Design-based causal inference in bipartite experiments

Peng Ding

UC Berkeley, Statistics

joint work with Sizhu Lu, Lei Shi, Wenxin Zhang (Berkeley) and Yue Fang (CUHK Shenzhen)

https://arxiv.org/pdf/2501.09844

Outline

Motivation

Causal inference framework for bipartite experiment

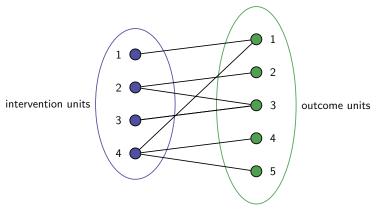
Point estimation — Hajek estimator

Covariate adjustment

Simulation based on a real data example

Discussion

Bipartite graph and bipartite experiment



- Partition the units into "intervention units" and "outcome units"
- They are connected via a bipartite graph
- Randomly assign the treatment over "intervention units"
- Measure the outcomes of "outcome units"

Examples of bipartite experiment: part I

- Trivial example: standard randomized experiment
 - "intervention units" = "outcome units"
- Not so trivial example: cluster-randomized experiment
 - "intervention units" = clusters, e.g., classrooms or villages
 - "outcome units" = individuals, e.g., households or students
 - each cluster can be connected to multiple individuals, whereas each individual can be connected to only one cluster
- Can view bipartite experiment as generalization of cluster experiment
 - each intervention unit can be connected to multiple outcome units
 - each outcome unit can be connected to multiple intervention units

Examples of bipartite experiment: part II

- ▶ Install NOx reducing system \rightarrow hospitalization rate
 - ▶ intervention units = power plants, installation or not
 - outcome units = neighborhoods, hospitalization rates
 - ► Zigler and Papadogeorgou (2021)
- lacktriangle Launch a new Facebook Group feature ightarrow user engagement
 - ▶ intervention units = Facebook Groups, new feature or not
 - outcome units = users, engagement
 - ► Shi et al (2024)
- lacktriangle New pricing mechanism ightarrow customer satisfaction
 - ▶ intervention units = Amazon items, new pricing or not
 - outcome units = customers, satisfaction level
 - ► Harshaw et al (2024)

Outline

Motivation

Causal inference framework for bipartite experiment

Point estimation — Hajek estimator

Covariate adjustment

Simulation based on a real data example

Discussion

Potential outcomes and total treatment effect

- ▶ m intervention units, treatment Z_k , k = 1, ..., m
- ightharpoonup n outcome units, outcome Y_i , $i = 1, \ldots, n$
- ▶ Potential outcome $Y_i(z)$, where $z = (z_1, ..., z_m) \in \{0, 1\}^m$
- Total treatment effect a policy-relevant parameter

$$\tau = n^{-1} \sum_{i=1}^{n} \{ Y_i(1_m) - Y_i(0_m) \}$$

- what if all intervention units receive treatment versus control?
- reduces to standard ATE $\tau = n^{-1} \sum_{i=1}^{n} \{Y_i(1) Y_i(0)\}$ if intervention units = outcome units and SUTVA holds

Simplifying the potential outcomes: bipartite interference

- \triangleright Each unit has 2^m potential outcomes: too many to make progress
- ▶ Need to simplify potential outcomes based on the bipartite graph
- ► Features of the bipartite graph
 - ▶ adjacency matrix $G \in \{0,1\}^{m \times n}$: $G_{ki} = 1$ if outcome unit i is connected to the intervention unit k
 - lacktriangle outcome units connected to intervention unit k: \mathcal{G}_{k+} with $|\mathcal{G}_{k+}| = \mathcal{G}_{k+}$
 - lacktriangle intervention units connected to outcome unit $i:~\mathcal{G}_{+i}$ with $|\mathcal{G}_{+i}|=\mathcal{G}_{+i}$
- lacktriangle Assume "bipartite interference": $Y_i(z) = Y_i(z_{\mathcal{G}_{+i}})$ with subvector $z_{\mathcal{G}_{+i}}$
- ▶ Total treatment effect: $\tau = n^{-1} \sum_{i=1}^{n} \{ Y_i (1_{G_{+i}}) Y_i (0_{G_{+i}}) \}$

