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Abstract

The production function is an engineering relationship, but recent

estimators make auxiliary use of firm’s optimal choices that depend on

market power. The estimator called "dynamic panel," that does not

use any FOC, is robust to market power, but often produces unsatis-

factory results. The estimators known as OP/LP typically improve,

but can be inconsistent in the presence of market power. We propose

a test for the presence of market power based on a consistent version

of OP/LP that proxies MC. If market power cannot be rejected, it

offers a robust way to estimate. Then we propose a test for the speci-

fication, based in the smaller set of assumptions used by the dynamic

panel estimator. The coincidence of dynamic panel and OP/LP except

by sampling error is a necessary condition for consistency.

∗I am idebted to Ulrich Doraszelski for many discussions. The errors that may persist

are mine.
†Department of Economics. Email: jordij@bu.edu.
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1 Introduction

What is the relationship between production function estimation and market

power? The production function is an engineering relationship, that describes

how technology relates inputs and output. So there is no direct relationship.

But many recent proposals for the estimation of production functions include

the auxiliary use of equations based on the optimization of some objective

that involves the production function. Mainly the derivatives of profit with

respect to the inputs (FOCs). And these FOCs are different when the firm

has some market power.

These estimators, born with the work by Olley and Pakes (1996), yearned

for validity under any competitive situation. However, most of them have

been in practice only justified for situations of perfect competition or almost

(Levinsohn and Petrin, 2003; Gandhi, Navarro and Rivers, 2020, or the way

to implement Olley and Pakes, 1996, and Levinsohn and Petrin, 2003, pro-

posed by Ackerberg, Caves and Frazer, 2015). The urgency to have readily

available methods to estimate production functions has often implied the ne-

glect of the conditions for applicability of these estimators under imperfect

competition.

Take the frequently encountered case of product differentiation. A market

with product differentiation shows some market power that emerges from

the ability and incentives of the firms to produce products with different

characteristics. This situation generates by itself an uncomfortable context

for the user of the production function, because products and possibilities of

production are distinct across firms.1 Suppose nevertheless that the empirical

researcher is happy accounting for the heterogeneity of characteristics and

possibilities by means of an additive random deviation in the equation to be

estimated. Some estimators still cannot be applied ignoring the consequences

of market power in the FOCs.

In the current literature there are two approaches to the estimation of

the production function. They diverge in how they solve the problem of

controlling for unobservable productivity.2

1The production function, as concept of economic theory, was developed as describing

a situation in which the characteristics of the unique product are given and the available

techniques define the set of production possibilities.
2How to treat unobserved productivity has been the dominant worry of researchers

since Marschak and Andrews (1944) pointed at the statistical problems created by the

endogeneity of the inputs.
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We will call the two approaches "dynamic panel," henceforth DP, devel-

oped in Arellano and Bond (1991) and Blundell and Bond (2000), and the

OP/LP approach, called in this way because it was originated in the articles

of Olley and Pakes (1996) and Levinsohn and Petrin (2003). In the first ap-

proach, unobservable productivity is differentiated out after assuming that

follows a first order linear Markovian or (1) process. The second approach

also assumes that the unobservable follows a Markovian first order process,

but the process needs not to be restricted to be linear. The unobservable is

replaced by the inverse of a function representing some optimal observable

choice (usually the demand of a variable input) that contains it. A big ad-

vantage of DP is hence that doesn’t need to use any auxiliary relationship

implying behavior. OP/LP frees the linearity form of the Markov process,

at the price of assuming that some behavioral equation holds.

A well known empirical paradox is that DP often produces disappointing

results while OP/LP, with more assumptions to be met, often produces more

reasonable estimates (e.g. in the elasticity of scale and in the elasticity of

capital). In this paper we first explore the theoretical difference between the

two estimators and derive what can be learned from their divergence. More

generally, we explore the effects to incorporate the FOCs to the estimation

of the production function.3

The conclusion is that both the DP and OP/LP estimators are consistent

when there is perfect competition, but OP/LP is not robust when there is

market power. The consistency of a non-robust estimator depends on the

detailed assumptions about how the game that firms play in the market

is, and their market share consequences. A lot of symmetry and unwanted

restrictions should be set beforehand to ensure the consistency of the OP/LP

estimator under market power.

However, we highlight an OP/LP estimator that is consistent under any

form of market power. To make OP/LP robust it is enough to proxy MR or

MC by means of AVC and the short-run elasticity to scale, and specify the

process of productivity as linear. Under this specification, it happens that

both DP and OP/LP are consistent and should deliver estimates that only

3Modern production function estimation is not the first time that the FOCs have been

given a role. Flexible specification of the production function and its dual cost function,

started by Diewert (1971), and continued by Christensen, Jorgenson and Lau (1973), and

Caves, Christensen and Tretheway (1981), raised a role for system estimation of the main

equation and share equations. See, for example, Berndt and Wood (1975) and Mc Elroy

(1987).
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differ due to sampling error.

The properties of this estimator suggest that the use of the FOCs, instead

of a nuisance, can be taken as an advantage to test the specification. We

propose two tests. The first is a test for the presence of market power.

The second, since OP/LP apparently improves but the divergence between

estimators suggests that something is wrong, it is a general specification test

when the researcher is estimating under market power.

The first test detects the presence of market power. OP/LP can be spec-

ified using the price of the firms or using the proxied marginal cost. Under

the null of no market power both estimators should only differ due to sam-

pling error, under the alternative of market power only the OP/LP based on

proxying MC is consistent.

The second test compares the estimates obtained with DP and the OP/LP

that proxies MC. The estimates should be equal under the null of consistency

of both estimators, while they will differ under the alternative of either both

estimators, or only OP/LP, being inconsistent. The first variant of the al-

ternative can happen because the production function is wrongly specified,

the second because what is wrong is the specification of the FOC on which

OP/LP bases the demand for an input.

Estimation needs to control for econometrician-unobserved productivity.

Current approaches in the estimation of the production function have treated

intensively how to deal with Hicks-neutral productivity, that affects all in-

puts in the same way. However, empirical research has recently stressed that

productivity is likely to be biased. And there have been contributions on how

to apply DP and OP/LP when productivity is non-neutral and affects in par-

ticular an input. For example, Doraszelski and Jaumandreu (2018) show how

to replace biased productivity from a ratio of FOCs. The dominant interest

in this field is labor-augmenting productivity, henceforth LAP, presumably

very related to the dominant form of current technological progress. In what

follows, we systematically take into account the possibility of LAP.

Input market power can be as relevant as product market power, and it

affects the first order conditions in a similar way as product market power.

We also show summarily but systematically how to treat input market power

when it is present, and we discuss the way to detect this mispecification if it

is binding.

To illustrate the relevance of the problems, the realism of the circum-

stances, and the working of the procedures that we employ, we estimate the

production function for the sample of US manufacturing Compustat firms
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used in Jaumandreu and Mullens (2024). It is a sample with more that

5,000 firms and 60,000 observations that are likely to exhibit the more di-

verse degrees of market power. On the one hand, the test for market power

gives the unequivocal answer that market power is present. On the other,

the estimation by DP and OP/LP diverges when naively applied to a Cobb-

Douglas specification, and passes the specification test when applied to its

enlargement into a translog with LAP that shows elasticity of substitution

less than one and falling labor shares. Applied to this new specification, nei-

ther DP nor the feasible OP/LP are better. The second test hence detects

that there is something wrong in the specification of the production function,

and its flexibilization including LAP solves the problem. We think that this

constitutes a reasonable place where to start the exploration for refinements.

