in the project before some
exogenous deadline. The agent may be either good, receiving an informative signal about
project’s quality in every period, or bad, receiving no information. In the baseline model,
the agent’s only objective is to maximize his reputation for learning, which is the belief
held by the principal (e.g., the market) that he is of high ability. The agent’s reputation is
assessed by observing both his investment behavior and the project’s quality.

I begin by characterizing the agent’s equilibrium investment strategies. Under a weak
selection assumption, strategies take a simple form: the good agent plays a cutoff strategy
in every period, only investing if he is sufficiently confident that the project is profitable,
while the bad agent mixes between investing and abstaining in every period. Due to the
endogeneity of the agent’s payoff function, namely his reputation, the prior belief about the
project plays a crucial role in determining equilibrium strategies. In particular, the good
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agent’s cutoff equals the prior belief in the last period, and strictly exceeds the prior in all
previous periods. This implies that in some, if not all, periods, the agent is more willing
to invest in projects that are ex-ante unprofitable. That is, reputational concerns induce
the agent to invest in a way that is qualitatively inconsistent with profit maximization.
I then characterize equilibrium reputation. I show that reputation in equilibrium has
some intuitive properties: the agent is reputationally rewarded for making an accurate
investment decision (i.e., investing when the project is profitable, and not investing when
the project in unprofitable) and for speed conditional on investment being profitable.
However, the effect of speed on reputation is subtle: conditional on making an unprofitable
investment, the agent is penalized for speed. This conditional effect of speed on reputation
implies that, while accuracy benefits the agent no matter when they invest, it becomes less
consequential as time passes.

I then consider the distortionary effects this reputational motive can have on the timing
of investment. To answer this question, I augment the agent’s payoff function to be the
weighted sum of two components: an intrinsic component, which captures profit, and
a reputational component. I then compare the agent’s investment behavior when there
is no weight on the reputational component to that where there is a positive weight on
reputation. I find that a reputational motive can cause investment to speed up or slow
down, and which outcome arises depends on the nature of the investment problem. When
there is a high downside potential from investment, in the sense that investing in an
unprofitable project is very costly, reputational concerns cause the good agent to invest
more quickly. This is due to the fact that under a high downside potential, the bad agent
would never invest, even if the reputational reward from doing so is high. However,
a good agent will still invest with positive probability because he may receive a strong
enough signal that investment is profitable to make it worthwhile. Thus, investment must
be reputationally rewarded, inducing the good agent’s cutoffs to move leftward, and thus
causing investment to speed up. However, whenever investment has a positive net present
value under the prior, the opposite effect arises: reputational motives induce the agent to
delay investment. In this case, the bad agent has a strict incentive to invest immediately
in the absence of reputational concerns. So, when the reputational motive is small, the bad
agent will still invest immediately, implying a reputational reward from abstaining, thus
inducing the good agent to slow investment. Meanwhile, when the reputational motive is
high, the bad agent invests with positive probability, implying that the reputation value of
waiting is high enough that the good agent will want to slow investment as well. Because
the good agent has a strictly higher reputational continuation value than the bad agent,
this implies delayed investment. Together, these results suggest that reputational motives
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should induce hasty investment in precisely the sorts of projects where hasty investment
is particularly costly and slow or under investment in projects where early investment is
advantageous from an ex-ante perspective.

This paper contributes to the literature on real options models of investment, in which
a decision maker makes an irreversible investment in the face of uncertainty. In canonical
settings (Dixit and Pindyck (1994), McDonald and Siegel (1986)), this uncertainty pertains
to the realizations of future flow payoffs, but not to the underlying data generating
process. In contrast, I consider a decision maker who does not know this process, and
thus whose option value comes in part from the ability to learn. In fact, there is a subset
of this literature that incorporates dynamic learning (Bernanke (1983), Cukierman (1980),
Décamps, Mariotti, and Villeneuve (2005)). In Bernanke (1983) and Cukierman (1980), a
decision maker must choose one of several projects to pursue while learning about their
relative values. Meanwhile, Décamps et al. (2005) considers a single project whose flow
returns are dictated by a Brownian motion with unknown drift. As in my setting, they find
that due to learning, the optimal stopping rule can entail investing after a drop in expected
returns. I contribute to this literature primarily by studying an agent who is reputation-
driven. In particular, I show that even under a pure reputational motive, the option value
of investment arises endogenously as accuracy signals ability in equilibrium.

Thus, this paper contributes more precisely to the literature on investment timing
with private learning under agency issues. In Bobtcheff and Levy (2017) and Bouvard
(2014), an entrepreneur decides how long to experiment before investing in a project,
where investment timing signals project quality and thus affects the chances of obtaining
outside funding. Bouvard (2014) finds that investment is delayed under the equilibrium
contract compared to first best, while Bobtcheff and Levy (2017) find that in a contract-
free environment, agency issues cause hasty investment when learning is fast and delayed
investment otherwise. More similar to this paper, Thomas (2019) and Grenadier and
Malenko (2011) model an agent who derives utility from outsiders’ beliefs about project
quality. In Thomas (2019), the agent signals quality via her decision to abandon it, which
leads to over-experimentation. Grenadier and Malenko (2011) provides a general model
of signalling in a real options setting. They consider an application to investment in
venture capital, finding that concerns about public perceptions of project quality yield
hurried investment. In contrast to these papers, I model agent who plays a managerial
role, tasked not with originating projects but rather with appraising them. Thus, the agent
is not interested in signalling project quality, but instead in signalling ability to discern
project quality. It is because of this reputation for learning that the direction of timing
distortions in my setting depends on the nature of the investment problem, namely returns
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and ex-ante beliefs.

Finally, this paper connects to the literature on reputation for learning. Ottaviani
and Sørensen (2006) present a general model of reputational cheap talk in a static
setting. Meanwhile, Prendergast and Stole (1996) and Dasgupta and Prat (2008) present
dynamic models of investment and trading where agents are motivated by both profit and
reputation for learning. I contribute to this literature in two ways. First, I consider a real-
options setting, studying the effect of reputational concerns on the timing of investment.
Second, to my knowledge, this this the first paper to model a reputation for learning
without assuming myopia. Namely, I consider a forward-looking agent who maximizes
their long-term, rather than short-term, reputation. This forward-looking nature of the
agent is precisely why there is an option value of investment even when the agent is purely
reputation driven, and is also responsible for the equilibrium dynamics.

The rest of the rest of the paper proceeds as follows. In section 2, I present the baseline
model where the agent’s payoff is purely reputational. In sections 3 and 4, I characterize
equilibrium investment strategies and reputation, respectively. In section 5, I augment the
baseline model so that the agent places some weight on profit maximization, and analyze
the effects of reputational concerns on investment timing. Finally, section 6 concludes. All
formal proofs are relegated to the appendix.

2. Model

Fundamentals There is one agent and one principal. Time t ∈ {1, ..., T} is discrete, with
a finite horizon T < ∞. The state θ ∈ {0, 1} denotes whether investment in a project is
profitable (θ = 1) or unprofitable (θ = 0). The agent and principal are endowed with a
common interior prior p0 = Pr(θ = 1) ∈ (0, 1). The agent is of type i ∈ {G,B} (good or bad),
which is time-invariant and independent of θ. The agent knows his type, but the principal
holds a prior R0 ≡ Pr(i = G) ∈ (0, 1).

Learning The agent’s type denotes his ability to learn about θ. Specifically, at the
beginning of each t, an agent of type G observes some signal st ∈ (0,∞), distributed
according to conditional density f(·|θ). The signals st are labeled as their likelihood ratios,
i.e., st =

f(st|θ=1)
f(st|θ=0)

. The st are i.i.d. across t given θ. I further assume f(·|θ) is full support on
(0,∞). Meanwhile, an agent of type B has no ability to learn: he observes no signal in any
period.
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Acting The agent, regardless of his type, chooses if and when to act (invest). Specifically,
at each t (after observing st if i = G), the agent chooses at ∈ {∅, 1}. at = 1 denotes act
while at = ∅ denotes abstain. Acting is irreversible: if at = 1, then the agent is constrained
to choose as = 1 for all s > t.1 Thus, we can interpret acting as making an irreversible
investment in the project. Let τ ∈ {1, 2, ..., T, ∅} denote the time at which the agent acts
(i.e., the first t where at = 1), with τ = ∅ denoting that the agent never acts.

Payoffs The agent’s payoff, regardless of his type, is his reputation at the end of the game.
This is the principal’s belief that the agent is good, with knowledge of θ: Pr(i = G|τ, θ). In
assuming this belief is formed with knowledge of θ, I take the stance that the agent wishes
to maximize his reputation in the long run, namely after the principal observes the state.
This can be interpreted as assuming that the principal observes whether investment was
profitable ex-post, i.e., after the agent makes his investment decision, and takes this into
account when assessing the agent’s ability.

Equlibrium A strategy for the good agent AG
t : [0, 1] → [0, 1] specifies a probability of

acting (choosing at = 1) at time t for every belief p, given that the agent has not yet acted
(i.e., given as = ∅ for all s < t). 2Meanwhile, a strategy for the bad agent AB

t ∈ [0, 1] denotes
the probability of acting at t under belief p0. A reputation function R : {1, ..., T, ∅}×{0, 1} →
[0, 1] denotes the principal’s belief that i = G given that the agent reported at τ and the state
is θ. For any time-t signal history for the good agent, (s1, ..., st), let P (s1, ..., st) denote the
agent’s posterior after observing this signal history.

I seek a Markov perfect equilibrium of this game. This consists of strategies {At
i}Tt=1 for

each type, paired with a reputation function R and belief function P such that Ai maximizes
Eθ[R(τ, θ)] at all (t, p) and both P and R are consistent with Bayes rule given (AB, AG).