Treatment assignment in bipartite experiment

We focus on Bernoulli randomization over the intervention units:

$$Z_1, \ldots, Z_m$$
 are IID Bernoulli(p)

- Slightly different from complete randomization: minor difference due to Hajek's coupling argument (Hajek 1960)
- ▶ Possible extension to heterogeneous $Z_k \sim \text{Bernoulli}(p_k)$
 - \triangleright p_k varies across intervention unit k, e.g. stratified randomization
 - more general observational studies

Outline

Motivation

Causal inference framework for bipartite experiment

Point estimation — Hajek estimator

Covariate adjustment

Simulation based on a real data example

Discussion

Hajek estimator

- Recall $au = n^{-1} \sum_{i=1}^n \{ Y_i(1_{G_{+i}}) Y_i(0_{G_{+i}}) \}$
- lacksquare Hajek based on inverse probability weighting: $\hat{ au}=\hat{\mu}_1-\hat{\mu}_0$, where

$$\hat{\mu}_{1} = n^{-1} \sum_{i=1}^{n} \frac{T_{i} Y_{i}}{p^{G_{+i}}} / n^{-1} \sum_{i=1}^{n} \frac{T_{i}}{p^{G_{+i}}}$$

$$\hat{\mu}_{0} = n^{-1} \sum_{i=1}^{n} \frac{C_{i} Y_{i}}{(1-p)^{G_{+i}}} / n^{-1} \sum_{i=1}^{n} \frac{C_{i}}{(1-p)^{G_{+i}}}$$

- $ightharpoonup T_i = \prod_{k \in G_{+i}} Z_k, \ C_i = \prod_{k \in G_{+i}} (1 Z_k)$: "all treatment", "all control"
- $ightharpoonup p = \text{probability of } Z_k$'s
- $ightharpoonup G_{+i} = \text{number of intervention units connected to outcome unit } i$
- Horvitz—Thompson estimator: no denominator, poorer performance, simpler asymptotic analysis

Asymptotic properties of the Hajek estimator

- What does asymptotics mean in bipartite experiments?
- m diverges to infinity: a sequence of finite populations
 - ightharpoonup design-based inference: randomness driven by Z_k 's
 - we need enough randomness from the treatment indicators
 - n grows as m grows: n depends on m
 - bipartite graph grows with dimensions (m, n) grow
- lacktriangle Intuitively, we must have enough units with $T_i=1$ and $C_i=1$
 - this depends on the sparsity of the bipartite graph
 - more precise characterization later
- Bounded covariates and potential outcomes: can be relaxed; not the most interesting part of the problem

Consistency of the Hajek estimator

- ightharpoonup $\hat{ au}$ converges to au if
 - ▶ $\max_{1 \le i \le n} G_{+i} = O(1)$: Max # intervention units connected to any outcome unit is bounded by a constant (no "super influenced")
 - ▶ $\max_{1 \le k \le m} G_{k+}/n = o(1)$: Max # outcome units connected to any intervention unit diverges more slowly than n (no "super influencer")
- Standard proving strategy based on variance calculation and Markov
- Reasonable assumptions for the power plant example
- ightharpoonup Without these assumptions, we might have to move away from au or impose additional structural assumptions (e.g., Harshaw et al 2024)

Asymptotic normality of the Hajek estimator

$$v_n^{-1/2}(\hat{ au}- au) o \mathcal{N}(0,1)$$
 if further

- ▶ $\sum_{\ell \in [m] \setminus \{k\}} \mathbb{1}\{k, \ell \text{ are connected via an outcome unit}\} \leq B$ for all $k = 1, \ldots, m$, where B is an absolute constant
 - ▶ B can diverge slowly but it is a technical issue
 - this is a sparsity condition on the bipartite graph
 - reasonable for the power plant example
 - ▶ if not reasonable, we might need alternative estimands and estimators
- ▶ $m^{-1/2}(\max_{1 \le k \le m} G_{k+}/n)^{-2}v_n \to \infty$ with v_n defined on next page
 - ▶ $\max_{1 \le k \le m} G_{k+}$ does not diverge to ∞ too fast
 - \triangleright variance v_n does not converge to 0 too fast
 - more transparent in special cases; see below
- ightharpoonup Proof: martingale central limit theorem for polynomials of Z_k 's