The rest of the paper is organized as follows. Section 2 comments on

the relation of the paper to the literature. Sections 3 and 4 explain the

consistency of DP and OP/LP under perfect competition and put them in

a common framework. Section 5 studies the consequences of facing market

power. Section 6 develops the test for market power. Section 7 discusses

how to estimate under market power, and section 8 sets the specification

test. Section 9 develops the example with the sample of Compustat firms,

and section 10 concludes. Four appendices deal with identification, conduct

specification, statistical specification tests, and run some additional regres-

sions, respectively.

2 Relation to the literature

The literature on the new estimators for the production function, sometimes

called structural, has always been very conscious of the need to deal with

market power. Olley and Pakes (1996) consider that the firms in the mar-

ket are playing a dynamic oligopoly game and justify the simplification of

the vector of state variables by means of symmetry that includes common

input prices. Griliches and Mairesse (1998), writing contemporaneously on

the "interesting new approach" of OP, worry if this treatment of the state

variables may be ignoring some relevant dimensions as the expectations on

the cost of investment. Levinsohn and Petrin (2003) define their setting as a

competitive environment, where firms take as given output and input prices,

and warn that the model can be generalized to imperfect competition but

then it will depend on the specifics of competition.
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Ackerberg, Caves and Frazer (2015), discussing when revenues can re-

place physical quantities (e.g. common output prices), introduce an explicit

discussion about the difficulties to invert the demand for an input when the

demand for output and/or the supply for an input are downward and upward

curves respectively (i.e. there is market power). They warn that, in this sit-

uation, even assuming identical curves may be not enough. Gandhi, Navarro

and Rivers (2020) make clear that their model for non parametric estimation

of the production function is developed assuming perfect competition in the

output and intermediate markets. Only Appendix O6 shows how the model

can be applied specifying a parametric CES demand for output, together

with the assumption of monopolistic competition, the version that in fact

many researchers prefer.

More recently, a few discussions have dealt in one way or another with

the ability of the OP/LP framework to address the situations with market

power. Bond, Hashemi, Kaplan and Traina (2021) stress how the absence

of reliable information on firm-level output prices makes difficult the esti-

mation of structural elasticities and hence market power, and point at the

robustness of the DP approach. Doraszelski and Jaumandreu (2021) develop

the biases that affect an OP/LP procedure given the likely presence of corre-

lated unobservable demand heterogeneity. Ackerberg and De Loecker (2024)

is a discussion on how to expand the OP/LP estimators to include "suffi-

cient statistics" to account for imperfect competition under behavioral and

symmetry assumptions.

This paper makes, in the first place, a contribution to these discussions.

It deals with how to construct estimators that are robust to market power,

in the sense that they do not depend on the specification of the details of

the game the firms play. This possibility builds on proxying MC as the vari-

able that accounts for the result of the firm-level strategic interactions and

heterogeneity of demand, and makes the need for other variables redundant.

We show that OP/LP is nonrobust to market power, but also that there is a

feasible (linear) OP/LP that can avoid this difficulty. This provides the pos-

sibility to use the feasible OP/LP as a test for the presence of market power.

Also, this estimator uses more information than DP and the divergence with

DP can be used as a test of specification. The result of our discussion is then

rather a way to conduct the specification more than a particular estimator

that fits all sizes and shapes.

A long list of papers have recently stressed that the presence of Hicks

neutral productivity should be complemented with the presence of biased
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productivity, particularly in the form of LAP. See mainly Doraszelski and

Jaumandreu (2018, 2019), Raval (2019, 2023), Zhang (2019), Demirer (2022),

Jaumandreu and Mullens (2024), Kusaka, Okazaki, Onishi and Wakamori

(2024).4

We add to this literature by uncovering that the mispecification revealed

by our estimators and procedure to specify, when applied to sample of Com-

pustat firms, is redressed when we consider an specification that allows shares

in cost and elasticities to change from firm to firm and over time. We could

not have formally assessed that this was the specification problem without

estimators robust to market power, and we had never got the coincidence of

the estimators without the change in the specification of productivity in the

production function.

Our addition is otherwise a pioneering modeling of firm-level different

dimensions of productivity in US manufacturing, that confirms the biased

technological change that Raval (2019) found with Census of Manufacturing

data on plants. It provides a rich chacterization on the firm dynamics of

labor-augmenting productivity (see Jaumandreu and Mullens, 2024), with a

flexible production function and subject to the rigor of the specification tests.

A recent literature has stressed that market power in the input markets

can be as relevant as market power in the product market. See, for example,

the papers by Dobbelaere and Mairesse (2013, 2018), Yeh, Macaluso, Hersh-

bein (2022), Rubens (2023), and Azzam, Jaumandreu and Lopez (2025). The

estimators OP/LP are not robust to the presence of unspecified input market

power. Given the initial character of this paper, we only focus marginally on

this topic. However, we show how the tools that we have developed can be

applied to the detection of input market power affecting the estimation of

the production function and, summarily, how they can be used for consistent

estimation under this presence.

3 DP and OP/LP under perfect competition

Let us first clarify the properties and relationship between the two estimators

under perfect competition. The assumption of perfect competition implies

that the price of the output is common for all firms and equals marginal cost.

4A recent literature is exploring the nonparametric estimation of a unique productivity

term, freely interacted with the inputs. See Ackerberg, Hahn and Pan (2023) and Pan

(2024).
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Firms differ in size because differ in their marginal cost curves, though. The

usual time and information assumptions are as follows. Firms choose the

variable inputs  and  at , when productivity becomes their knowledge,

but capital needs time to build and is given as chosen one period before.

Assume a population of firms (we drop firm and time subscripts). Write

the production function in logs as

 = (x) +  +  (1)

where (x) = ln (x) x = { } is the logs of capital, labor and mate-
rials,  is Hicks-neutral productivity, and  is an error of observation, not

autocorrelated and uncorrelated with all variables known at . Sometimes

we will use the notation ∗ = (x) +  for the output without error.

Everything that we are going to say is compatible with the presence of

labor-augmenting productivity (henceforth LAP). To see this it is enough to

suppose that the labor input is ∗ = +  and LAP  has been controlled

for observables.

A first order Markov process establishes

 = (−1) +  (2)

where (·) is an unknown function.
DP

DP assumes that productivity follows the linear Markov process  =

−1+  The implication is that we can "pseudo-differentiate" equation (1)

(subtract the lagged equation multiplied by ) and unobservable productivity

drops

 = −1 + (x)− (x−1) +  + − −1 (3)

From the point of view of estimation, the inputs of the x vector that are

set at  when the shock of the Markov process is known, are correlated with 

and should be instrumented. Researchers usually consider variable the inputs

 and  If the production function (·) only requires the estimation of three
parameters (additional to the constant), we need four instruments because

we have to estimate the extra parameter  (that introduces nonlinearity in

the model) The model is exactly identified using , −1 −1 and −1 as
instruments

It can be assumed that lagged input and output prices are non-correlated

with  Then, using them as instruments gets overidentifying restrictions.