Selection Because the agent’s payoff depends only on his reputation and not intrinsically
on the state, there exist a multiplicity of equilibria one may deem unintuitive. This includes
both babbling equilibria and equilibria in which the good agent only acts when they are
sufficiently certain that θ = 0 (i.e., sufficiently sure that investment is unprofitable). To
rule out such equilibria, I impose selection criterion (SC). To state this criterion, I must first
define the agent’s value function. Let V i

t (p, a) denote the type-i agent’s time-t value from

1 Equivalently, one can assume that once the agent chooses act, the game ends.
2 In general, strategies could depend on the entire sequence of signals the good agent receives. However, it

is without loss to restrict attention to Markov strategies within the class of equilibria that satisfy the selection
criterion specified below.
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playing at = a ∈ {∅, 1}, given the agent has not yet acted (i.e., as = ∅ for all s < t). I now
define (SC).

Definition 1. An equilibrium satisifes (SC) if

V G
t (1, 1) > V G

t (∅, 1) and V G
t (∅, 0) > V G

t (1, 0). for all t ∈ {1, ..., T}.

(SC) imposes that an agent who knows θ = 1 strictly prefers acting, while an agent who
knows θ = 0 strictly prefers abstaining. This implies that at the two extreme beliefs that
the agent may hold, they act in line with standard notions of profit maximization (i.e.,
investing in profitable projects and not investing in unprofitable ones).3 Note that given
the above assumptions regarding the good agent’s signal, these two beliefs obtain with
probability zero. As I will show in what follows, this assumption is nonetheless sufficient
to rule out babbling equilibria and ensure the equilibrium strategies take a simple form.

3. Equilibrium characterization

I now characterize the equilibrium. I begin by showing that any equilibrium that
satisfies (SC) takes a qualitatively simple form. Then, as a stepping stone to a full
characterization, I present the static characterization (T = 1). Finally, I characterize
equilibrium strategies under the dynamic model (T > 1).

3.1. Equilibrium structure

Here, I show that in any equilibrium that satisfies (SC), the good agent plays a cutoff
strategy while the bad agent mixes between acting and abstaining in every period. To
establish this result, I rely on the convexity of the agent’s continuation value in the belief.
This property is stated as Lemma 1.

Lemma 1. V G
t (p, ∅) is convex in p for all t ∈ {1, ..., T}.

Lemma 1 implies that, all else equal, an agent who receives a more conclusive signal has
a greater continuation value in equilibrium. This result is intuitive: a more conclusive
signal at time t ensures that the agent can more optimally choose whether to act or abstain
in future periods for any path of future signal realizations, and thus yields a higher
continuation value. Formally, this lemma follows from Blackwell’s theorem and relies on
the assumption that, conditional on the state, the agent’s signals are independent over time.

3 While I have not yet formalized profit, I will do this in section 5.
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This ensures that a less Blackwell informative signal cannot yield a higher continuation
value purely because the less informative signal is correlated with more informative ones
in later periods.

I now qualitatively characterize the good and bad agent’s strategies. This is stated as
Proposition 1.

Proposition 1. In any equilibrium that satisfies (SC), at all t ∈ {1, ..., T}:

1. There exists p∗t ∈ (0, 1) such that AG
t (p) =

0 for all p < p∗t

1 for all p > p∗t

2. AB
t ∈ (0, 1).

Proposition 1 states that in every period, there exists an interior cutoff belief such that
the good agent acts (abstains) if his belief lies above (below) this cutoff. This results from
Lemma 1 and (SC), and can be illustrated by a geometric argument. Figure 1 plots, for
any given t, V G

t (p, 1) and V G
t (p, ∅), i.e., the good agent’s value from acting and abstaining,

respectively. Now, let us make two observations. First, V G
t (p, 1) = pR(t, 1) + (1− p)R(t, 0),

is linear in the belief p, while V G
t (p, ∅) is convex in p (Lemma 1). Second, (SC) ensures

that V G
t (p, 1) lies strictly above V G

t (p, ∅) when p = 1 and strictly below V G
t (p, ∅) when p = 0.

Together, these two facts imply that V G
t (p, 1) intersects V G

t (p, ∅) at a unique interior point p∗t ,
and thus that V G

t (p, 1) > (<) V G
t (p, ∅) to the right (left) of this point. So, a good agent who

is acting optimally must employ a cutoff strategy of the form specified in Proposition 1.

Proposition 1 also asserts that the bad agent mixes between acting and abstaining in
every period. To see why this is the case, suppose by contradiction the bad agent did not
mix. Let t denote the first period where the bad agent plays a pure strategy. First, suppose
the bad agent always abstains in period t (AB

t = 0). Because st is full support over the
likelihood ratios f(st|θ=1)

f(st|θ=0)
, there is a strictly positive probability that the good agent’s time-

t belief pt lies above p∗t , and thus that the good agent acts. So, acting in period t reveals
that the agent is good. The equilibrium reputation function must be consistent with this
in equilibrium and assign a perfect reputation to an agent that acts in t: R(t, θ) = 1 for
θ ∈ {0, 1}. Furthermore, this perfect reputation holds regardless of the realization of the
state. This is due to the fact that the good agent acts even when his belief p is interior, and
thus acts with positive probability even when θ = 0. Thus, V B

t (p0, 1) = 1. Meanwhile,
it must be that V B

t (p0, ∅) < 1: if this were not the case, the bad agent would always be
earning a perfect reputation, implying that the reputation function R is inconsistent with
the agent’s strategies. Since V B

t (p0, ∅) < V B
t (p0, 1), the bad agent can profitably deviate by

acting, instead of abstaining, in period t. Similarly, always acting (AB
t = 1) implies that
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Figure 1: The good agent’s value of acting (Vt(p, 1)) and abstaining (Vt(p, ∅)), as a function of his
belief p.

abstaining yields a perfect reputation, and thus abstaining becomes a profitable deviation.
We conclude that the bad agent must mix between acting and abstaining in every period.

3.2. Static characterization

With Proposition 1 in hand, I now present the equilibrium characterization for the
special case where T = 1. I first show that in the static equilibrium, the good agent
acts if and only if his posterior about the state exceeds his prior. I state this as Claim 1.
Throughout this section, I drop the time index from all functions and variables.

Claim 1. When T = 1, there exists a unique equilibrium, under this equilibrium p∗ = p0.

This results from the fact that, in a static setting, the good and bad agent enjoy the same
value from both acting and abstaining at any given belief: V G

t (p, a) = V B
t (p, a) for all beliefs

p and a ∈ {∅, 1}. Because there is a unique belief at which the good agent is indifferent
between acting and abstaining, and the bad agent must be indifferent at p0, it must be that
this is the point of indifference for the good agent as well.

Before proceeding, let us take stock of this result. In a static setting, the good agent acts if
and only if his posterior exceeds the prior. That is, an agent requires less confidence in the
profitability of acting to do so when acting is unlikely to be profitable ex-ante. This holds
despite the fact that the agent’s prior p0 provides no payoff-relevant information beyond
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that which is captured by his posterior p. Rather, the prior impacts the agent’s equilibrium
behavior via the reputation function: lowering the prior belief causes the equilibrium
reputation function to adjust in such a way that the expected value of acting becomes
relatively more profitable than that of abstaining for beliefs close to the prior, thus causing
the agent’s equilibrium cutoff to move leftward. More broadly, this result illustrates that
a reputation-concerned agent’s behavior has qualitative differences from that of an agent
whose payoff function is exogenous. While in the latter case, the agent’s prior will have no
impact on his behavior beyond what is captured by the posterior, the agent’s behavior is
dictated by the prior when reputational concerns are present.

It remains to characterize the strategy of the bad agent. I show that the bad agent’s
strategy is also sensitive to the prior. Namely, AB, is strictly increasing in the prior about
the state. In other words, all else equal, the bad agent is less likely to invest when it is ex-
ante unlikely that the project is profitable. This comparative static is formalized as Claim 2.

Claim 2. Suppose T = 1, and fix an R0 and f(·|θ) for θ ∈ {0, 1}. The bad agent’s equilibrium
probability of acting, AB, is strictly increasing in p0.

This result follows from the fact that the bad agent mixes, and is thus indifferent between
acting and abstaining, at his prior belief. Given any prior p0, this implies

p0[R(1, θ = 1)−R(∅, θ = 1)] = (1− p0)[R(∅, θ = 0)−R(1, θ = 0)].

It follows from the selection assumption that the agent enjoys a higher reputation from
acting than abstaining when θ = 1, and higher reputation from abstaining than acting
when θ = 0. Thus, holding fixed an equilibrium reputation function and increasing the
prior makes acting relatively more valuable for the bad agent because θ = 1 is more likely
to realize. So to preserves indifference, when p0 increases, the reputation function must
adjust in such a way that acting is rewarded less. This will be achieved with a higher AB: a
higher AB means the bad agent is relatively more likely to act, and thus that the equilibrium
reputation from acting is lower regardless of which state is realized.

3.3. Dynamic characterization

Having characterized the static equilibrium, I now consider the dynamic case (T > 1).
I begin by establishing existence of an equilibrium that satisfies selection, and consider
qualitative features of the good agent’s strategy. Namely, I show that in all periods before
T , the good agent’s cutoff lies strictly to the right of the prior. I formalize this result as
Proposition 2
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Proposition 2. There exists an equilibrium that satisfies (SC). Under this equilibrium, p∗T = p0

and p∗t > p0 for all t < T .

Equilibrium existence follows from the Kakutani fixed point theorem. Meanwhile, the
upper bound on p∗t follows from the fact that the good agent enjoys a higher continuation
value than the bad agent in equilibrium, and a strictly higher continuation value when
t > T . To fix ideas, let us start by considering the final period, T . As in the static setting,
the good and bad agent have identical value functions, and thus, the two types of agent
must be indifferent between acting and abstaining at the same belief. Because the bad agent
mixes at his belief, this shared point of indifference must be the prior, p0.