Asymptotic variance formula of the Hajek estimator

- ► Centered potential outcomes $\tilde{Y}_i(z) = Y_i(z) n^{-1} \sum_{i=1}^n Y_i(z)$
- $lackbox{Vectorized potential outcomes } ilde{Y}(z) = (ilde{Y}_1(z), \ldots, ilde{Y}_n(z))^{\mathrm{T}}$
- ▶ $n \times n$ matrices related to the bipartite graph:

$$(\Lambda_1)_{i,j} = \rho^{-|\mathcal{G}_{+ij}|} - 1, \quad (\Lambda_0)_{i,j} = (1-\rho)^{-|\mathcal{G}_{+ij}|} - 1, \quad (\Lambda_{\tau})_{i,j} = \mathbb{1}\{\mathcal{G}_{+ij} \neq \varnothing\}$$

where $\mathcal{G}_{+ij} = \mathcal{G}_{+i} \cap \mathcal{G}_{+j}$ determines second-order inclusion probabilities

Asymptotic variance formula

$$v_n = n^{-2} \left\{ \tilde{Y}(1_m)^{\mathrm{T}} \Lambda_1 \tilde{Y}(1_m) + \tilde{Y}(0_m)^{\mathrm{T}} \Lambda_0 \tilde{Y}(0_m) + 2 \tilde{Y}(1_m)^{\mathrm{T}} \Lambda_\tau \tilde{Y}(0_m) \right\}$$

Sanity check I: Bernoulli randomization over units

Intervention units = outcomes units:

$$\mathcal{G}_{+ij} = \mathcal{G}_{+i} \cap \mathcal{G}_{+j} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

Recovers Neyman (1923) and Miratrix et al (2012 Theorem 1):

$$v_n = n^{-2}p(1-p)\sum_{i=1}^n \left\{ \frac{\tilde{Y}_i(1)}{p} - \frac{\tilde{Y}_i(0)}{1-p} \right\}^2$$

Condition $m^{-1/2}(\max_{1 \le k \le m} G_{k+}/n)^{-2}v_n \to \infty$ holds if $n^{3/2}v_n \to \infty$ (easy to hold because $v_n = O(1/n)$ under standard assumptions)

Sanity check II: Bernoulli randomization over clusters

Outcome units are clustered within intervention units

$$\mathcal{G}_{+ij} = \mathcal{G}_{+i} \cap \mathcal{G}_{+j} = egin{cases} 1, & ext{if } i,j ext{ belong to the same cluster} \\ 0, & ext{otherwise} \end{cases}$$

Recovers Su and Ding (2021):

$$v_n = n^{-2}p(1-p)\sum_{k=1}^m \left[\sum_{i\in\mathcal{G}_{k+}} \left\{\frac{\tilde{Y}_i(1)}{p} - \frac{\tilde{Y}_i(0)}{1-p}\right\}\right]^2$$

Condition $m^{-1/2}(\max_{1 \le k \le m} G_{k+}/n)^{-2} v_n \to \infty$ holds if $m^{3/2}(\max \text{ cluster size/ave cluster size})^{-2} v_n \to \infty$ (easy to hold because $v_n = O(1/m)$ under standard assumptions)

Variance estimation: identifiability and upper bound

- Crucial for Wald-type inference based on asymptotic normality
- \triangleright v_n involves jointly values of the potential outcomes: not identifiable
- Upper bound based on Cauchy–Schwarz:

$$v_{n,\text{UB}} = (v_1^{1/2} + v_0^{1/2})^2$$

- ightharpoonup where $v_1=n^{-2}\,\widetilde{Y}(1_m)^{\mathrm{\scriptscriptstyle T}}\Lambda_1\,\widetilde{Y}(1_m)$ and $v_0=n^{-2}\,\widetilde{Y}(0_m)^{\mathrm{\scriptscriptstyle T}}\Lambda_0\,\widetilde{Y}(0_m)$
- it follows from $var(\hat{\mu}_1 \hat{\mu}_0) \le (var(\hat{\mu}_1)^{1/2} + var(\hat{\mu}_0)^{1/2})^2$
- ▶ not same as Neyman (1923) but known in complete randomization
- only marginals, identifiable