Cost and firm-demand shifters can be used as additional instruments.
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OP/LP

OP/LP is based on the first order conditions for the variable inputs.

These have the form.


 (x)


exp() =  (4)

where  is the price of the output,  =  and =  Unobserved

productivity  can be obtained by inverting one of these FOC or using the

combination of both. A combination of the first order conditions drops one

variable input including both input prices in addition to the price of the

output (this is the unconditional input demand). With perfect competition

we expect  to be common across firms, so the only variation of  is over

time and can be subsumed in a system of time dummies. But the price (s) of

the input (s) is (are) not necessarily the same and must be explicitly included

except when equality across firms is assumed.

The model can be extended to the case of input market power by assuming

that the relevant input price is  ∗
 =(1 + ) where the markdown  is

either an additional parameter to estimate or is controlled for observables.5

Let us use, without loss of generality, only one FOC (sometimes this has

been called to use the demand for a variable input conditional on the other)6

 =  − − ln  (x)




The assumption that  follows a general first order Markov process allows us

to write the production function replacing −1 by its expression according
to the inverse of the conditional input demand

 = (x) + (−1 − −1 − ln  (x−1)
−1

) +  +  (5)

The unknown function (·) is typically specified by means of polynomials
and the model easily estimated in one step by nonlinear GMM. Note that the

derivatives of  (x) will include at most the same parameters as  (x), so (x)

and
 (x−1)
−1

are linked by equality restrictions, even if we are dealing with

5See, for example, the treatment of  in Azzam, Jaumandreu and Lopez (2025).
6Later we will use the demand for the input conditional on output, that can be obtained

using the ratio of FOCs to replace one variable input in the production function by the

relationship with the other.
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a flexible specification.7 See Appendix A for a discussion on identification.

We face exactly the same problem of endogeneity as before: the variable

inputs  and  are correlated with  If we have to estimate four parameters,

variables  −1 −1 and−1 are enough for identification. Prices and shifters
can be used as before as additional instruments. As (·) is usually made of
polynomials, it seems natural to enlarge the instrument set with powers of

the instruments.

4 A common framework

DP and OP/LP estimators are presented differently (pseudodifferentiation,

replacement of the unobservable by the inverse of an input demand) for

pedagogical reasons, but they can be seen under a more common perspective.

It happens that both estimators assume a first order Markov process for

productivity, and then propose to replace past productivity by an expression

in terms of observables.

We are going to see that this is full of consequences. In discussing the

estimators we will assume for the moment that the specification of the pro-

duction function (x) is correct. We relax this assumption in section 7.

We can say that both estimators start by assuming that the production

function can be written as

 = (x) + (−1) +  +  (6)

because of the process of productivity. Then DP proposes to replace −1 by
−1 − (x−1) − −1 and OP/LP by −1 − −1 − ln  (x−1)

−1
 DP uses the

lagged production function, OP/LP the lagged FOC. Accordingly, in what

comes now we will use the following definitions

DEFINITION 1 The dynamic panel estimator is the application of IV to

the equation

 = (x) + (−1 − (x−1)− −1) +  +  (7)

with (·) specified as linear.
DEFINITION 2 The OP/LP estimator is the application of IV to the

equation

7Not recognizing this may produce unproductive discussions on identification. It is

customary to apply nonparametric estimation with a polynomial specification.
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 = (x) + (−1 − −1 − ln  (x−1)
−1

) +  +  (8)

with (·) specified by means of polynomials. We will call linear OP/LP the
estimator that only uses a first degree polynomial for (·).
Revenue-share OP/LP

The expression used by OP/LP can be written in different ways. For

example, we will find useful to use the revenue-share form, based on the

share of the expenses on input  in observed revenue 
 =




.

PROPOSITION 1 The OP/LP estimator can be written in the revenue-

share form

 = (x) + (−1 − (x−1) + ln

−1

−1
) +  +  (9)

where  =


 (x)

 (x)


, the output elasticity of input .

Proof

Add and subtract  and subtract and add  and (x) = ln (x) to the

expression for , then do some reordering. That is,  =  − − ln  (x)


=

 + − −  +  − (x)− (− ln (x) + ln  (x)


) =  − (x) + ln




 ¨
It is important to note that we write  for notational simplicity, but

it should be clear that in general it is a function (·) of the inputs (and
labor-augmenting productivity) and so is the short-run elasticity of scale

(·) = (·) + (·).8
The revenue-share form of the OP/LP estimator makes clear that the

OP/LP estimator is using more information than the dynamic panel esti-

mator, and this additional information is encompassed in the term ln





Multiplying the first order condition (4) by 
∗  using



∗ = exp() and

taking logs, the first order condition can be also written as ln = ln

+,

and hence the addtional term is controlling for  in terms of the differences

between the share of  in revenue and the specification chosen for the pro-

duction elasticity of the input.9 However, when applied to data, if the first

8However we know that, under homotheticity, (·) becomes a function of ∗ alone.
9The FOC under perfect competition, in the reordered form ln = ln −  is used

by Gandhi, Navarro and Rivers (2020) as first step of their estimator. Notice that (9)

suggests a unique-step form for the estimator.
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order condition is not met, this term will contain more than  and the es-

timates will usually become inconsistent because of a problem of omitted

variable (the discussion of this continues below)

Notice that, under perfect competition, the fulfillment of the first order

condition implies that the dynamic panel and the linear OP/LP estimator

should only diverge by sampling error. Their only difference is that, while the

dynamic panel estimator leaves the  error to become part of the error of the

equation, the linear OP/LP estimator controls  by means of the difference

between the revenue share and the elasticity.

If (·) is nonlinear, OP/LP produces a different estimate that comes ex-
clusively from adding nonlinear terms to approximate (·) DP can be seen as
a first order approximation to the productivity process dealt with by OP/LP.

As productivity is in practice quite persistent, it should be unexpected that

this creates a dramatic divergence.

Failure of the FOCs

First order conditions may not hold as (4) by multiple reasons. The most

commonly discussed by researchers are: adjustment costs (see e.g. Bond and

Van Reenen, 2007), market power in the input market (see e.g. Manning,

2011), firm optimization errors (see e.g. Marschak and Andrews, 1944),

misallocation of inputs... We can add biased technological change, as for

example LAP. But it is important to take into account that this motive also

changes the structure of the production function, something that we discuss

in section 7. All these circumstances may be represented by the presence

of an unobservable. Assume, without loss of generality, that the first order

conditions affecting the variable inputs are


 (x)


exp() = (1 + )  (10)

where  is an input-specific FOC unobservable.10

In order to give a more precise content to the fulfillment of the first order

conditions we develop now a lemma. We will use it to define another form

of the OP/LP estimator.

LEMMA The relationship between marginal cost and average variable

cost is

 =
 


 (11)

10The FOC corresponding to labor-augmenting productivity is usually written


 (x∗)


exp( + ) =  , that can also be written as 
 (x∗)


exp() ' (1− ) 

where x∗ = { ∗}
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where   =  
∗ is average variable cost,  =  +  (or (·) = (·) +

(·)) is the short-run elasticity of scale, and  = 1 +
P

  a weighted

sum of the unobservables with weights equal to the cost-shares  =
P


.