Now, let us consider an arbitrary period t < T . The two types of agent enjoy the same
value from acting in period t at any given belief, Vt(p, 1), but not identical continuation
values. Specifically, V G

t (p, ∅) > V B
t (p, ∅) for all p ∈ (0, 1). This is because, unlike the bad

agent, the good agent observes an informative signal about θ in t+1 (st+1). So, as long as the
agent’s optimal action depends on the state, i.e., R(τ, 0) ̸= R(τ, 1) for τ ∈ {t + 1, ..., T, ∅},
this signal will help the agent more optimally choose his stopping time and thus earn a
strictly higher continuation value. Indeed, this is the case: (SC) asserts that the agent must
enjoy a strictly higher value from acting (abstaining) when his belief is sufficiently close to
1 (0) and thus the optimal action does depend on the state. Because the good and bad agent
enjoy the same value from acting but the good agent enjoys a strictly higher continuation
value, the good agent requires a strictly higher belief to be indifferent between acting and
abstaining. And thus, the good agent’s point of indifference, p∗t , must strictly exceed that
of the bad agent, p0.

This result can also be illustrated by a fairly simple geometric argument. Figure 2 plots
the good agent’s value as a function of his beliefs, as in Figure 1 for some t < T . Figure 2
also plots the value from acting in the next period Vt+1(p, 1) = pR(t+1, 1)+(1−p)R(t+1, 0).
Now, let us note two facts. First, this value lies strictly below the good agent’s continuation
value at time t, V G

t (p, ∅). This is due to the fact that, if the good agent continues in t+ 1, he
can at least obtain the value from acting in t + 1, and a strictly higher value by optimizing
his strategy. Second, Vt(p, 1) and Vt+1(p, 1) must intersect at p0: this is because the bad agent
mixes in every period, which means that the agent must be indifferent between acting in
periods t and t+ 1. These two facts together imply that V G

t (p, ∅) and Vt(p, 1) must intersect
strictly to the right of p0, i.e., p∗t > p0.
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Figure 2: The good agent’s point of indifference, p∗t , lies strictly to right of the prior, p0.

4. Reputation: speed and accuracy

In this section, I study the equilibrium reputation function. Specifically, I consider which
qualities of a firm’s report are reputationally rewarded, and how these may change over
time. I find that the reputation function endogenously rewards accuracy in the agent’s
decision. The agent will also be rewarded for speed, but only conditional on making a
correct decision. Namely, the agent suffers a greater reputational loss by making a mistake
at earlier periods than later periods. I then argue this implies that accuracy becomes less
important for reputation as time passes.

Let us now state the first result, namely that the agent is reputationally rewarded for
accuracy. This is formalized as Proposition 3.

Proposition 3. In any equilibrium that satisfies (SC):

• R(t, θ = 1) > R(t, θ = 0) for all t ∈ {1, ..., T} and

• R(∅, θ = 0) > R(∅, θ = 1).

Proposition 3 states that, no matter when the agent acts, he is reputationally better off
if θ = 1 (i.e., investment is profitable) than if θ = 0 (i.e., investment is not profitable).
Likewise, conditional on never acting, the agent is better off reputationally if θ = 0 than
if θ = 1. That is, making an accurate decision, in the sense that the decision is the more
profitable one, is beneficial for the agent’s reputation.
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This is a direct result of the qualitative nature of the good and bad agent’s strategy
(Proposition 1). Namely, because the good agent plays a cutoff strategy, his decision to act
in any given period is correlated with the state: he is more likely to act if θ = 1 than if
θ = 0. However, this is not the case for the bad agent: because he receives no signal in
any period, his decision is necessarily uncorrelated with the state conditional on the prior
belief. The equilibrium reputation function must account for this difference in correlation
by assigning a higher reputation to an agent who makes the profit-maximizing decision.

This illustrates that even if an agent does not intrinsically benefit from making an
accurate decision, he may nonetheless find it profitable to do so in equlibrium in order
to signal his ability to learn. In fact, in a static setting, accuracy is the only tool an agent
has to demonstrate his ability. But, in a dynamic setting, the agent can also use the timing
of his action to signal his ability. In this regard, I show that in equlibrium, the reputation
function strictly rewards speed if acting is the accurate decision (in the sense that θ = 1),
but strictly penalizes speed if acting is not the accurate decision (i.e., if θ = 0). I formalize
this as Proposition 4.

Proposition 4. In any equilibrium that satisfies (SC):

• R(t, θ = 1) is strictly decreasing in t,

• R(t, θ = 0) is strictly increasing in t

for t ∈ {1, ..., T}.

Let us first consider why R(t, θ = 1) is strictly decreasing in t. Recall from (SC) that the
agent strictly prefers acting to abstaining at any t when p = 1. I.e., Vt(1, 1) > Vt(1, 0).
Further, because the good agent plays a cutoff strategy in every period, his value from
continuing under belief p = 1 is equal to the value from acting in t: Vt(1, ∅) = Vt+1(1, 1).
Thus, Vt(1, 1) > Vt+1(1, 1). Furthermore, because the value of acting at any t under belief
p = 1 is just the reputation from acting under θ = 1, it follows that R(t, 1) > R(t+ 1, 1).

That R(t, 0) is strictly increasing in t follows from B’s indifference condition. Namely, a
bad agent who has not acted before t must be indifferent between acting in t and waiting
until t+ 1 to do so:

Vt(p0, 1) = Vt+1 ⇔ p0R(t, 1) + (1− p0)R(t, 0) = p0R(t+ 1, 1) + (1− p0)R(t+ 1, 0).

Since p0 is interior, and acting at t yields a strictly higher reputation conditional on θ = 1,
this indifference can only be satisfied if acting at t yields a strictly lower reputation
conditional on θ = 0. I.e., R(t, 0) < R(t + 1, 0). More concisely: the fact that acting
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earlier benefits the agent’s reputation conditional on θ = 1 means that in order for the bad
type to be indifferent between acting and abstaining, acting earlier must harm the agent’s
reputation conditional on θ = 0. Otherwise, acting earlier would yield a higher reputation
regardless of the state, and thus the agent could profitably deviate by acting earlier, thus
violating his indifference condition.

Proposition 4 tells us that speed’s effect on reputation is subtle: while speed is
reputation-improving for accurate decisions, it is reputation-damaging for inaccurate ones.
This has implications for the importance of accuracy: Corollary 1 (below) states that the
effect of the true state on reputation is higher the earlier the agent acts. In other words,
while accuracy is beneficial to the agent’s reputation no matter when the agent acts (in the
sense that R(t, 1)−R(t, 0) is positive for all t), its importance shrinks over time.

Corollary 1. In equilibrium, R(t, 1)−R(t, 0) is strictly decreasing in t for all t ∈ {1, ..., T}.

While Proposition 4 establishes that speed has a positive effect on reputation when θ = 1

and a negative effect when θ = 0, it does not speak to the magnitudes of these effects. In
fact, the relative magnitudes of these effects are dictated by the prior p0: the higher the
prior, the greater the positive effect of speed when θ = 1 compared to the negative effect of
speed when θ = 0. This result is formalized as Corollary 2.

Corollary 2. In equilibrium, for all t ∈ {1, ..., T − 1},

R(t, 1)−R(t+ 1, 1)

R(t+ 1, 0)−R(t, 0)
=

p0
1− p0

.

There is a simple explanation behind this result: if the prior increasese, θ = 1 is more likely
to realize ex-ante. So to preserve the bad agent’s indifference between acting in t and t+ 1,
the benefit of speed when θ = 1, R(t, 1) = R(t + 1, 1), must decrease compared to the
cost of speed when θ = 0, R(t + 1, 0) − R(t, 0), to compensate for the fact that speed is
more likely to be beneficial. Economically, this result illustrates that if investment is likely
to be profitable ex-ante, then speed can do little to demonstrate that the agent is good,
but can do significant reputational harm in the event of an error (i.e., investment in an
unprofitable project). However, if investment is likely unprofitable ex-ante, then speed can
be instrumental in positively showcasing the agent’s ability, but can do little harm in the
event of an error.
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5. Timing distortions

In this section, I consider the distortionary effects reputational concerns can have on
investment timing. To this end, I introduce a dual-objective payoff function where the
agent receives an intrinsic payoff from profit in addition to a reputational payoff. I
show that compared to a benchmark where the agent receives no reputational payoff,
reputational concerns can cause investment to either speed up or slow down. In
particular, whenever the downside potential is sufficiently high, in the sense that loss from
investing in an unprofitable project is large, reputational concerns induce inefficiently early
investment. However, when investment is ex-ante profitable, reputational concerns have
the opposite effect: they induce delays in investment.

5.1. Dual-objective payoff

Let us begin by introducing the agent’s augmented payoff function, Ũ :

Ũ(τ, θ) = (1−X)βτKθI(τ ̸= ∅) +XR(τ, θ),

where the Kθ, X , and β are parameters such that

K1 > 0, K2 < 0, X ∈ [0, 1], β ∈ (0, 1).

Under Ũ , the agent’s payoff is a convex combination of two components. The first,
βτKθI(τ ̸= ∅), is the profit from investment. Namely, investment is profitable if and only if
θ = 1 (K1 > 0 > K0). The payoff from never investing is normalized to zero. In addition,
the profit from investing is geometrically discounted: delaying investment results in lower
profits when the project is good, but also lower losses when the project is bad. The second
component of the payoff function is the agent’s reputational payoff, as specified in section
2. Thus, this payoff fucntion specifies a dual objective: the agent cares about maximizing
profit, but also maximizing reputation, where X ∈ [0, 1] specifies the weight the agent
places on his reputational payoff.4 The payoff function specified in section 2 is a special case
of the payoff in which no weight is placed on profit maximization, where X = 1. Except
for this modified payoff function, I maintain all the assumptions of section 2, including the
selection assumptions.

4 Similar dual-objective payoff functions appear in other papers that study the effect of reputational
concerns on investment, including Prendergast and Stole (1996).
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5.2. Benchmark: optimal rule without reputation

As a benchmark, I begin by characterizing the agent’s optimal stopping rule when he
exclusively cares about profit maximization (i.e., when X = 0). This is formalized as
Proposition 5.

Proposition 5. When X = 0, the optimal stopping rule is the following:

• The bad agent acts in any period if and only if p0 < p̂ ≡ −K0

K1−K0
for all t:

AB
t =

1 if p > p̂

0 if p < p̂.