Estimating the upper bound of the variance

• Estimator $\hat{v}_{n,\text{UB}} = (\hat{v}_1^{1/2} + \hat{v}_0^{1/2})^2$ where

$$\hat{v}_{1} = n^{-2} \sum_{i,j} \frac{T_{i}T_{j}(Y_{i} - \hat{\mu}_{1})(Y_{j} - \hat{\mu}_{1})(\Lambda_{1})_{i,j}}{p^{|\mathcal{G}_{+i} \cup \mathcal{G}_{+j}|}}$$

$$\hat{v}_{0} = n^{-2} \sum_{i,j} \frac{C_{i}C_{j}(Y_{i} - \hat{\mu}_{0})(Y_{j} - \hat{\mu}_{0})(\Lambda_{0})_{i,j}}{(1 - p)^{|\mathcal{G}_{+i} \cup \mathcal{G}_{+j}|}}$$

- Variance estimator involves the second-order inclusion probabilities
- Normal-based Wald-type confidence intervals will be conservative
- When is it not conservative?

$$\tilde{\mathbf{y}}(1_m)^{\mathrm{T}} \boldsymbol{\Lambda}_{\tau} \, \tilde{\mathbf{y}}(0_m) = \{ \, \tilde{\mathbf{y}}(1_m)^{\mathrm{T}} \boldsymbol{\Lambda}_{1} \, \tilde{\mathbf{y}}(1_m) \}^{1/2} \{ \, \tilde{\mathbf{y}}(0_m)^{\mathrm{T}} \boldsymbol{\Lambda}_{0} \, \tilde{\mathbf{y}}(0_m) \}^{1/2}$$

Outline

Motivation

Causal inference framework for bipartite experiment

Point estimation — Hajek estimator

Covariate adjustment

Simulation based on a real data example

Discussion

A class of linearly adjusted estimators

- ▶ Covariates X_i for outcome units i = 1, ..., n
 - ightharpoonup can also be features of the bipartite graph, e.g., G_{+i}
 - center it to simplify the presentation: $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i = 0$
- Linearly adjusted estimator $\hat{\tau}(\beta_1, \beta_0) = \hat{\mu}_1(\beta_1, \beta_0) \hat{\mu}_0(\beta_1, \beta_0)$:

$$\hat{\mu}_{1}(\beta_{1},\beta_{0}) = n^{-1} \sum_{i=1}^{n} \frac{T_{i}(Y_{i} - \beta_{1}^{T}X_{i})}{p^{G_{+i}}} / n^{-1} \sum_{i=1}^{n} \frac{T_{i}}{p^{G_{+i}}}$$

$$\hat{\mu}_{0}(\beta_{1},\beta_{0}) = n^{-1} \sum_{i=1}^{n} \frac{C_{i}(Y_{i} - \beta_{0}^{T}X_{i})}{(1-p)^{G_{+i}}} / n^{-1} \sum_{i=1}^{n} \frac{C_{i}}{(1-p)^{G_{+i}}}$$

- does not change the probability limit because $\bar{X} = 0$
- $ightharpoonup \hat{\tau}(0,0)$ reduces to Hajek; can have better choices of β_1,β_0

Oracle estimator

- Easy to derive asymptotic variance formula $v_n(\beta_1, \beta_0)$: $\hat{\tau}(\beta_1, \beta_0)$ is Hajek for potential outcomes $Y_i(1_m) \beta_1^T X_i$ and $Y_i(0_m) \beta_0^T X_i$
- Minimize $v_n(\beta_1, \beta_0)$ = oracle estimator: v_n involves joint potential outcomes, not identifiable
- ▶ Minimize $n^2\{v_n(\beta_1,\beta_0)-v_n(0,0)\}$, identifiable and quadratic:

$$\begin{pmatrix} \beta_1 \\ \beta_0 \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} X^{\mathrm{T}} \Lambda_1 X & X^{\mathrm{T}} \Lambda_{\tau} X \\ X^{\mathrm{T}} \Lambda_{\tau} X & X^{\mathrm{T}} \Lambda_0 X \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_0 \end{pmatrix} - 2 \begin{pmatrix} X^{\mathrm{T}} \Lambda_1 \tilde{Y}(1_m) + X^{\mathrm{T}} \Lambda_{\tau} \tilde{Y}(0_m) \\ X^{\mathrm{T}} \Lambda_0 \tilde{Y}(0_m) + X^{\mathrm{T}} \Lambda_{\tau} \tilde{Y}(1_m) \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} \beta_1 \\ \beta_0 \end{pmatrix}$$