Proof

Since  =, adding the FOCs of the variable inputs multiplied by 
∗

we have


P 

∗



exp() =

P
(1 + )

∗
= (1 +

P
)

P


∗


or

 =  

so marginal cost can be writtent in terms of average variable cost  , the

short-run elasticity of scale , and  ¨
Cost-share OP/LP

Using the lemma, we can develop another form of the OP/LP estimator

that, instead of using the price, proxies for marginal cost.

PROPOSITION 2 The OP/LP estimator can be written in the cost-share

form

 = (x) + (−1 − (x−1) + ln
−1−1−1

−1
− −1) +  +  (12)

where  = (1 + ) If all FOCs for variable inputs hold with no unob-

servables,  = 1 The cost-share estimator is only consistent under linearity

of (·).
Proof

Since  =  by (10) we have  = ln(1 + ) +  − − ln  (x)


=

ln(1 + ) +  +  − (ln  +  − ( − ) − ln ) − (x) − ( − ln (x) +
ln

 (x)


)−  =  − (x) + ln 


− 

In the second equality we use the lemma, that allows to proxy marginal

cost by average variable cost. The price that we have to pay for this approxi-

mation is the introduction of the error  This error determines that (·)must
be linear for consistency. ¨
The cost-share form of OP/LP encompasses the information additional

to the dynamic panel estimator in the term ln
−1−1−1

−1
 The researcher

can model total or partially  if knows of the presence of some unobservable

(e.g. monopsony power).
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What happens when the equation is specified using the term ln 

; that

is, ignoring the unobservable? Multiplying the FOC (10) by 
∗ we can

write 
∗

 (x)


exp() = (1 + )

 



 ∗  It follows that  = 

This implies that the expression ln 


(without ) is going to take the

value − ln  if  6= 1 and zero if there are no unobservables.
We can establish an important proposition:

PROPOSITION 3 Under perfect competition, if the first order conditions

for variable inputs hold without unobservables, the dynamic panel estimator

and the linear cost-share OP/LP estimator should only diverge by sampling

error.

Proof

The comparison of (7) and (12) shows that the two estimators only diverge

by a term that, provided that  = 1 should be zero according to the

FOCs. ¨
An interpretation of the ACF estimator

We have said nothing about a popular form of applying OP/LP, the form

proposed by Ackerberg, Caves and Frazer (2015), henceforth ACF. Let us

use the insights gained with proposition 2 to give an interpretation of the

ACF OP/LP estimator.

The idea of ACF is to regress nonparametrically output on all inputs and

variables relevant to explain the demand for the input used to substitute for

unobserved productivity. The goal is to identify separately . Let z be the

set of variables on which the output is going to be projected (that we discuss

later specifically) with x ⊂ z The first stage of ACF computes
b = (|) = ((x)|z) +(|z) = (x)+(|z)

This means that, in the second stage, what ACF carries inside the (·) can
be written asb−1 − (x−1) = −1 − (x−1) + [(−1|z−1)− −1]− −1

Again, as in (12), the difference with respect to the dynamic panel estimator

depends from a potential bias. In this case the potential bias can be thought

of as the difference of the projection of lagged productivity on the vector z−1
from the true value of productivity.

Since (−1|z−1)−−1 = (−1− (x−1) + ln
−1−1−1

−1
− −1|z−1)−

−1 = (ln −1 + ln−1 − ln−1 + ln −1|z−1) everything depends
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on how is this expectation. With input quantities and input prices we can

predict reasonably well the cost share and the elasticities, but we do not have

the unobservable. Consequently, the bias is going to be zero if  = 1 and at

least −(ln  |z) otherwise Recall that in the parametric case the presence
of the unobservable imposed a bias of − ln   ACF is likely to smooth this
bias by projecting it on  since  (− ln  |) ≤  (− ln )
Summary

In summary, DP estimation under competition, and OP/LP under com-

petition and with no unobservables in the FOCs, are consistent and they

should differ only in the effect of the OP/LP nonlinear modeling of the pro-

ductivity process. If the OP/LP estimator is specified using a linear Markov

process, they should only diverge due to sampling error. This is regardless of

how the OP/LP estimator is computed: parametrically, in the revenue-share

or cost-share form, or using the semiparametric AC OP/LP estimator pro-

vided that uses the relevant input quantities and prices to project the output.

However, an unobservable in the FOCs makes any OP/LP inconsistent while

DP is not affected.

5 The consequences of market power

When there is market power, under the assumption of short-run profit maxi-

mization, the relevant variable in the FOCs is marginal revenue instead

of 


 ()


exp() = 

The problem is that  is, in general, unobservable. At first sight it seems

like we have no more alternative than choosing DP estimation, that doesn’t

need this relationship. Let us take a closer look at what the new variable

implies.

Let us now use firm subindices for clarity. There are  firms in a mar-

ket. Under competition, LP proposed to use the unconditional demand for

a variable input that we can get from solving the system of FOCs of the

firm, that is  = (   ) Assuming a common output price

 and with common input prices, it can be written as the (time varying)

 = ( ) relationship If the firms have market power, the solution

of the system of first order conditions is going to produce the condition of

equilibrium  = (  ) that simplified assuming input
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prices common across firms becomes  = ( ).

What is in? Let us assume for economy of notation that competition,

both in quantities and prices, happens with product differentiation.11 Under

product differentiation firm  demand is ∗ = ( ), where  is the

vector of  prices and  is a vector of unobserved correlated heterogeneity of

demand (observable heterogeneity  can always be easily included). Assume

that the demand system can be inverted,  = −1
 (

∗ ) where ∗ is the
vector of quantities Revenue is 

∗
  If the firm competes in quantities,

 = +∗
−1
∗

+ ( 
∗
  ) and, if the firm competes in prices,

we can write the implicit  =  + (
∗
 +  ( 

∗
  ))

³




´−1


In both cases  (·) represents a function.
There are two problems implied by these expressions. The first is that

they depend in an unspecified way on the market behavior of firms. In the

absence of an specific firms’ conduct, we do not have a function of observed

variables but only a correspondence. Different (·) values can be associ-
ated to exactly the same  or 

∗
 , depending on behavior in the market. See

Appendix B for a simple example.

The second problem is the presence in the expressions of ∗   and the

derivatives
−1
∗

and



. ∗ and  are non observable (we obseve the actual

product ). Maybe we can use 
∗
 = ( ) and have( , )

but notice that in general  and  are vectors, the second the vector of 

unobserved variables. We can try also using ∗ = (
∗
−) or  = (−)

where(·) are the corresponding best response functions. But these reaction
functions also include unobservables and are behavior specific.

Of course it is possible to obtain expressions in terms of observables by

simplifying the cases of behavior and with specific assumptions on symmetry

of the firms and their behavior. For example, it is very popular to assume

that competition is monopolistic and the elasticity of demand constant and

equal for all firms. Under these assumptions  = (1 − 1

) where 

represents the (absolute value) of the elasticity of demand. A discussion of

possible behavior restrictions and assumptions of symmetry across oligopoly

models is carried out in Ackerberg and De Loecker (2024). They are able

to reduce significantly the information requirements but, for example, they

11The discussion can be easily extended to the case of homogeneous product. We take

as reference the market power models in Vives (1999).
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confirm that there cannot be unobserved characteristics if products are dif-

ferentiated, as Doraszelski and Jaumandreu (2021) pointed out in relation to

the correlated unobserved demand heterogeneity.