• The good agent plays a cutoff rule in every period:

AG
t (p) =

1 if p > p̂t

0 if p < p̂t,
(1)

where the p̂t ∈ (0, 1) are unique and strictly decreasing in t.

Proposition 5 states that in the absence of reputational concerns, the bad agent acts
immediately if p0 is sufficiently high, and otherwise never acts. This is due to the fact that
the bad agent is unable to learn. Because there is discounting in the payoff from acting, if
his prior is such that acting is optimal, he will do so immediately and otherwise will abstain
indefinitely. Meanwhile, the good agent employs a cutoff rule in every period, where the
cutoffs are strictly decreasing with time. I.e., the agent becomes more willing to act as time
passes. The decreasing nature of the good agent’s cutoffs is due to the non-stationarity of
his problem: the closer the good agent gets to the deadline T , the less time he has left to
learn, and thus the lower his continuation value is at any given belief. Hence, the agent
will find it optimal to act for a wider range of beliefs as time passes.

5.3. Impact of reputation on stopping time

Now, I consider how reputational concerns can cause deviations from the optimal
rule established above. Namely, I show that a positive weight on reputation in the
dual-objective payoff function can cause both accelerated and delayed investment. I
begin by showing that whenever investment in the bad project is sufficiently costly,
reputational concerns will cause the good agent to speed up investment. I formalize this as
Proposition 6. But first, I introduce some notation. Let (p̂t)Tt=1 denote the optimal cutoffs in
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the no-reputation case (X = 0), and let (p∗t )Tt=1 denote the equilibrium strategy of the agent
when X > 0.

Proposition 6. Fixing all other parameters and assuming X > 0, there exists a K such that if
K0 < K, p̂t > p∗t in any equilibrium.

Proposition 6 states that for any X , if K0 is sufficiently negative, the good agent’s cutoff
shifts leftward from the no-reputation benchmark in every period. This implies that the
good agent is not only more likely to act, he is more likely to act in earlier periods.
Formally, it is an immediate corollary of Proposition 6 that the distribution of stopping
times without reputational concerns first-order stochastically dominates any distribution
of stopping times with reputational concerns.

Let us now consider the reasoning behind this proposition. To this end, it is helpful to
decompose the agent’s equilibrium value function into two components:

V i
t (p, a) = (1−X)V NR,i

t (p, a) +XV R,i
t (p, a),

where

V NR,i
t (p, a) ≡ Eτ,θ[β

τKθI(τ ̸= ∅)|(p∗s)Ts=t+1, at = a]

V R,i
t (p, a) ≡ Eτ,θ[R(τ, θ)|(p∗s)Ts=t+1, at = a].

V NR,i
t denotes the non-reputational value (i.e., value from profit), while V R,i

t denotes the
reputational value. Note that if K0 is sufficiently negative, the bad agent never acts in
equilibrium, even if there is a reputational benefit from doing so: the expected loss in
profit from not acting at any t, V NR,B

t (p0, 1) − V NR,B
t (p0, ∅) is so large that any potential

reputational gain from acting, V R,B
t (p0, 1)−V R,B

t (p0, ∅) cannot possibly compensate the bad
agent enough to make acting optimal. Meanwhile, the good agent plays an interior cutoff
strategy in every period regardless of K0, and thus acts with positive probability in every
period. Thus, any equilibrium reputation function yields a perfect reputation from acting,
and less-than-perfect reputation from abstaining, regardless of the state. This implies the
good agent’s reputational value from acting exceeds that from abstaining for any belief:

V R,G
t (p, 1) > V R,G

t (p, ∅) for all p ∈ [0, 1].

Hence, the good agent strictly prefers acting at the non-reputational optimal cutoff p̂t:
while the non-reputational value yields the good agent indifferent at the this belief, the
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reputational value yields acting strictly optimal. So, the good agent’s cutoff shifts leftward
in light of this reputational payoff.

Let us now economically interpret this result. Proposition 6 suggests that for projects
that have a sizeable downside potential – in the sense that there is a substaintial profit loss
if it turns out to be a bad investment – reputational concerns induce premature investment.
Intuitively, this downside potential ensures that investment serves as a highly costly –
and thus credible – signal that the agent is good. Indeed, the signal is so costly that
the bad agent will never invest: only the good agent can be confident enough that the
project is good enough to make investment worthwhile. This induces good investors to act
prematurely, as investment can bolster their reputations, even if it turns out that the project
was unprofitable. That is, reputation not only makes investment worthwhile, it also hedges
the profit risk of investment, providing the agent with a further incentive to invest when it
is otherwise not optimal.

A relatively high downside potential was essential to establishing hurried investment
in Proposition 6. Intuitively, this would suggest that if the opposite were true – namely
that there is a relatively high upside potential – investment should be delayed as a result
of reputation. Indeed, one can show that if the ex-ante expected profit from investment is
positive – due to a low downside potential (K0), high upside potential (K1), or high prior
(p0) – reputation causes delays in investment. This is established as Proposition 7.

Proposition 7. Suppose that p0 > p̂ and that X > 0. In any equilibrium, p∗t ≥ p̂t, where the
inequality holds strictly when t = 1.

Formally, Proposition 7 states that whenever the prior belief is such that investment is
profit maximizing, reputational concerns cause the good agent’s cutoffs to move rightward.
This implies that the good agent slows down his action: it is an immediate corollary of
Proposition 7 that the distribution of stopping times when X > 0 first-order stochastically
dominates that without. Like in Proposition 6, the agent in this case signals their ability by
acting in a way that is inconsistent with profit maximization, and thus costly profit-wise,
for the bad agent. However, when investment is profitable ex-ante, this entails under-
investment rather than over-investment.

To better understand this proposition, it is helpful to first consider the static case (T = 1).
If p0 > p̂, the bad agent has a strict incentive to act in the absence of reputational concerns.
I.e., V NR,B

t (p0, 1) > V NR,B
t (p0, ∅). This means that if reputational concerns are small, the bad

agent will always act in equilibrium. So, the equilibrium reputation function must reward
abstaining and thus the reputational value from abstaining must exceed that from acting
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at any belief:
V R,G
t (p, ∅) < V R,G

t (p, ∅) for all p.

Thus, the good agent must strictly prefer acting at the non-reputational optimal cutoff p̂,
implying that the equilibrium cutoff p lies to the right of p̂. Meanwhile, if reputational
concerns are sufficiently large, the bad agent must mix between acting and abstaining in
equilibrium, implying tha the good agent’s equilibrium cutoff is p0, again lying to the right
of p̂.

The above reasoning can be extended to a dynamic setting, except for two differences.
First, if the bad agent is indifferent at some t < T , the good agent’s point of indifference will
not coincide with the prior, but rather lie to the right. Second, it is possible that reputational
concerns are so small that the bad agent doesn’t mix and rather acts with probability 1
at some t < T . In such cases, the good agent who continues past t will enjoy a perfect
reputation regardless of what actions he takes thereafter. Thus, the good agent will employ
the profit-maximizing cutoffs p̂s for all s > t. It is for this reason that Proposition 7 includes
the caveat that p∗t may not strictly exceed p̂t in periods beyond the first.

Let us now take stock of these results. Together, Proposition 6 and Proposition 7
establish that reputational concerns can induce both hurried and delayed investment.
Bobtcheff and Levy (2017) similarly find that both types of distortions are possible in
their environment. However, while they find that the type of distortion is dictated by
the speed of learning, I find that under reputational concerns, it is rather the fundamentals
of the investment problem that determine the nature of timing distortions. This is because
distortions arise in such a way that induce a reputation-profit tradeoff for the bad agent:
reputation-improving distortions in the timing of investment must entail an expected loss
in profits in equilibrium. Namely, while signalling ability via investment timing is not
intrinsically costly for profit, it is necessarily costly in equilibrium.

6. Conclusion
I study a reputation-driven agent who learns dynamically about the profitability of a

project and decides when to make an irreversible investment. Unlike models without
reputational concerns, the equilibrium strategy of the agent is determined by the prior
belief about the profitability of investment: in at least some periods, the agent is more
likely to invest in projects that are less likely to be profitable ex-ante. In equilibrium, the
agent is reputationally rewarded for both accuracy and speed, but accuracy becomes less
consequential for reputation with time. Furthermore, speed is beneficial only conditional
on the agent making the correct investment decision and is otherwise harmful, with
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the relative size of this harm increasing in the prior belief. I then suppose the agent
is motivated by both profit and reputation to understand the effect of reputation on
investment timing. I find that reputation can cause both hurried and delayed investment,
and that which sort of distortion arises is determined by the nature of the investment
problem: hurried investment obtains for projects with a relatively high downside potential,
whereas delayed investment arises for projects with a positive net present value ex-ante.

In the model I present, I make two stark assumptions. First, the agent exclusively
cares about their reputation at the end of the game, and places no weight on their
interim reputation prior to the deadline. Second, I assume that the true state is revealed
regardless of whether the agent decides to invest in the project. Both these assumptions
are consequential for the qualitative nature of the equilibria, and one can easily imagine
economic environments in which they do not hold. Characterizing the equilibrium while
relaxing these assumptions is the subject of ongoing work.

References

Ben S Bernanke. Irreversibility, uncertainty, and cyclical investment. The Quarterly Journal
of Economics, 98(1):85–106, 1983.
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7. Proofs

Before proceeding, let us define two different conditional distributions. First, let
Gt(·|pt−1) denote the good agent’s distribution of time-t beliefs given that their time t − 1

belief was pt−1. It follows from the definition of F that on-path in any equilibrium:

Gt(pt|pt−1) = F ((
1− pt−1

pt−1

)(
pt

1− pt
)).

Second, let Ht(·|pt−1) denote the distribution of time-t beliefs given τ ̸∈ {1, ..., t} and that
their time-t − 1 belief was pt−1. Finally, let Ht(·) denote the good agent’s distribution of
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time-t beliefs given τ ̸∈ {1, ..., t}, conditional on p0 (namely, not conditional on the time-
t− 1 belief). It is computed recursively as follows:

H1(p1) = H1(p1|p0)

Ht(pt) =

∫ 1

0

Ht(pt|pt−1)dHt−1(pt−1).