Oracle estimator exists although it may not be unique

A feasible estimator

▶ An oracle estimator $\hat{\tau}(\tilde{\beta}_1, \tilde{\beta}_0)$ with ("+" denotes the pseudo-inverse):

$$\begin{pmatrix} \tilde{\beta}_1 \\ \tilde{\beta}_0 \end{pmatrix} = \begin{pmatrix} X^{\mathrm{T}} \Lambda_1 X & X^{\mathrm{T}} \Lambda_\tau X \\ X^{\mathrm{T}} \Lambda_\tau X & X^{\mathrm{T}} \Lambda_0 X \end{pmatrix}^+ \begin{pmatrix} X^{\mathrm{T}} \Lambda_1 \tilde{Y}(1_m) + X^{\mathrm{T}} \Lambda_\tau \tilde{Y}(0_m) \\ X^{\mathrm{T}} \Lambda_0 \tilde{Y}(0_m) + X^{\mathrm{T}} \Lambda_\tau \tilde{Y}(1_m) \end{pmatrix}$$

• A feasible estimator $\hat{\tau}(\hat{\beta}_1,\hat{\beta}_0)$ with

$$\begin{pmatrix} \hat{\beta}_{1} \\ \hat{\beta}_{0} \end{pmatrix} = \begin{pmatrix} X^{\mathrm{T}} \Lambda_{1} X & X^{\mathrm{T}} \Lambda_{\tau} X \\ X^{\mathrm{T}} \Lambda_{\tau} X & X^{\mathrm{T}} \Lambda_{0} X \end{pmatrix}^{+} \begin{pmatrix} \sum_{i,j} \frac{\tau_{i} \tau_{j} X_{i} (Y_{j} - \hat{\mu}_{1}) (\Lambda_{1})_{i,j}}{p^{|\mathcal{G}_{+j} \cup \mathcal{G}_{+j}|}} + \sum_{i,j} \frac{c_{i} c_{j} X_{i} (Y_{j} - \hat{\mu}_{0}) (\Lambda_{\tau})_{i,j}}{(1-p)^{|\mathcal{G}_{+j} \cup \mathcal{G}_{+j}|}} \\ \sum_{i,j} \frac{\tau_{i} \tau_{j} X_{i} (Y_{j} - \hat{\mu}_{1}) (\Lambda_{\tau})_{i,j}}{p^{|\mathcal{G}_{+j} \cup \mathcal{G}_{+j}|}} + \sum_{i,j} \frac{c_{i} c_{j} X_{i} (Y_{j} - \hat{\mu}_{0}) (\Lambda_{0})_{i,j}}{(1-p)^{|\mathcal{G}_{+j} \cup \mathcal{G}_{+j}|}} \end{pmatrix}$$

- $\hat{\tau}(\hat{\beta}_1,\hat{\beta}_0)$ and $\hat{\tau}(\tilde{\beta}_1,\tilde{\beta}_0)$ have the same asymptotic distribution as long as $\hat{\beta}_1,\hat{\beta}_0$ converge to $\tilde{\beta}_1,\tilde{\beta}_0$, under some moment conditions
- Analogous estimator for upper bound of variance: $\hat{v}_{n,\text{UB}}(\hat{\beta}_1,\hat{\beta}_0)$