A compact way to think of the models that are possible is the follow-

ing. Start with the output-conditional demand for the variable input  =e(   ∗  ) that with common input prices can be written  =e( 
∗
  ) Use the (sales) market share of the firm  divided by  to

express the production of the firm as a function of the market aggregate sales

, ∗ =


 If  is only a function of ( ), the demand for the input

can be expressed as a time varying function  = (  )

This is close to what the standard application of OP/LP assume to be the

arguments of the input demand to be inverted, except for the output price.

But note that we have obtained the expression assuming that firms cannot be

unequal because input price differences, suppressing unobserved correlated

demand heterogeneity, and/or asymmetric behavior. It is discarding other

factors of efficiency other than  before starting the investigation. In general

we want to avoid this.

The central question is whether it is possible to estimate the production

function without taking a stance on how is competition. Estimate without

having to assume things like whether competition is in prices or quantities,

firms either take the rivals actions as given or collude, collusion is either with

all or with part of the rivals, some firms have a particular type of advantages

or not, ...and so on. The answer is yes, it is possible.

To see why notice that, in equilibrium, a short-run profit maximizing firm

equates marginal revenue and marginal cost, so

(  ) =(  
∗
  )

On the left hand side, the expression depends on the particular specification

of conduct. The right hand side, on the contrary, picks up a specific single

value under quite general conditions.12 It singles out a unique marginal cost

(·) for each set of values of the arguments (we have specified possibly
varying input prices for the sake of generality). We can even accommodate

labor market power and labor-augmenting productivity by considering the

price  ∗ = (1 + ) exp() with the unobservables replaced. If we have

 we have what has been called a "sufficient statistic," a variable that

contains all the relevant information of the conduct and demand conditions.

12These conditions are basically convexity assumptions on the technology of the firm.
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6 A test for market power

Since applying procedures of estimation that are robust to market power

limits the choices, it is worthy to have a readily available method that allows

for testing the presence of market power. We have developed in section 3 the

estimators that can serve to construct a test for martket power.

The linear cost-share OP/LP estimator is based on replacing  by 

and approximating  by   It is hence consistent when the firm has

market power because it is based on the formulas for cost minimization. It is

an estimator fully robust to market power in the product market, that can be

robustified to market power in input markets by means of its specification.

On the other hand, a revenue-share OP/LP is not consistent in the pres-

ence of market power, even in a linear version, because it is based on the

price of the firms, that under market power diverges from marginal cost.

We can test the null of no market power, in which both estimators are

consistent, against the alternative of market power, under which the revenue-

share estimator is not consistent, while the linear cost-share estimator re-

mains consistent.

In practice, both estimators only differ in the alternative use of the cost or

revenue shares of the input, and the need to specify the short-run elasticity

of scale in the first. Furthermore, if  is a constant, the difference collapses

to only the use of a different regressor, making very easy the appplication of

the test.

EXAMPLE Assuming that the production function is Cobb-Douglas, the

two regressions to run are

 = 0 + −1 + ( − −1) + ( − −1) + (− −1) +  ln−1 + 

 = 00 + −1 + ( − −1) + ( − −1) + (− −1) +  ln
−1 + 

where we want to compare the estimates for    and   ¨
A Hausman (1978) specification test, or a Durbin-Wu-Hausman test, can

be seen as a test of the equality between the parameter estimates under

two methods of estimation that are consistent under the null. Following

Wooldridge (2010), we set a quadratic form of the differences in the parame-

ters (b − b) using the inverse of a robust estimate of [
√
(b −b)] =  + − ( + 0) See Appendix C on the computation of these

matrices. Under the null, we have

(b − b)0[√(b − b)]−1(b − b) ∼ 2()
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where the  degrees of freedom are the number of parameters being tested.

7 Estimating under market power

An estimator that is robust with respect to market power is an estimator

that is consistent whatever are the details of the game that firms play in

the market. DP is robust to market power but OP/LP is not. DP is robust

to market power because doesn’t use any FOC which changes when market

power replaces competition. OP/LP is not robust because the usual spec-

ification, based on the first order conditions under market power, needs to

model marginal revenue . For modeling  in a tractable way some

particular games and strong symmetry conditions must be assumed.

However, there is a feasible OP/LP that always is possible. It consists

of proxying MC by AVC and the short-run elasticity of scale, taking into

account that this replacement leaves in the expression the error of the pro-

duction function and the Markov process must be assumed to be linear for

consistency. This linear estimator, that we have called cost-share OP/LP

estimator, is robust to market power.

To summarize the properties of the DP and linear cost-share OP/LP

estimators under market power, we can formulate the following

THEOREM Under market power, and no unobservables in the FOCs

additional to , the dynamic panel estimator and the linear cost-share

OP/LP estimators are both consistent, and their estimates must only differ

by sampling error. With any unobservable in the FOCs, the linear cost-share

OP/LP estimator loses its consistency while the the dynamic panel estimator

retains it.

Proof

That DP is always consistent under market power follows directly from

the fact that the estimator doesn’t need to assume anything about the vari-

able input FOCs. That the linear cost-share OP/LP estimator is consistent

follows from the FOCs under market power with short-run profit maximiza-

tion. Since under profit maximization  = we have


 ()


exp() = 

that are also the conditions for cost minimization of variable cost. Hence we
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can use the inversion

 =  −− ln  ()


=  − +  + ln  − ln  ()


− 

where in the second equality we use the property  = − ∗− ln  shown
in the lemma of section 4 for  = 1 (no FOC unobservables other than).

Similarly to proposition 2 we can rewrite this expression lagged as

−1 = −1 − (−1) + ln
−1−1
−1

− −1

where ln
−1−1
−1

= 0. It follows that the dynamic panel estimator and the

linear cost-share estimator should only differ by sampling error.

To see that the linear cost-share estimator loses its consistency in the

presence of any FOC unobservable we can reintroduce the unobservables

(1 + ) in the FOCs. This implies that  = ln  +  − ∗ − ln  and
ln

−1−1
−1

= − ln   an unobservable that the form of estimation (paramet-
ric or ACF) cannot eliminate. ¨
Let us summarize how to estimate under market power. In perfect com-

petition it was the price that measured marginal cost. Now under market

power, if we want to estimate using the OP/LP method, we have to directly

deal with marginal cost. We need to replace marginal cost by the observables

variable cost and output (that makes average variable cost up to an error),

and specify the short-run elasticity of scale. This collapses to an expression

that simply adds the term ln
−1−1
−1

to the DP specification.

The OP/LP estimator can be specified either by extending DP with the

term ln
−1−1
−1

or, in the ACF manner, including the inputs and all variables

relevant to the demand for the input z in a first nonparametric step. When

the production function is not a Cobb-Douglas this can simplify notably the

estimation. In practice it projects the expression ln
−1−1
−1

on the set of

variables z (see section 4), what can smooth the bias when there is one.