Proof of Lemma 1. Proof by induction.

Base case: t = T . Note that

V G
T (p, ∅) = pR(∅, 1) + (1− p)R(∅, 0),

which is linear in p and thus convex in p.

Induction step: Fix any t < T , and assume by induction that Vt+1(p, ∅) is convex in p. We
want to show that Vt(p, ∅) is convex in p. This is equivalent to showing that for all p, p′ ∈
[0, 1] and λ ∈ [0, 1],

λVt(p, ∅) + (1− λ)Vt(p
′, ∅) ≥ Vt(p),

where p ≡ λp + (1 − λ)p′. To this end, fix a p, p′, and λ ∈ [0, 1] and define the following
binary signal b ∈ {0, 1} on θ:

Pr(b = 1|θ = 1) =
pλ

p
, Pr(b = 1|θ = 0) =

(1− p)λ

1− p
,

Now define the following two signals σ and σ̃:

σ : {0, 1} → ∆([0,∞]), where σ(θ) = F (·|θ)

σ̃ : {0, 1} → ∆([0,∞]× {0, 1}), where σ̃(θ) = F̃ (·, ·|θ),

and for b∗ ∈ {0, 1}, F̃ (s, b∗) = F (s|θ)Pr(b ≤ b∗|θ). Note that σ̃ Blackwell dominates σ. Now
assuming that the agent has prior belief p let Gt(·|p) and G̃t(·|p) denote the distribution
of posteriors after observing σ and σ̃, respectively. It follows from the Law of Iterated
Expectations that:

G̃t(q|p) = Pr(b = 1|p)Gt(q|p) + Pr(b = 0|p)Gt(q|p′) = λGt(q|p) + (1− λ)Gt(q|p′). (2)

Now, note that since Vt+1(p, ∅) is convex in p and Vt+1(p, 1) = pR(t+1, 1)+(1−p)R(t+1, 0)

22



is linear in p, Vt+1(p) = max{Vt+1(p, ∅), Vt+1(p, 1)} is also convex in p. Thus

Vt(∅, p) =
∫ 1

0

Vt+1(q)dGt(q|p)

≤
∫ 1

0

Vt+1(q)dG̃t(q|p)

= λ

∫ 1

0

Vt+1(q)dGt(q|p) + (1− λ)

∫ 1

0

Vt+1(q)dGt(q|p′)

= λVt(p, ∅) + (1− λ)Vt(p
′, ∅),

where the inequality follows from Blackwell’s (1953) theorem, and the second equality
follows from (2). □

Before proceeding, let us define the agent’s interim reputation as follows:

Definition 2 (Interim reputation). The agent’s time t interim reputation is the principal’s
belief i = G given that they did not report at or before t:

Rt ≡ Pr(i = G|τ ̸∈ {1, ..., t}).

Lemma 2. In any equilibrium, if for all s ≤ t there exists a p∗s ∈ (0, 1) such that

AG
t (p) =

0 for all p < p∗t

1 for all p > p∗t

and AB
t ∈ (0, 1), then Rt ∈ (0, 1).

Proof. Fix a t, and assume AG and AB satisfy the assumptions specified in Lemma 2. We
want to show that Rt ∈ (0, 1). Proof by induction.

Base case: s = 0. Rs = R0 ∈ (0, 1) by assumption.

Induction step: For any s ∈ {1, ..., t}, assume Rs−1 ∈ (0, 1). We want to show that Rs ∈
(0, 1). It follows from Bayes Rule that

Rs =
1

1 + Pr(τ ̸=s|τ ̸∈{1,...,st−1},i=B)
Pr(τ ̸=s|τ ̸∈{1,...,st−1},i=G)

. (3)

To show that Rs ∈ (0, 1), it suffices to show that both the conditional probabilities in (3) lie
in (0, 1). In equilibrium,

Pr(τ ̸= s|τ ̸∈ {1, ..., st−1}, i = B) = AB
t ∈ (0, 1),
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where AB
t ∈ (0, 1) holds by assumption. It remains to show that Pr(τ ̸= s|τ ̸∈

{1, ..., st−1}, i = G) ∈ (0, 1). To this end, because the good agent is playing a cutoff strategy,

Ht(pt|pt−1) =

0 for all p < p∗t
Gt(pt|pt−1)−Gt(pt∗|pt−1)

Gt(p∗t |pt−1)
for all p > p∗t

We can write

Pr(τ ̸= s|τ ̸∈ {1, ..., s− 1}, i = G) =

∫ 1

0

Gt(p
∗
t |pt−1)dHt−1(pt−1). (4)

Now, we make two observations:

1. Gt(p
∗
t |pt−1) ∈ (0, 1) for all pt−1 ∈ (0, 1).

2. Ht−1(pt−1) is continuous in pt−1, following from the continuity of Gt−1(pt−1|pt−2) in
pt−1.

It follows from the above two observations, combined with (4) that Pr(τ ̸= s|τ ̸∈ {1, ..., s−
1}, i = G) ∈ (0, 1).

□

Proof of Proposition 1. Fix any t. By (SC), Vt(1, ∅) > Vt(1, 1) and Vt(0, ∅) > Vt(0, 1). Because
Vt(p, ∅) is convex in p (Lemma 1) and Vt(1, p) = pR(t, 1) + (1− p)R(t, 0) is linear in p, there
exists a unique p∗t ∈ (0, 1) such that

Vt(p, 1) > Vt(p, ∅) for all p > p∗t

Vt(p, 1) < Vt(p, ∅) for all p < p∗t .

Thus, in equilibrium, the good agent’s strategy must be such that

AG
t (p) =

0 for all p < p∗t

1 for all p > p∗t .

Now, let us consider AB
t . Proof by induction. Assume by induction that AB

s ∈ (0, 1) for
all s < t (this holds vacuously when t = 1). Assume by contradiction AB

t ∈ {0, 1}. First,
consider the case where AB

t = 0. It follows from Bayes Rule that

R(t, 0) =
1

1 + (1−Rt−1

Rt−1
)(Pr(τ=t,θ=0|τ ̸∈{1,...,t−1},i=B)

Pr(τ=t,θ=0|τ ̸∈{1,...,t−1},i=G)
)

(5)

24



First, note that
Pr(τ = t, θ = 0|τ ̸∈ {1, ..., t− 1}, i = B) = AB

t = 0.

Meanwhile,

Pr(τ = t, θ = 0|τ ̸∈ {1, ..., t− 1}, i = G) =

∫ 1

0

∫ 1

p∗t

(1− pt)dGt(pt|pt−1)dHt−1(pt−1) > 0,

where the strict inequality follows from the fact that p∗t ∈ (0, 1). By Lemma 2, it follows
from (18) that R(t, 0) = 1. One can analogously show that R(t, 1) = 1. Thus,

Vt(p0, 1) = p0R(t, 1) + (1− p0)R(t, 0) = 1 (6)

Now, by the Law of Iterated Expectations

Rt−1 = Pr(i = G, τ = t|τ ̸∈ {1, ..., t− 1})(1)

+ Pr(i = G, τ ̸= t|τ ̸∈ {1, ..., t− 1})
∫ 1

0

V G
t (∅, p)dHt(pt)

+ Pr(i = B|τ ̸∈ {1, ..., t− 1})V B
t (p0, ∅).

(7)

Because R is consistent with the Ai in equilibrium, V B
t (p0, ∅) ≥

∫ 1

0
V G
t (p, ∅)dHt(pt). Because

Rt−1 < 1 (Lemma 2), it follows from (7) that V B
t (∅, p0) < 1. Combining this with (6) implies

V B
t (p0, ∅) < Vt(p0, 1). Thus, AB

t (p0) = 1. Contradiction. □

Proof of Claim 1. First, we want to show that in any equilibrium, p∗ = p0. Fix any
equilibrium. By Proposition 1, AB

t ∈ (0, 1). Thus,

V (p0, 1) = V B(p0, ∅) = V G(p0, ∅), (8)

where the second equality follows from the fact that T = 1. Note further that (1) both
V (p, 1) and V (p, ∅) are linear in p and (2) by (SC), V (0, 1) < V G(0, ∅) and V (1, 1) > V G(1, ∅).
These two facts, combined with (8), imply that V (p, 1) < V (p, ∅) for all p < p0 and V (p, 1) >

V (p, ∅) for all p > p0. Thus p∗ = p0.

Next, we want to show that there exists a unique b ∈ (0, 1) such that (AB = b, p∗ = p0) is
an equilibrium strategy. First, define

W (a, b) ≡ p0R
b(a, 1) + (1− p0)R

b(a, 0)
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where
Rb(a, θ) ≡ 1

1 + 1−R0

R0

Pr(a,θ|i=B,AB=b)
Pr(a,θ|i=G,p∗=p0)

is the unique reputation function that is consistent with the strategy profile (AB = b, p∗ =

p0). I claim that there exists a unique b ∈ (0, 1) such that W (1, b) = W (∅, b). First, note that

Pr(a, θ|i = G, p∗ = p0) ∈ (0, 1) for all a, θ. (9)

Now, I make two observations about W :

1. W (1, b = 0)−W (∅, b = 0) > 0 and W (1, b = 1)−W (∅, b = 1) < 0.
To show this, note that Pr(1, θ|i = B,AB = 0) = 0 for all θ. Thus, by (9), Rb=0(1, θ) = 1

and Rb=0(∅, θ) < 1 for all θ. Thus, W (1, b = 0)−W (∅, b = 0) > 0. One can analogously
show that W (1, b = 1)−W (∅, b = 1) < 0.

2. W (1, b)−W (∅, b) is continuous and strictly decreasing in b.
To show this, note that

Rb(1, 1) =
1

1 + 1−R0

R0

p0b
1−F (1|θ=1)

,

which is continuous and strictly decreasing in b. One can similarly show that Rb(1, θ)

(Rb(∅, θ)) is continuous and strictly decreasing (increasing) in b for all θ. The statement
then follows from the definition of W .