Asymptotic properties of the feasible estimator

- $ightharpoonup \hat{ au}(\hat{eta}_1,\hat{eta}_0)$ is consistent and asymptotically normal
- $ightharpoonup \hat{ au}(\hat{eta}_1,\hat{eta}_0)$ has smaller asymptotic variance than $\hat{ au}$
- Weird issue from design-based inference: true variance and estimate variance differ even in the large-sample limit
 - subtle consequences in complex experiments, e.g. Li and Ding (2020) on "sampling precision" and "estimated precision" in rerandomization
 - $\hat{\tau}(\hat{\beta}_1,\hat{\beta}_0)$ reduces the asymptotic variance but the confidence interval may not be narrower because we can only estimate the upper bound of the variance although this rarely happens; see simulation
 - ightharpoonup can minimize $v_n(\hat{\beta}_1, \hat{\beta}_0)$ under the constraint that the estimated variance is also reduced more complicated to implement

Outline

Motivation

Causal inference framework for bipartite experiment

Point estimation — Hajek estimator

Covariate adjustment

Simulation based on a real data example

Discussion

Power plant example

- Fix the bipartite structure between power plants and nearby areas
- Subsample units to reduce computational burden in simulation
 - ightharpoonup m = 228 intervention units and n = 795 outcome units
 - covariates from the original data of Zigler and Papadogeorgou (2021) and Papadogeorgou et al (2019)
 - true total treatment effect $\tau = -1.266$
- Covariate adjustment improves both true and estimated precision

estimator	point estimator	SE	SE	CR	power
$\hat{ au}$	-1.251	0.136	0.227	98.2%	80.6%
$\hat{ au}(\hat{eta}_1,\hat{eta}_0)$	-1.202	0.116	0.170	97.7%	86.3%

Outline

Motivation

Causal inference framework for bipartite experiment

Point estimation — Hajek estimator

Covariate adjustment

Simulation based on a real data example

Discussion

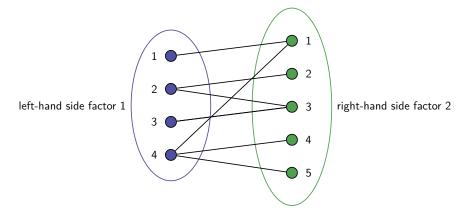
Regression-based versus design-based analyses

- ▶ Hajek = WLS of Y_i on (T_i, C_i) with inverse propensity score weights
- ► We can also include covariates in WLS
- WLS can even provide robust standard errors that work under design-based framework (Gao and Ding 2023 in network experiment)
- Naively using WLS cannot estimate the design-based variance, which involves the second-order inclusion probabilities
- ▶ It is an open problem to unify the design-based and regression-based inferences for bipartite experiments

Other estimands and strategies

- lacktriangle Estimating au requires enough units with $T_i=1$ and $C_i=1$
- ▶ The weights $p^{-G_{+i}}$ and $(1-p)^{-G_{+i}}$ shrink to 0 exponentially in G_{+i}
- ▶ In bipartite graph with large G_{+i} , it is not feasible to estimate τ well without additional assumptions
- May have to make assumptions on "exposure mapping"
- ▶ e.g., $Y_i(z) = Y_i(d_i)$ where $d_i = \sum_{k=1}^m G_{ki} z_k / \sum_{k=1}^m G_{ki}$ is proportion of treated intervention units requires different estimation strategy

Extension to two-sided randomization



- Motivation from online platforms
 - left-hand side = producers, randomization to factor 1
 - ▶ right-hand side = viewers, randomization to factor 2

Causal inference under two-sided randomization

- Extension of the classic factorial design, in particular, split-plot design (Zhao and Ding 2022)
- Richer structure on treatment: factorial
- Richer structure on outcome: outcomes for both sides and for edges
- Related to the "Multiple Randomization Design" proposed by Imbens and Amazon researchers
- Ongoing work

Related papers

- Li, X. and Ding, P. (2020). Rerandomization and regression adjustment. JRSSB
- Su, F. and Ding, P. (2021). Model-assisted analyses of cluster-randomized experiments. JRSSB
- Zhao, A. and Ding, P. (2022). Reconciling design-based and model-based causal inferences for split-plot experiments. AoS
- ▶ Gao, M. and Ding. P. (2025+). Causal inference in network experiments: regression-based analysis and design-based properties. JoE
- ► Lu, S., Shi, L., Fang, Y., Zhang, W. and Ding, P. (2025+) Design-based causal inference in bipartite experiments. ArXiv