8 A specification test

The previous theorem is not only important in itself, it suggests a powerful

way to test the specification used under market power.
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However, to transform the theorem in an specification tool we need to

consider also another reason by which DP and the linear cost-share OP/LP

may diverge. Until now we have assumed that (x) was well specified, with

the consequence that the theorem concludes that under market power and

no FOC unobservables DP and OP/LP must only diverge due to sampling

error. Now we want to encompasss also possible mistakes of specification.

The production function in itself can be not well specified, and this affects

both the production function and the FOC.

To take the most relevant example of mispecified production function,

think of the case of biased technological progress, LAP say. Now the relevant

labor is ∗ = +, the production function is ( 
∗) and the labor FOC

is 
 (x∗)
∗ exp() =  The DP estimator consistency fails because of

the production function specification, and the consistency of the OP/LP

estimator because both the specification of the production function and the

presence of the unobservable in the labor FOC. DP and OP/LP are going to

diverge and both are inconsistent.

Adopting this broader perspective, the situation under market power can

be summarized as follows. On the one hand, both estimators can be incon-

sistent because the production function is not well specified. On the other

hand, if the production function is well specified and the FOC contain no un-

observables additional to, DP and the OP/LP must only diverge due to

sampling error. Hence, an specification test based on the equality of the co-

efficients of the two estimators, this time DP and OP/LP, is again available.

Under the null both estimators are consistent, under the alternative either

both estimators are inconsistent or only the OP/LP estimator (because only

the FOCs fail) is inconsistent.

When there is market power, starting the estimation of the production

function with this test is an easy and convenient way to work on the specifi-

cation. If DP and OP/LP coincide and the test is passed, the researcher has

the statistical evidence that a necessary condition for consistency is met. Of

course this doesn’t automatically ensure consistency and hence the specifi-

cation may be still worked and improved.

However, if the test is not passed (DP and OP/LP diverge) we are sure

that one of two things is happening: either the production function specifi-

cation is wrong or there are unobservables in the FOCs. It is crucial to know

it in order to address the effort to detect the origin of the problem.

EXAMPLE Assuming that the production function is Cobb-Douglas, we
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can run the DP and linear cost-share OP/LP regressions

 = 0 + −1 + ( − −1) + ( − −1) + (− −1) + 

 = 00 + −1 + ( − −1) + ( − −1) + (− −1) +  ln−1 + 

and compare the estimates for    and   ¨
The test can be constructed again setting a quadratic form of the differ-

ences in the parameters (b − b ) and using the inverse of a robust
estimate of [

√
(b − b )] =  +  − ( +  0) (see

Appendix C). Under the null, we have

(b − b )0[√(b − b )]−1(b − b ) ∼ 2()

where the  degrees of freedom are the number of parameters being tested.

9 Estimating the production function with

firms from the US

(To be rewritten. This section now performs first the specification test and

then the market power test, what matches the previos version of the paper.

We want to reverse the order, presenting first the market power test and then

the specification test)

In this section we show with an example how the DP and OP/LP estima-

tors can start diverging, and come close when the specification fits better the

data. We estimate the production function for the sample of Compustat US

manufacturing firms (1960-2018) used in Jaumandreu and Mullens (2024).

It is a sample of firms belonging to many different markets and times, so we

should expect that they possess various degrees of market power. It is then

important to be robust to the exercise of market power.

The DP estimation and the ACF implementation of the linear cost-share

OP/LP with a Cobb-Douglas specification diverge in the capital elasticity

estimate and in the assessment of the returns to scale. As it is often the

case, for dismay of researchers, DP produces a negative elasticity for capital,

and a short-run elasticity of scale well above unity. However, the ACF imple-

mentation of OP/LP shows up a nicely estimated elasticity of capital and a

more moderated short-run elasticity of scale (although non smaller than one

as well). As odd as it may sound, this is not a sample-specific phenomenon

but a quite typical finding.
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A usual interpretation for the DP behavior is that the differentiation of

the data exacerbates errors in measurement of an otherwise quite persistent

capital. However, a little experimentation shows that the result is very sen-

sitive to the specification. For example, OLS of the Cobb-Douglas in first

differences gives positive coefficients (see Appendix D). If DP is inconsistent

because the production function specification, sections 3 and 4 have shown

that OP/LP cannot be consistent. Recall that we are using the linear cost-

share OP/LP version to ensure robustness in the presence of market power,

and that version basically adds to the DP specification a term that should

be zero.

Hence we need to consider that some reason, related to specification, must

be determining the inconsistency of both estimators. A simple inspection of

the labor shares shows that the elasticity of labor must have been falling over

time and the Cobb-Douglas specification fails in picking up this character-

istic. When labor-augmenting productivity is allowed into the specification,

by enlarging the Cobb-Douglas to a translog with elasticity of substitution

less than unit that admits falling labor shares, both estimators coincide.

The conclusion is that the divergence of the estimators was detecting

the mispecification of the production function, and that the redressement of

this mispecification allows the estimators to provide the same answer. Notice

that the linear cost-share OP/LP has been useful to fix the consistency of DP

and hence to assess the consistency of both estimators in a new specification.

This can be a good starting point for the researcher try to further improve

the specification keeping the equality of the two estimators.

In what follows, we explain in detail how the above exercise is done.

Column (1) of the Table reports the results of applying the DP estimator

to the Cobb-Douglas specification. The estimator proceeds as follows. Un-

der the assumption that Hicks-neutral productivity  follows an (1) of

parameter  and innovation , it can be written that

 =  +  +  +  (7)

+[−1 − −1 − −1 − −1] +  +  − −1

We estimate this equation by nonlinear GMM using as instruments the (con-

stant and) time dummies, the input variables  −1 −1−1 and the
(real) input prices −1 − −1 and −1 − −1 This is a fully standard
choice of instruments. As we have to estimate (in addition to the constant

and time dummies) the four parameters     and  the instruments

provide two overidentifying restrictions.
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The result is not nice: the elasticity of capital turns out to be negative,

the elasticity of labor very large and the short-run elasticity of scale, the sum

of  +   above 11 Economic theory tells us that it is not realistic that

when changing in the short-run the variable factors we encounter increasing

returns to scale (although unfortunately this is a quite usual result that is

reported without further comments).

Column (2) reports the results of computing the linear cost-share OP/LP,

implemented by means of the ACF method, applied to the Cobb-Douglas. In

a first stage, we regress  non parametrically (using a complete polynomial

of order 3) on the five variables   − and − From the

result of this first step we compute the estimate b(−1 −1−1 −1 −
−1 −1 − −1) that we use in forming the second step equation

 =  +  +  +  (8)

+[b−1 − −1 − −1 − −1] +  + 

As we try to emphasize with our notation, equations (7) and (8) are very

close. They only differ, in addition to the component of the error −−1
in that the nonparametric estimate b−1 has replaced −1
If we have decided to use the demand for materials to construct the proxy

for , the application of the analysis of section 4 tells us thatb−1 − −1 − −1 − −1 =

−1 − −1 − −1 − −1

+(ln
−1


|−1 −1−1 −1 − −1 −1 − −1)− −1

Hence, everything is like we were adding into the bracket of the DP estimator

the expression corresponding to the nonparametric prediction of the share

−1 In the second step of the ACF implementation we use the instruments
 −1 −1−1 and b−1 what implies one overidentifying restriction.
The results reported in column (2) show the outcome. The addition

(the nonparametric prediction of the share) helps to redress two things with

respect to the DP results. The elasticity of capital becomes positive, and the

short-run elasticity of scale falls.