1. and 2. above imply that there exists a unique b such that W (1, b) = W (∅, b).

Finally, I claim that (AB = b, p∗ = p0) is the unique equilibrium strategy profile. Because
W (1, b) = W (∅, b), V (p0, 1) = V (p0, ∅) and thus AB = b is a best response. That p∗ = p0 is
a best response follows from the fact that V (p, 1) − V (p, ∅) is strictly increasing in p. Thus,
we have shown (AB = b, p∗ = p0) is an equilibrium. It remains to show uniqueness. This
follows from the fact that b is the unique value such that W (1, b) = W (∅, b), and thus the
unique value such that V (p0, 1) = V (p0, ∅) under the R that is consistent with this AB. □

Proof of Claim 2. Fix an R0 and f(·|θ) for θ ∈ {0, 1}. Let b1 (b2) and R1 (R2) denote the
equilibrium bad agent strategy and reputation function, respectively, under prior p10 (p20),
where p10 < p20. We want to show that b1 < b2. Suppose by contradiction that b1 ≥ b2. It
follows from Bayes Rule and the good agent’s strategy p∗ = p0 that for k ∈ {1, 2}

Rk(1, 1) =
1

1 + 1−R0

R0

bk

1−F (1|θ=1)

,

and thus R1(1, 1) ≤ R2(1, 1). One can analogously show that R1(1, 0) ≤ R2(1, 0), R1(∅, 1) ≥
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R2(∅, 1), and R1(∅, 0) ≥ R2(∅, 0). Further note that by the selection assumption,

V k(1, 1) > V k(1, ∅) ⇔ Rk(1, 1) > Rk(∅, 1)

V k(0, 1) > V k(0, ∅) ⇔ Rk(1, 0) < Rk(∅, 0)
(10)

where V k is the agents’ equilibrium value function under pk0.

It follows from Proposition 1 that the bad agent must be indifferent between a = 1 and
a = ∅ at p0. This implies

pk0
1− pk0

=
Rk(∅, 0)−Rk(1, 0)

Rk(1, 1)−Rk(∅, 1)
for k ∈ {1, 2}. (11)

But it follows from the above inequalities and (10) that if (11) holds for k = 1, then it
fails for k = 2, namely

p20
1− p20

>
R2(∅, 0)−R2(1, 0)

R2(1, 1)−R2(∅, 1)
.

Contradiction. □

We now seek to establish existence of an equilibrium. To this end, let us define the
correspondence Φ as follows. First, let us define Rx. Let Rx denote the reputation function
that is consistent with the strategy profile x = (p∗1, ..., p

∗
T , A

B
1 , ..., A

B
T ) ∈ [p0, 1]

T × [0, 1]T .
Formally, whenever Bayes Rule applies, Rx(t, θ) is given by

Rx(t, θ) =
1

1 + (1−Rt−1

Rt−1
)(Pr(τ=t,θ|τ ̸∈{1,...,t−1},i=B)

Pr(τ=t,θ|τ ̸∈{1,...,t−1},i=G)
)
, (12)

where the probabilities, including Rt−1, are those that obtain given the strategy profile x.
The only case in which Bayes Rule does not apply is when p∗t = 1 and AB

t = 0 for some t,
and in this case we impose Rx(t, θ) = 1 for all θ.

Now, let V G,x
s−1 (p, (p̂t)

T
t=s) denote G’s value, under belief p at time s−1, from playing cutoff

strategies (p̂t)
T
t=s in periods s, ..., T , respectively, given reputation function Rx and that the

agent did not act in s− 1. Now, define the ΦG
s (x) recursively as follows:

ΦG
s (x) ≡ min

ps∈[p0,1]
argmax
ps∈[p0,1]

[V G,x
s−1 (p0, (pt)

T
t=s)],

where pt ≡ ΦG
t (x) for all t > s. Let ΦG(x) ≡ (ΦG

t (x))
T
t=1. Note that the value could have

been taken at any interior belief (not necessarily p0) and the analysis that follows would
remain unchanged.
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Next, let V B,x
s ((bt)

T
t=s) denote B’s value from playing strategy AB

t = bt for all t ≥ s,
given reputation function Rx and that the agent did not act before s. Now, define the ΦB

s (x)

recursively as follows:
ΦB

s (x) ≡ argmax
bs∈[0,1]

V B,x
s ((bt)

T
t=s),

where bt ∈ ΦB
t (x) for all t > s. Define ΦB(x) ≡ ΦB

1 (x) × ... × ΦB
T (x), and finally Φ(x) ≡

ΦG(x)× ΦB(x).

I wish to show that any fixed point of Φ is an equilibrium that satisfies (SC). To this end,
I begin by establishing two lemmas.

Lemma 3. In any fixed point of Φ, AB
t ∈ (0, 1) and p∗t < 1 for all t.

Proof. Fix a t ∈ {1, ..., T}. Suppose by induction that bs ∈ (0, 1) and p∗s < 1 for all s < t.
This holds vacuously for t = 1. Let Rx

t−1 denote the interim reputation given reputation
function Rx, which is given by (3). The inductive assumption implies that Rx

t−1 ∈ (0, 1).

First, I show that AB
t ̸= 0. Suppose by contradiction that AB

t = 0. If p∗t < 1, it follows
from (12) that Rx(t, θ) = 1 for all θ. If p∗t = 1, it follows by definition that Rx(t, θ) = 1 for all
θ. Thus, V B,x

t ((bs)
T
s=t) = 1 for bt = 1. Meanwhile, because Rx

t−1 ∈ (0, 1) and p∗t ≥ p0, it must
be that V B,x

t ((bs)
T
s=t) < 1 for bt = AB

t . Since AB
t = 0, AB

t ̸∈ ΦB
t (x), and hence x is not a fixed

point. Contradiction.

Next, I show AB
t ̸= 1. Suppose by contradiction that AB

t = 1. It follows from (12) that
Rx(t, θ) < 1 and Rx(s, θ) = 1 for all θ and s > t. Thus,

V B,x
t ((bs)

T
s=t) = 1 for bt = 0, and

V B,x
t ((bs)

T
s=t) < 1 for bt = AB

t ,

where the second statement follows from Rx
t−1 ∈ (0, 1), and the Martingale property of the

belief about i. Since AB
t = 1, AB

t ̸∈ ΦB
t (x). Contradiction.

Finally, I show that p∗t < 1. Suppose by contradiction that p∗t = 1. I showed above that
AB

t ∈ (0, 1). So, by (12), R(t, θ) = 0 for all θ. By the Martingale property of the belief on i,
R(s, θ) > 0 for some s ∈ {t + 1, ..., T, ∅}. Thus, V B,x

t ((bs)
T
s=t) < V B,x

t ((b̃s)
T
s=t) for bs = AB

s for
all s ≥ t and b̃t = 0, b̃s = AB

s for all s > t. Thus, AB
t ̸∈ ΦB

t (x). Contradiction. □

Lemma 4. For any fixed point x of Φ:

1. Rx(t, 1) > Rx(t+ 1, 1) for all t < T ,

2. Rx(t, 0) < Rx(∅, 0) and Rx(t, 1) > Rx(∅, 0) for all t ∈ {1, ..., T}.
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Proof. Let us begin by showing 2. By the same reasoning as that which is presented in
Proposition 3,

Rx(t, θ = 1) > Rx(t, θ = 0) for all t ∈ {1, ..., T} and Rx(∅, θ = 1) < Rx(∅, θ = 0). (13)

Because by Lemma 3, AB
t ∈ (0, 1) for all t,

p0R
x(t, 1) + (1− p0)R

x(t, 0) = p0R
x(∅, 1) + (1− p0)R

x(∅, 0).

This, together with (13), implies 2.

Now, let us show 1. Suppose by contradiction that there exists t such that

Rx(t, 1) ≤ Rx(t+ 1, 1).

This, combined with 2, implies that

V G,x
t−1 (p0, (ps)

T
s=t) > V G,x

t−1 (p0, (p
∗
s)

T
s=t),

where pt = 1, ps = p∗s for all s > t. Thus, p∗t ̸= ΦG
t (x). Contradiction. □

We are now ready to show that any fixed point of Φ is an equilibrium. This is formalized
as Lemma 5.

Lemma 5. Any fixed point x of Φ, together with Rx, is an equilibrium that satisfies (SC).

Proof. Fix any fixed point x of Φ. First, I show that (x,Rx) satisfies (SC). Let V denote
the value function given reputation function Rx and strategy profile x. It follows from
Lemma 3 and Lemma 4 that for all t:

Rx(t, 1) = V G
t (1, p = 1) = Rx(t, 1) > Rx(s, 1) = V G

t (∅, p = 1) for s ∈ {∅, t+ 1}, and

V G
t (∅, p = 0) = Rx(∅, 0) > Rx(t, 0) = V G

t (1, p = 0).

Thus, (SC) is satisfied.

It remains to show that (x,Rx) is an equilibrium. It follows from the definition of Rx

that Rx is consistent with Bayes’ Rule, given x. Next, I will show that given Rx, (p∗t )Tt=1 and
(AB

t )
T
t=1 are optimal for G and B, respectively. Since x is a fixed point, AB

t ∈ ΦB
t (x) for all

x and the optimality of AB
t follows from the definition of ΦB

t . Next, consider G. By the
same reasoning as presented in the proof of Proposition 2, given that (SC) is satisfied for
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all t, there exists a p̂t ∈ (0, 1) such that the unique optimal strategy is the cutoff strategy p̂t

(given Rx). It remains to show that for all t, p̂t = p∗t . Fix a t and suppose by induction that
p̂s = p∗s for all s > t. By the definition of ΦG

t , it follows that ΦG
t (x) = p̂t.

□

Proof of Proposition 2: existence. I now establish existence of a fixed point to Φ. It follows
from Lemma 5 that this is an equilibrium. To this end, for each ε > 0, I define a constrained
correspondence Φε and show that for some ε, there exists a fixed point of Φε which is also
a fixed point of Φ. I proceed in a number of steps, as outlined below.

1. Define constrained correspondence: For any ε ∈ (0, 1 − p0), let Φε be identical to Φ,
except that the domain and range are constrained as follows:

Φε : [p0, 1− ε]T × [0, 1]T → [p0, 1− ε]T × (2[0,1])T .

Now, define
ΦG,ε

s (x) ≡ min
ps∈[p0,1−ε]

argmax
ps∈[p0,1−ε]

[V G,x
s−1 (p0, (pt)

T
t=s)], (14)

and let Φε(x) ≡ ΦG,ε(x)× ΦB(x), where ΦB(x) is defined as before.

2. Existence of fixed point for Φε: I now claim that for any ε < 1 − p0, Φε has a fixed
point. To prove this, I invoke the Kakutani fixed point theorem. To this end, I show
that Φε satisfies the following properties:

(a) Φε(x) is non-empty for all x. This follows from the fact that [p0, 1 − ε] and [0, 1]

are compact and Rx(τ, θ) is bounded for all (τ, θ), implying by the Extreme Value
Theorem that both ΦB

t (x) and ΦG,ε
t (x) are non-empty for all t, x.

(b) Φε(x) is convex and closed for all x. ΦG,ε
t (x) is a singleton by definition for all

x, t. Now, fix an (x, t) and consider ΦB
t (x). Now, define bt = 0, bt = 1, bs = bs =

AB
s for all s > t. It follows that

ΦB
t (x) =


1 if V B,x

t ((bs)
T
s=t) < V B,x

t ((bs)
T
s=t)

0 if V B,x
t ((bs)

T
s=t) > V B,x

t ((bs)
T
s=t)

[0, 1] if V B,x
t ((bs)

T
s=t) = V B,x

t ((bs)
T
s=t),

(15)

and thus ΦB
t (x) is convex and closed. It follows that Φε(x) is also convex and

closed.

(c) Φε is upper hemi-continuous (UHC). I will show that for all t, ΦB
t and ΦG,ε

t are
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UHC everywhere on the domain. It follows that their Cartesian product Φε is
also UHC. Fix an x ∈ X and a t. Let us begin with ΦB

t . Now note that because
ε > 0, Rx(t, θ) is continuous in x, and thus both V B,x

t ((bs)
T
s=t) and V B,x

t ((bs)
T
s=t) are

continuous in x. Thus, it follows from (15) that ΦB
t (x) is UHC at x. Next, consider

ΦG,ε
t . It again follows from the continuity of Rx(t, θ) that V G,x

t is continuous in x,
and thus by (14), ΦG,ε

s (x) is continuous in x.

It follows then from the Kakutani fixed point theorem that Φε has a fixed point.

3. Show that for some ε > 0, Φε has an interior fixed point: I now claim that for some
ε > 0, Φε has a fixed point that lies within [p0, 1− ε)T × [0, 1]T (i.e., a fixed point such
that p∗t < 1−ε for all t). Suppose not, by contradiction. Then, there exists t∗ < T and a
sequence {εn}∞n=1 such that εn > 0 for all n, limn→∞ εn = 0 and there exists a sequence
{xn}∞n=1 where xn is a fixed point of Φεn such that p∗t∗ = 1− εn.

I now claim that

lim
n→∞

Rxn(s, 1)−Rxn(s+ 1, 1) = 0 and lim
n→∞

Rxn(s, 0) = 0 (16)

for all s ≥ t∗. Proof by induction. Begin with s = t∗. Note that by the contradiction
assumption, for all n, V G

t∗ (1, 1 − εn) ≤ V G
t∗ (∅, 1 − εn) (where this is the value function

that obtains from Rxn) because otherwise p∗t < 1 − εn under xn. I claim this implies
limn→∞ Rxn(t∗, 1) − Rxn(t∗ + 1, 1) = 0. Suppose not, by contradiction. Then there
exists δ > 0 and an infinite subsequence {εnk

}∞k=1 of {εn}∞n=1 where n1 < n2 < ... ∈ N
such that Rxnk (t∗, 1) − Rxnk (t∗ + 1, 1) > δ for all k. Thus, there exists k such that
V G
t∗ (1, 1− εnk

)− V G
t∗ (∅, 1− εnk

) > 0. Contradiction.

Next, I show limn→∞ Rxn(t∗, 0) = 0. Recall that by Bayes Rule, under any xn:

Rxn(t∗, 0) =
1

1 + (1−R0

R0
)( 1

Qt∗ (n)
)

where Qt(n) ≡
Pr(θ = 0|τ = t, i = G)Pr(τ = t|i = G)

Pr(θ = 0|τ = t, i = B)Pr(τ = t|i = B)
,

and the probabilities are those that obtain under the strategy profile xn. I claim
that limn→∞ Qt∗(n) = 0. Suppose not, by contradiction. Since limn→∞ εn = 0,
limn→∞

Pr(θ=0|τ=t,i=G)
Pr(θ=0|τ=t,i=B)

= 0, and thus it suffices to show that Pr(τ=t∗|i=G)
Pr(τ=t∗|i=B)

does not
diverge as n → ∞. This is only possible if there exists a subsequence {εnk

}∞k=1 of
{εn}∞n=1 such that limk→∞

Pr(τ=t∗|i=G)
Pr(τ=t∗|i=B)

= ∞. This implies limk→∞Rxnk (t∗, θ) = 1 for
all θ, and thus for k sufficiently large, AB

t∗ = 1 is a profitable deviation from what is
specified under xnk

. Thus, xnk
is not a fixed point of Φεnk . Contradiction.

Now, fix some t > t∗ and assume by induction that (16) holds for all s such that
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t∗ ≤ s < t. We want to show that it also holds for t. First, let us show that
limn→∞ Rxn(t, 0) = 0. For all n, because xn is a fixed point, AB

t ∈ (0, 1), and thus

p0R
xn(t, 1) + (1− p0)R

xn(t, 0) = p0R
xn(t− 1, 1) + (1− p0)R

xn(t− 1, 0).

Thus,

lim
n→∞

Rxn(t, 0) =
p0

1− p0
[ lim
n→∞

[Rxn(t− 1, 1)−Rxn(t, 1)]− lim
n→∞

Rxn(t− 1, 0)] = 0,

where the last equality follows from the inductive assumption.

Next, let us show that limn→∞ Rxn(t, 1) − Rxn(t + 1, 1) = 0. Suppose not, by
contradiction. Then, there exists δ > 0 and subsequence {εnk

}∞k=1 of {εn}∞n=1 such that
Rxnk (t, 1)−Rxnk (t+1, 1) ≥ δ for all k. This implies that there exists p ∈ (p0, 1) such that
p∗t ≤ p under xnk

for all k. However, limn→∞ Rxn(t, 0) = 0, and thus for all p ∈ (p0, 1),
there exits an N ∈ N such that p∗t > p under xn for all n > N . Contradiction.

Now, note that for all n, p∗t = p0 under xn (this follows from identical reasoning to that
presented in the proof of Claim 1). Thus, QT (n) does not converge to 0 as n → ∞.
However, because limn→∞Rx(T, 0) = 0, limn→∞QT (n) = 0. Contradiction.

4. This interior fixed point of Φε is also a fixed point of Φ: Fix an ε > 0 such that there
is a fixed point x of Φε such that x ∈ [p0, 1− ε)T × [0, 1]T . I claim that x is also a fixed
point of Φ. This is equivalent to showing that for all t:

AB
t ∈ ΦB

t (x) and p∗t = ΦG
t (x).

Note that AB
t ∈ ΦB

t (x) holds because this is necessary for x to be a fixed point of Φε.
Next, let us show that p∗t = ΦG

t (x) for all t. Proof by induction. Fix a t, and suppose
p∗s = ΦG

s (x) for all s > t. We want to show p∗t = ΦG
t (x).

By the same reasoning that is presented in the proof of Proposition 1, since p∗t < 1− ε,

V G
t (p, 1) > V G

t (p, ∅) for all p > 1− ε.

where this is the value function that obtains given the reputation function Rx. Thus,

V G,x
t (p0, (p

∗
s)

T
s=t) > V G,x

t (p0, (p̃s)
T
s=t)

for any p̃t > 1 − ε and p̃s = p∗t for all s > t. This, combined with the fact that
p∗t = ΦG,ε

t (x), implies p∗t = ΦG
t (x).
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□

Proof of Proposition 2: cutoff bounds. Consider any equilibrium that satisifes (SC). First,
want to show that p∗T = p0. It follows from Lemma 1 and Proposition 1 that RT−1 ∈ (0, 1).
Thus, by the same reasoning presented in Claim 1, p∗T = p0.

Now, want to show that for all t < T , p∗t > p0. To this end, fix a t < T . It follows from
Proposition 1 that B mixes between a ∈ {1, ∅} in every t, and thus

Vt(p0, 1) = V B
t (p0, ∅) and Vt(p0, 1) = V B

t (p0, ∅).

So, Vt(p0, 1) = Vt+1(p0, 1). Now it follows from (SC) that

Vt(1, ∅) = Vt+1(1, 1) and Vt(0, ∅) > Vt+1(0, 1).

By Lemma 1, it follows that Vt(p, ∅) > Vt+1(p, 1) for all p < 1. Because p0 ∈ (0, 1), then

Vt(p0, ∅) > Vt+1(p0, 1) (17)

Finally, it follows from the same reasoning presented in the proof of Proposition 1 that
V G
t (p, ∅) > Vt(p, 1) if and only if p < p∗t . Thus, it follows from (17) that p∗t > p0.