We obviate in the table the parametric OP/LP estimator, the estimator

that simply introduces the share ln in the regression (you can check it in

Appendix D). The reason is that the estimation is always likely to diverge
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less when we include the nonparametric prediction of the share. At this

stage, what we are interested is wether DP and OP/LP should be taking

as producing the same estimate. So it is enough to employ the popular

nonparametric OP/LP estimator since it already shows the difference.

It is apparent that DP and OP/LP are giving different answers to the

estimation of the production function. The researcher may be puzzled why

two theoretically consistent estimators give very different results. The expla-

nation that we develop next is that both estimates are in fact inconsistent

because there is a shortcoming in the specification of the production function.

Columns (3) and (4) change the basic specification of the production

function. Now we estimate a multiproductivity production function. We use

the simplest production function that admits labor-augmenting productivity,

a translog separable in capital and homogeneous of degree  in labor and

materials (we follow Doraszelski and Jaumandreu, 2019).13 Because it is

homogeneous in labor and materials it depends on the log-ratios materials

to labor, but these log-ratios exhibit unobserved labor-productivity,

 = 0++−(−−)−1
2
(−−)

2++

Using the ratio of first order conditions for labor and materials, we derive

an expression to be substituted for these ratios,  −  −  = −

+



∗ with ∗ =  − 


 and where  is a guess for the mean of

labor-augmenting productivity.14 Hence, the production function becomes a

function of observables in which, to control for Hicks-neutral productivity, we

can apply easily both the DP estimation procedure and the OP/LP method.

The DP estimator is obtained by applying nonlinear GMM to the equation

 = 0 +  +  +  − 1
2

2


∗2 (9)

+[−1 − −1 − −1 +
1

2

2


∗2−1] +  +  − −1

where the expression is written in a similar format to the previous estimators

for the sake of comparability. To estimate this more nonlinear equation we en-

large the instruments with the squares of the inputs and input prices, and we

13See for more detail Jaumandreu and Mullens (2024).
14We use  =  −  This specification only estimates directly parameter  and the

elasticities  and  are determined by the implications  =  and  = (1−)
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add the lagged share of labor cost in variable cost:  
2
 −1 

2
−1−1

2
−1 −1 − −1 (−1 − −1)2 −1 − −1 (−1 − −1)2 and

−1 This gives eleven instruments and we hence have seven overidentifying
restrictions.

To estimate the nonparametric ACF version of the OP/LP estimator we

first again regress  non parametrically on the variables   −
and  −  From the result of this first step we compute the estimateb(−1 −1−1 −1 − −1 −1 − −1) that we use it in form-
ing the second step equation. In the second step we use the instruments

 −1−1 b−1 and −1 so that we have one overidentifying restric-
tion.

The results for the new DP and OP/LP, reported in columns (3) and (4)

respectively, clearly indicate that now they give basically the same estimate

of the production function.

To check statistically that this is the case we apply the specification test.

We construct a quadratic form of the elasticity of capital and the elasticity

of scale, using as weight the inverse of a robust estimator of the asymptotic

variance of the difference between the coefficients ( −  ) see Ap-

pendix C. The test doesn’t reject that the quadratic form is distributed as

a 2 with 2 degrees of freedom, and hence that the differences now can be

interpreted as coming from sampling error.

We want to confirm that it has been relevant to use the linear cost-share

OP/LP estimator, that in effect we cannot reject the presence of market

power. To check this we compare two parametric versions of OP/LP by

means of an specification test. On the one hand the estimator that uses

price, as in equation (9), presuming that is equal to MC. On the other hand,

the estimator that proxies MC as in equation (12). It can be shown that,

in the case of the translog specification, this simply amounts to include in

the first estimator the ratio price/average variable cost of the firms. The

resulting 2(2) shows a strong rejection of the null of perfect competition

(see Appendix D).

Notice that in columns (3) and (4) both the elasticity of capital and the

short-run elasticity of scale are sensible. The elasticity of capital is greater

than with the Cobb-Douglas specification, and the estimate of the elasticity

of scale is in the range 079 − 083 what clearly improves the unrealistic
constant returns to scale for the variable inputs estimation of column (2).

No estimator produces a clear better estimation than the other when rightly
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specified. From here on, the researcher can focus on improving other aspects

of the estimation, as accounting for input market power, introduce the effect

of adjustment cost of the variable inputs, or experiment with the way to

deflate output and materials.

10 Concluding Remarks

The production function is not affected by market power, but the estimators

that employ an auxiliary FOC that includes a derivative of the production

function are sensitive to the form of the FOC under market power. DP is an

estimator robust to market power because doesn’t use any FOC. However,

the OP/LP approach cannot be generally robust to market power because

marginal cost, that summarizes all relevant effects of the strategy of the

firm and its demand, can at most be replaced by average variable cost plus

the uncorrelated error that characterizes the production function. Linearity

of the productivity process, however, doesn’t allow the error to affect the

estimation. This gives an OP/LP that is feasible under market power that

we have called the linear cost-share OP/LP.

The linear cost-share OP/LP adds to DP the (log) difference between the

observed variable cost share and the normalized elasticity of the input whose

demand is inverted to the equation used by DP. It can be also implemented

nonparametrically as in ACF. In theory, with this addition we should have

exactly the same estimate because, if the production function is right, the

theoretical value of the expression is zero. If the estimators diverge, either

the production function specification is wrong or there is a problem in the

specification of the FOC. This gives us a test for the specification.

The researcher who wants to estimate the production function under mar-

ket power may first test if market power is relevant. If market power is rel-

evant, it is convenient to start by estimating both the DP and the feasible

OP/LP estimators, and testing the equality between them. This still doesn’t

ensure that both estimators are consistent, although we know that they are

meeting the necessary condition (of being equal) for consistency. Further

work of specification with the two models can warrant consistent estimation

under market power.

We have shown how this works with an example of estimation of the

production function for a sample of US manufacturing firms. The naive

Cobb-Douglas specification of the production function produces a negative
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elasticity for capital and a too large short-run elasticity of scale with the DP

estimator. Recognizing LAP in addition to Hicks-neutral productivity, and

allowing it into the specification, induces a matching of DP and the liner

cost-share OP/LP under market power that passes the specification test.