□

Proof of Proposition 3. Let us begin by showing that R(t, θ = 1) > R(t, θ = 0) for all
t ∈ {1, ..., T}. To this end, note that

R(t, θ) =
1

1 + (1−Rt−1

Rt−1
)(Pr(τ=t,θ|τ ̸∈{1,...,t−1},i=B)

Pr(τ=t,θ|τ ̸∈{1,...,t−1},i=G)
)
. (18)

Now, note the following:

• Pr(τ = t, θ = 0|τ ̸∈ {1, ..., t− 1}, i = B) = (1− p0)A
B
t

• Pr(τ = t, θ = 1|τ ̸∈ {1, ..., t− 1}, i = B) = p0A
B
t

• Pr(τ = t, θ = 0|τ ̸∈ {1, ..., t− 1}, i = G) =
∫ 1

0

∫ 1

p∗t
(1− pt)dGt(pt|pt−1)dHt−1(pt−1)

• Pr(τ = t, θ = 1|τ ̸∈ {1, ..., t− 1}, i = G) =
∫ 1

0

∫ 1

p∗t
ptdGt(pt|pt−1)dHt−1(pt−1).

Thus,
R(t, 0) =

1

1 + (1−Rt−1

Rt−1
)(

AB
t∫ 1

0

∫ 1
p∗t

1−pt
1−p0

dGt(pt|pt−1)dHt−1(pt−1)
)
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R(t, 1) =
1

1 + (1−Rt−1

Rt−1
)(

AB
t∫ 1

0

∫ 1
p∗t

pt
p0

dGt(pt|pt−1)dHt−1(pt−1)
)
.

Now, define X(p) ≡ 1−p
1−p0

and Y (p) ≡ p
p0

. Note that

X(1) = 0, X(p∗t ) ≤ 1, X(p) is strictly decreasing in p

Y (1) > 1, Y (p∗t ) ≥ 1, Y (p) is strictly increasing in p,

where the inequalities follow from Proposition 2. This implies that Y (p) > X(p) for all
p ∈ (p∗t , 1]. Thus, R(t, 0) < R(t, 1).

It remains to show that R(∅, 1) < R(∅, 0). Note that

R(∅, 0) = 1

1 + (1−RT−1

RT−1
)(

1−AB
t∫ 1

0

∫ p0
0 X(pT )dGT (pT |pT−1)dHT−1(pT−1)

)

R(∅, 1) = 1

1 + (1−RT−1

RT−1
)(

1−AB
t∫ 1

0

∫ p0
0 Y (pT )dGT (pT |pT−1)dHT−1(pT−1)

)
.

Now note
X(0) > 1, X(p0) = 1, Y (0) = 0, Y (p0) = 0.

These facts, combined with the monotonicity of X and Y in p implies that X(p) > Y (p) for
all p ∈ [0, p0). Thus, R(∅, 0) > R(∅, 1).

□

Proof of Proposition 4. Fix any t < T . We want to show that

R(t, θ = 1) > R(t+ 1, θ = 1) and R(t, θ = 0) < R(t, θ = 0).

First, note that G(pt+1|pt = 1) = F (0) = 1. Thus, since p∗t+1 ∈ (0, 1),

Vt(1, ∅) =
∫ p∗t+1

0

Vt+1(pt+1, ∅)dGt(pt+1|pt = 1)+

∫ 1

p∗t+1

Vt+1(pt+1, 1)dGt(pt+1|pt = 1) = Vt+1(1, 1).

So,

Vt(1, 1) = Vt+1(1, 1) ⇔ R(t, 1) = R(t+ 1, 1). (19)
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Next, recall that by the bad agent’s indifference condition,

Vt(1, p0) = Vt+1(1, p0) ⇔ p0R(t, 1) + (1− p0)R(t, θ = 0) = p0R(t+ 1, 1) + (1− p0)R(t+ 1, 0)

This, combined with (19), implies that R(t, 0) < R(t+ 1, 0). □

In what follows, the two input arguments on the value function have been reversed, i.e.,
the value is given by Vt(a, p) rather than Vt(p, a).

Proof of Proposition 5. Part 1 follows from the fact that the B agent holds belief p0 in every
period. For part 2, let us first show that G plays a cutoff rule and these cutoffs are unique.
Proof by induction.

Base case: In period T, the agent acts if and only if his belief lies above p∗ ≡ −K0

K1−K0
.

Induction step: Fix a t and suppose that the agent plays an interior cutoff rule in all s < t.
Note that

Vt(1, p) = βt(pK1 + (1− p)K0).

Now, let us observe three facts about V G
t (∅, p):

1. Since a cutoff rule is played in t+ 1,

V G
t (∅, 1) = V G

t+1(1, 1) = βt+1K1 < βtK1 = V G
t (1, 1)

2. V G
t (∅, 0) = 0 > βtK0 = V G

t (1, 0)

3. Vt(∅, p) is convex in p.

These three facts together with the linearity of Vt(1, p) imply that there is a unique p∗t ∈ (0, 1)

such that (1) holds.

Now, it remains to show that the p∗t are strictly decreasing in t. To this end, fix a t < T .
Suppose by contradiction that p∗t ≤ p∗t+1. Then

V G
t (1, p∗t ) = V G

t (∅, p∗t )

V G
t+1(1, p

∗
t ) ≤ V G

t+1(∅, p∗t )

Since all these values are strictly positive

β =
V G
t+1(1, p

∗
t )

V G
t (1, p∗t )

≤
V G
t+1(∅, p∗t )
V G
t (∅, p∗t )

. (20)

35



Now, let Ṽt(∅, p) denote the agent’s value from the modified problem which is identical to
the original problem except that the time horizon is T − 1. It follows that for all t < T :

1. Ṽ G
t (∅, p) = V G

t+1(∅,p)
β

2. Ṽ G
t (∅, p) < V G

t (∅, p).

These two facts together imply
V G
t+1(∅, p∗t )
V G
t (∅, p∗t )

< β,

contradicting (20). □

Proof of Proposition 6. Define K ≡ [ −X
(1−X)βT −K1p0](

1
1−p0

).

First, I show that in any equilibrium where K0 < K, AB
t = 0 for all t. Note that in any

equilibrium, for any t,

V B
t (1, p0) ≤ βt(1−X)[K1p0 +K0(1− p0)] +X

V B
t (∅, p0) ≥ 0.

Furthermore, when K0 < K, Vt(1, p0) < 0. This implies that V B
t (1, p0) < V B

t (∅, p0), and thus
AB

t = 0.

Now, want to show that for all t, p̂t > p∗t . Because G plays a cutoff strategy in
equilibrium, it suffices to show that

V G
t (1, p̂t) > V G

t (∅, p̂t) for all t.

Now, let V̂ denote the value function under the no-reputation benchmark (X = 0). For all
t and p:

1. V NR,G
t (1, p) = V̂ G

t (1, p)

2. V NR,G
t (∅, p) ≤ V̂ G

t (∅, p)

3. V R,G
t (1, p) > V R,G

t (∅, p),

where the final inequality follows from the fact that AB
t = 0 and p∗t ∈ (0, 1) for all t, and

thus in equilibrium V R,G
t (1, p) = 1 whereas V R,G

t (∅, p) < 1. Furthermore, by definition of p̂t,
V̂ G
t (1, p̂t) = V̂ G

t (∅, p̂t) for all t. It follows from the above facts that for all t:

Vt(1, p̂t) = (1−X)V NR
t (1, p̂t) +XV R

t (1, p̂t) > (1−X)V NR
t (∅, p̂t) +XV R

t (∅, p̂t) = Vt(∅, p̂t),

and thus p∗t < p̂t. □
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Proof of Proposition 7. Fix any equilibrium (p∗t , A
B
t )

T
t=1 and any t ∈ {1, .., T}. First,

consider the case where AB
s = 1 for some s < t. Since G plays an interior cutoff strategy at

all t, the equilibrium reputation function R must be such that

R(τ, θ) = 1 for all τ ∈ {t, .., T, ∅}, θ ∈ {0, 1}.

Thus, V R
t , G = 1 for all a ∈ {∅, 1}, p ∈ [0, 1]. Hence, G’s problem at time t is to choose a

strategy which maximizes the following:

Eθ[U(τ, θ)] = (1−X)βτ (KθI(τ ̸= ∅)) +X.

This problem is equivalent to maximizing βτ (KθI(τ ̸= ∅)). Hence, the equilibrium strategy
must be equal to the optimal cutoff rule under X = 0, i.e., pt = p̂t.

Next, consider the case where AB
s < 1 for all s < t. I claim that in this case p∗t > p̂t. First,

suppose that AB
t = 1. The equilibrium reputation function must be such that (1) R(s, θ) = 1

for all s ∈ {t + 1, ..., T, ∅} and θ ∈ {0, 1} and (2) R(t, θ) < 1 for θ ∈ {0, 1}. Together, these
two facts imply that V R,G

t (1, p) < 1 and V R,G
t (∅, p) = 1. for all p. Furthermore, by the same

reasoning as above, p∗s = p̂s for all s > t and thus V NR,G
t (a, p) = V̂t(a, p) for all a, p. Thus,

V G
t (1, p̂t) = (1−X)V NR,G

t (1, p̂t)+XV R,G
t (1, p̂t) < (1−X)V NR,G

t (∅, p̂t)+XV R,G
t (∅, p̂t) = V G

t (∅, p̂t),

and thus p∗t > p̂t. Next, suppose that AB
t < 1. It must also be that AB

t > 0. To show this,
suppose not by contradiction. Then, the reputation function must be such that R(t, θ) = 1

for θ ∈ {0, 1}. Thus, V R,B
t (1, p) ≥ V R,B

t (∅, p) for all p. Since V NR,B
t (1, p0) > V NR,B

t (∅, p0), it
follows that V B

t (1, p0) > V B
t (∅, p0), and thus AB

t = 1. Contradiction. So, AB
t ∈ (0, 1) which

implies B must be indifferent at p0: V B
t (1, p0) = V B

t (∅, p0). Since V G
t (∅, p0) ≥ V B

t (∅, p0) and
V B
t (1, p0) = V G

t (1, p0) ≤ V G
t (∅, p0), V G

t (∅, p0) ≥ V G
t (1, p0). It follows that p∗t ≥ p0 > p̂ ≥ p̂t.

□
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