We have some extensions in mind. It would be nice to explore less restric-

tive production functions in the context of robustness to market power. A

first objective would be estimating the translog allowing for the variation of

the short-run elasticity of scale. A complementary possibility would be relax-

ing the separability of capital, something that has been shown parametrically

possible under the translog specification by Zhao, Malikov and Kumbhakar

(2024). Another, more ambitious extension, would be the estimation of a

fully nonparametric production function with a flexible specification of the

input-biased productivities. We leave these extensions for next research.
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Appendix A: Identification

Assume the timing and information conditions of the text, and suppose

(worst case) that the price of the variable inputs and the price of the output

are constant. The FOC to be used by an OP/LP procedure becomes −1 =
1 − ln  (−1)

−1
= (−1; 1 1) where 1 and 1 represent the constant and

the parameters of the derivative. The model to be estimated can be written

as

 = (; 0 ) + ((−1; 1 1); 2) +  + 

where  are the parameters of the production function and 1 ⊂  If we are

in a strictly nonparametric setting,  1 and 2 are infinite-dimensional. If

we want to approximate the nonparametric relationship by a flexible form,

the ideal procedure for estimation is nonlinear GMM ( and  are correlated

with ) and identification basically depends on the relationship between pa-

rameters and moments.

Assume that we want to make an approximation to () based on a

complete polynomial of order 3 (the most used approximation) and  has 

inputs. The number of parameters in (0 ) is 1+2+
(−1)
2
+2+

(−1)(−2)
6



If  = 3 this gives us 20 parameters (the first is the constant). If we decide

to estimate (·) also by means of three powers, we have to estimate a total
of 23 parameters. Using the constant and the vector ( −1−1) we can
form 20 moments. Adding the new moments that we can form using −1
and interacting it with −1 and −1 we have 10 more. We hence have 7
overidentifying restrictions.

As long as we do not have perfect collinearity between the quantities of

two inputs we should be fine identifying the production function.

Appendix B: Conduct specification

Let us suppose for simplicity 2 firms (the industry can have, for example,

2 of each type). We drop the asterisk from the quantities ∗ for economy
of notation. We also abstract from heterogeneity of demand. Firms 1 and 2

have demands

1 = 
−
1 


2 

2 = 
−
2 


1 
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and costs 1(1) and 2(2) Inverse demands are

1 = 
−∗
1 

−∗
2 

2 = 
−∗
2 

−∗
1 

where ∗ = 

2−2 and ∗ = 

2−2  Firm  maximizes

 +  =  − () + ( − ())

where  is an exogenous conduct parameter. If firms compete in prices

( + )


=  − 





+ 
0






+ [





− 
0






] =

=  − ( − 
0
) + ( − 

0
)




= 0

and if they compote in quantities

( + )



=  − ∗





− 
0
 − ∗





= 0

Using symmetry, is easy to see that  = (1− 1
(1−


)
) = 

0
 under

price competition and  = (1 − 

2−2 (1 + 


)) = 

0
 under quantity

competition. If  = 1 both marginal revenues coincide in 
1

−  the unique
total collusive solution. If  = 0 Cournot with (1 − 1

(1−( 

)2)
) is less

competitive than Bertrand, which gives (1 − 1

) If 0    1, quantity

competition is less competitive than price competition.

The point is how  changes with conduct, in this case the type of

competition and the unobservable exogenous parameter 

Appendix C: Specification tests

A Hausman (1978) specification test, or a Durbin-Wu-Hausman test, can

be seen as a test of the equality between the parameter estimates under

two methods of estimation that are consistent under the null. The alter-

native is in our case that either one method or the two are inconsistent.

Following Wooldridge (2010), we set a quadratic form of the differences in

the parameters (b − b ) using the inverse of a robust estimate of
[

√
(b − b )] =  +  − ( +  0)
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Let   =  To estimate  we useb = ( b0


b)
−1 b0


bΩ

b( b0


b)
−1

with b0
 = −1P



(
0
b)


  = −1P
 

0
 and bΩ = −1P

 
0
bb0

To estimate b we useb = ( b0


b)
−1 b0


bΩ

b( b0


b)
−1

where bΩ = −1P
 

0
bb0 Hence [ (b − b ) = (b +b − ( b + b 0))

Under the null, we have

(b − b )0[√(b − b )]−1(b − b ) ∼ 2()

where the  degrees of freedom are the number of parameters being tested.

Appendix D: Additional regressions and test

Table AD reports a few complementary estimates and test. Column (1)

reports the result of carrying out an OLS estimation of the Cobb-Douglas

specification in first differences. Although the coefficient on capital is small,

it is positive and statistically significant.

Column (2) shows the result of computing the parametric OP/LP speci-

fication with a Cobb-Douglas production function. Although the coefficient

on capital tends to raise, the log of  (materials share in variable cost)

minus an (implicit) constant is determining residuals highly negatively cor-

related with labor and positively with materials. This is in fact a sign of the

presence of the non accounted labor-augmenting productivity.

In column (3) it can be appreciated how much the regression changes

with the translog multiproductivity specification estimated by a parametric

OP/LP based on proxying MC, and in column (4) how much the result is

perturbed by the introduction of the price (implemented by the addition

of the log of the price/average variable cost ratio). The null hypothesis of

perfect competition is strongly rejected.

Column (5) reports the results of the estimation of a nonlinear nonpara-

metric OP/LP. Recall that this is a theoretically inconsistent estimator. Al-

though the coefficients modeling the nonlinear productivity process are sen-

sible, the coefficient on capital and the short-run elasticity of scale (1041)

ressemble the values obtained with the CD specification. The elasticity of

substitution is also very low.
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Table: The equality of DP and OP/LP estimators as a test for the specification

US manufacturing production function estimation,

firm-level sample, Compustat, 1960-2018.

Cobb-Douglas with neutral producticity Translog multiproductivity

Nonparametric Nonparametric

Parameter DP (ACF) OP/LP DP (ACF) OP/LP

(1) (2) (3) (4)

 1.022 1.018 1.019 1.014

(0.002) (0.004) (0.002) (0.005)

 -0.023 0.061 0.144 0.166

(0.010) (0.020) (0.041) (0.076)

 0.486 0.486 0.226 0.239

(0.020) (0.050) (0.064) (0.109)

 0.622 0.532 0.561 0.594

(0.014) (0.024) (0.064) (0.109)

 0.111 0.153

(0.016) (0.037)

 0.553 0.489

Specification test

2() 5.356 (2)

−  0.069

Overidentifying restrictions 2 1 7 1

Function value 8.043 0.701 59.669 4.476

No. of firms 5621 5621 5621 5621

No. of observations 65006 65006 65006 65006



Table AD: Complementary estimates and test

US manufacturing production function estimation,

firm-level sample, Compustat, 1960-2018.

Cobb-Douglas Translog multiproductivity

OLS in Parametric Test of maket power Nonlinear

Parameter differences OP/LP Marginal cost Price nonparametric OP/LP

(1) (2) (3) (4) (5)

 0.986 1.035 0.958 0.545

(0.004) (0.004) (0.004) (0.201)

2 0.245

(0.090)

3 -0.032

(0.012)

 0.027 0.104 0.170 -0.421 0.052

(0.009) (0.068) (0.044) (0.112) (0.113)

 0.339 -1.569 0.238 0.732 0.299

(0.003) (0.182) (0.055) (0.255) (0.156)

 0.555 2.916 0.593 1.825 0.742

(0.002) (0.102) (0.055) (0.255) (0.156)

 0.056 0.337 0.243

(0.006) (0.054) (0.066)

 0.431

Specification test

2() 66.566

−  0.000

Overidentifying restrictions 2 7 7 1

Function value 99.349 130.980 971.789 0.180

No. of firms 5621 5621 5621 5621

No. of observations 65006 65006 65006 65006


